Search results for: predicted mean vote
941 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics
Procedia PDF Downloads 324940 Knowledge Management (KM) Practices: A Study of KM Adoption among Doctors in Kuwait
Authors: B. Alajmi, L. Marouf, A. S. Chaudhry
Abstract:
In recent years, increasing emphasis has been placed upon issues concerning the evaluation of health care. In this regard, knowledge management has also been considered an important component of the evaluation process. KM facilitates the transfer of existing knowledge or the development of new knowledge among healthcare staff and patients. This research aimed to examine how hospitals in Kuwait employ knowledge management practices, including capturing, sharing, and generating, and the perceived impact of KM practices on performance of hospitals in Kuwait. Through adopting a quantitative survey method with 277 sample of doctors, the study found that in terms of the three major knowledge management practices – knowledge capturing, sharing, and generating – the adoption of KM practices were rated very low in the sampled hospitals in Kuwait. Hospitals paid little attention to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, knowledge management practices were perceived to have an impact on hospitals’ performance. Through knowledge capturing, sharing, and generating, hospitals could improve the services they provide through documenting best practices, transforming their hospitals into learning organizations in which lessons learned are captured, stored, and made available for others to learn from.Keywords: knowledge management, hospitals, knowledge management practices, knowledge management tools, performance
Procedia PDF Downloads 503939 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor
Authors: K.Narasimhulu, Y. Pydi Setty
Abstract:
The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water
Procedia PDF Downloads 452938 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process
Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko
Abstract:
A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes
Procedia PDF Downloads 377937 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 434936 Modelling Spatial Dynamics of Terrorism
Authors: André Python
Abstract:
To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling
Procedia PDF Downloads 351935 Waste Bone Based Catalyst: Characterization and Esterification Application
Authors: Amit Keshav
Abstract:
Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversionKeywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion
Procedia PDF Downloads 144934 Leadership Style and Organizational Culture on Unethical Work Behaviour among Employees
Authors: Ojo Adeshina Akinwumi
Abstract:
This study investigated leadership style and organizational culture as predictors of unethical work behaviour among employees in corporate organizations. This study adopted an expo facto research design. Two Hundred and Seventy-Four (274) employees (149 males, 125 females) sampled from the organization participated in the study. Their ages ranged from 19 to 65, with a mean of 36.36 years and a standard deviation of 10.43. Unethical Work Behaviour was measured using Unethical Work Behaviour Scale (UWBC), Organizational Culture was measured using Organizational Culture Scale, (and OCS and Leadership Styles were measured using Multifactor Leadership Questionnaire (LSMLQ). Two hypotheses were formulated and tested using Pearson Product Moment Correlation and Multiple Regressions Analysis. Results indicated that leadership styles had no significant relationship with unethical work behaviour (r(274)=.09;>0.05). However, organizational culture had a significant relationship with unethical work behaviour (r(274)=.15;p,0.05). Lastly, leadership style and organizational culture jointly predicted unethical work behaviour among employees. [F (2, 273) =3.65, p<0.05). Findings from this study were discussed in line with existing literature. It was also recommended that leadership styles and organizational culture should be improved upon in order to reduce unethical work behaviour by employees.Keywords: leadership style, organizational culture, unethical work behavior, employees in corporate organisations in Nigeria
Procedia PDF Downloads 111933 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis
Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay
Abstract:
Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.Keywords: mechanical power, torque, Savonius rotor, wind car
Procedia PDF Downloads 337932 Chemical Profiling of Farsetia Aegyptia Turra and Farsetia Longisiliqua Decne. and Their Chemosystematic Significance
Authors: Mona M. Marzouk, Ahmed Elkhateeb, Mona Elshabrawy, Mai M. Farid, Salwa A. Kawashty, EL-Sayed S. Abdel-Hameed, Sameh R. Hussein
Abstract:
The genus Farsetia Turra belongs to the family Brassicaceae and has approximately 30 accepted species distributed worldwide. Amongst them, Farsetia aegyptia Turra and Farsetia longisiliqua Decne. are two common species characteristic to the Egyptian flora. The present study considers the first characterization of the chemical constituents of F. longisiliqua, aiming to compare with those identified from the medicinal species (F. aegyptia). Additionally, the chemosystematic relationships between the two studied species were evaluated and highlight the medicinal importance for F. longisiliqua. The chemical profiling of their aqueous methanol extracts were carried out using the LC-ESI-MS technique and afforded 54 compounds belonging to different chemical groups. Flavonoids are the major constituents and are represented by 32 compounds (two C-glycosyl flavone, four flavones, and 26 flavonols). Their structural variations and common constituents confirmed the chemosystematic significance of the two species. Moreover, the flavonoid profiles showed major common constituents between the two investigated species, which predicted the medicinal importance of F. longisiliqua.Keywords: brassicaceae, chemosystematics, farsetia, flavonoids, glucosinolates, LC-ESI-MS
Procedia PDF Downloads 209931 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules
Authors: BenedictI Ita, Etido P. Inyang
Abstract:
In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules
Procedia PDF Downloads 85930 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron
Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora
Abstract:
Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model
Procedia PDF Downloads 153929 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 142928 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.Keywords: challenges, IPTV service, requirements, software defined networking (SDN)
Procedia PDF Downloads 271927 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films
Authors: M. Emami, R. Tarighi, R. Goodarzi
Abstract:
Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.Keywords: absorbing, carbon, carbon nickel, frequency, thicknesses
Procedia PDF Downloads 186926 Experimental and Numerical Investigation of Hardness and Compressive Strength of Hybrid Glass/Steel Fiber Reinforced Polymer Composites
Authors: Amar Patnaik, Pankaj Agarwal
Abstract:
This paper investigates the experimental study of hardness and compressive strength of hybrid glass/steel fiber reinforced polymer composites by varying the glass and steel fiber layer in the epoxy matrix. The hybrid composites with four stacking sequences HSG-1, HSG-2, HSG-3, and HSG-4 were fabricated by the VARTM process under the controlled environment. The experimentally evaluated results of Vicker’s hardness of the fabricated composites increases with an increase in the fiber layers sequence showing the high resistance. The improvement of micro-structure ability has been observed from the SEM study, which governs in the enhancement of compressive strength. The finite element model was developed on ANSYS to predict the above said properties and further compared with experimental results. The results predicted by the numerical simulation are in good agreement with the experimental results. The hybrid composites developed in this study was identified as the preferred materials due to their excellent mechanical properties to replace the conventional materialsused in the marine structures.Keywords: finite element method, interfacial strength, polymer composites, VARTM
Procedia PDF Downloads 132925 Creating a Quasi-Folklore as a Tool for Knowledge Sharing in a Family-Based Business
Authors: Chico A. E. Hindarto
Abstract:
Knowledge management practices are more contextual when they combine with the corporate culture. Each entity has a specific cultural climate that enables knowledge sharing in both functional and individual levels. The interactions between people within organization can be influenced by the culture and how the knowledge is transmitted. On the other hand, these interactions have impacts in culture modification as well. Storytelling is one of the methods in delivering the knowledge throughout the organization. This paper aims to explore the possibility in using a quasi-folklore in the family-based business. Folklore is defined as informal tradition culture that spreading through a word-of-mouth, without knowing the source of the story. In this paper, the quasi-folklore term is used to differentiate it with the original term of folklore. The story is created by somebody in the organization, not like the folklore with unknown source. However, the source is not disclosed, in order to avoid the predicted interest from the story origin. The setting of family-based business is deliberately chosen, since the kinship is considerably strong in this type of entity. Through a thorough literature review that relates to knowledge management, storytelling, and folklore, this paper determines how folklore can be an option for knowledge sharing within the organization.Keywords: folklore, family business, organizational culture, knowledge management, storytelling
Procedia PDF Downloads 286924 Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden
Authors: Ghazwan Al-Haji, Adeyemi Adedokun
Abstract:
Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections.Keywords: intersections, traffic conflict, traffic safety, street audit, accidents predictions
Procedia PDF Downloads 233923 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest
Authors: Lule Basha, Eralda Gjika
Abstract:
The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.Keywords: exchange rate, random forest, time series, machine learning, prediction
Procedia PDF Downloads 104922 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet
Procedia PDF Downloads 432921 Religiosity and Social Factors on Alcohol Use among South African University Students
Authors: Godswill Nwabuisi Osuafor, Sonto Maria Maputle
Abstract:
Background: Abounding studies found that religiosity and social factors modulate alcohol use among university students. However, there is a scarcity of empirical studies examining the protective effects of religiosity and other social factors on alcohol use and abuse in South African universities. The aim of this study was therefore to assess the protective effects of religiosity and roles of social factors on alcohol use among university students. Methodology: A survey on the use of alcohol among 416 university students was conducted using structured questionnaire in 2014. Data were sourced on religiosity and contextual variables. Students were classified as practicing intrinsic religiosity or extrinsic religiosity based on the response to the measures of religiosity. Descriptive, chi square and binary logistic analyses were used in processing the data. Result: Results revealed that alcohol use was associated with religiosity, religion, sex, family history of alcohol use and experimenting with alcohol. Reporting alcohol abuse was significantly predicted by sex, family history of alcohol use and experimenting with alcohol. Religiosity mediated lower alcohol use whereas family history of alcohol use and experimenting with alcohol promoted alcohol use and abuse. Conclusion: Families, religious groups and societal factors may be the specific niches for intervention on alcohol use among university students.Keywords: religiosity, alcohol use, protective factors, university students
Procedia PDF Downloads 397920 Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation
Authors: Ajay Dwivedi, M. Suresh Kumar, A. N. Vaidya
Abstract:
The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized.Keywords: vegetable waste, physico-chemical characteristics, hydrogen, methane
Procedia PDF Downloads 428919 Perceived Social Support, Resilience and Relapse Risk in Recovered Addicts
Authors: Islah Ud Din, Amna Bibi
Abstract:
The current study was carried out to examine the perceived social support, resilience and relapse risk in recovered addicts. A purposive sampling technique was used to collect data from recovered addicts. A multidimensional scale of perceived social support by was used to measure the perceived social support. The brief Resilience Scale (BRS) was used to assess resilience. The Stimulant Relapse Risk Scale (SRRS) was used to examine the relapse risk. Resilience and Perceived social support have substantial positive correlations, whereas relapse risk and perceived social support have significant negative associations. Relapse risk and resilience have a strong inverse connection. Regression analysis was used to check the mediating effect of resilience between perceived social support and relapse risk. The findings revealed that perceived social support negatively predicted relapse risk. Results showed that Resilience plays a role as partial mediation between perceived social support and relapse risk. This Research will allow us to explore and understand the relapse risk factor and the role of perceived social support and resilience in recovered addicts. The study's findings have immediate consequences in the prevention of relapse. The study will play a significant part in drug rehabilitation centers, clinical settings and further research.Keywords: perceived social support, resilience, relapse risk, recovered addicts, drugs addiction
Procedia PDF Downloads 35918 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 374917 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 82916 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 534915 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide
Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović
Abstract:
Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.Keywords: ANN regression, GC/MS, Satureja montana, terpenes
Procedia PDF Downloads 452914 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction
Authors: B. Guezzen, M.A. Didi, B. Medjahed
Abstract:
A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate
Procedia PDF Downloads 374913 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 36912 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 372