Search results for: laser irradiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1353

Search results for: laser irradiation

753 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 160
752 Evaluation of the Gamma-H2AX Expression as a Biomarker of DNA Damage after X-Ray Radiation in Angiography Patients

Authors: Reza Fardid, Aliyeh Alipour

Abstract:

Introduction: Coronary heart disease (CHD) is the most common and deadliest diseases. A coronary angiography is an important tool for the diagnosis and treatment of this disease. Because angiography is performed by exposure to ionizing radiation, it can lead to harmful effects. Ionizing radiation induces double-stranded breaks in DNA, which is a potentially life-threatening injury. The purpose of the present study is an investigation of the phosphorylation of histone H2AX in the location of the double-stranded break in Peripheral blood lymphocytes as an indication of Biological effects of radiation on angiography patients. Materials and Methods: This method is based on measurement of the phosphorylation of histone (gamma-H2AX, gH2AX) level on serine 139 after formation of DNA double-strand break. 5 cc of blood from 24 patients with angiography were sampled before and after irradiation. Blood lymphocytes were removed, fixed and were stained with specific ϒH2AX antibodies. Finally, ϒH2AX signal as an indicator of the double-strand break was measured with Flow Cytometry Technique. Results and discussion: In all patients, an increase was observed in the number of breaks in double-stranded DNA after irradiation (20.15 ± 14.18) compared to before exposure (1.52 ± 0.34). Also, the mean of DNA double-strand break was showed a linear correlation with DAP. However, although induction of DNA double-strand breaks associated with radiation dose in patients, the effect of individual factors such as radiosensitivity and regenerative capacity should not be ignored. If in future we can measure DNA damage response in every patient angiography and it will be used as a biomarker patient dose, will look very impressive on the public health level. Conclusion: Using flow cytometry readings which are done automatically, it is possible to detect ϒH2AX in the number of blood cells. Therefore, the use of this technique could play a significant role in monitoring patients.

Keywords: coronary angiography, DSB of DNA, ϒH2AX, ionizing radiation

Procedia PDF Downloads 169
751 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 347
750 Microwave Sanitization of Polyester Fabrics

Authors: K. Haggag, M. Salama, H. El-Sayed

Abstract:

Polyester fabrics were sanitized by exposing them to vaporized water under the influence of conventional heating or microwave irradiation. Hydrogen peroxide was added the humid sanitizing environment as a disinfectant. The said sanitization process was found to be effective towards two types of bacteria, namely Escherichia coli ATCC 2666 (G –ve) and Staphylococcus aureus ATCC 6538 (G +ve). The effect of the sanitization process on some of the inherent properties of polyester fabrics was monitored.

Keywords: polyester, fabric, sanitization, microwave, bacteria

Procedia PDF Downloads 359
749 Synthesis of Porphyrin-Functionalized Beads for Flow Cytometry

Authors: William E. Bauta, Jennifer Rebeles, Reggie Jacob

Abstract:

Porphyrins are noteworthy in biomedical science for their cancer tissue accumulation and photophysical properties. The preferential accumulation of some porphyrins in cancerous tissue has been known for many years. This, combined with their characteristic photophysical and photochemical properties, including their strong fluorescence and their ability to generate reactive oxygen species in vivo upon laser irradiation, has led to much research into the application of porphyrins as cancer diagnostic and therapeutic agents. Porphyrins have been used as dyes to detect cancer cells both in vivo and, less commonly, in vitro. In one example, human sputum samples from lung cancer patients and patients without the disease were dissociated and stained with the porphyrin TCPP (5,10,15,20-tetrakis-(4-carboxyphenyl)-porphine). Cells were analyzed by flow cytometry. Cancer samples were identified by their higher TCPP fluorescence intensity relative to the no-cancer controls. However, quantitative analysis of fluorescence in cell suspensions stained with multiple fluorophores requires particles stained with each of the individual fluorophores as controls. Fluorescent control particles must be compatible in size with flow cytometer fluidics and have favorable hydrodynamic properties in suspension. They must also display fluorescence comparable to the cells of interest and be stable upon storage amine-functionalized spherical polystyrene beads in the 5 to 20-micron diameter range that was reacted with TCPP and EDC in aqueous pH six buffer overnight to form amide bonds. Beads were isolated by centrifugation and tested by flow cytometry. The 10-micron amine-functionalized beads displayed the best combination of fluorescence intensity and hydrodynamic properties, such as lack of clumping and remaining in suspension during the experiment. These beads were further optimized by varying the stoichiometry of EDC and TCPP relative to the amine. The reaction was accompanied by the formation of a TCPP-related particulate, which was removed, after bead centrifugation, using a microfiltration process. The resultant TCPP-functionalized beads were compatible with flow cytometry conditions and displayed a fluorescence comparable to that of stained cells, which allowed their use as fluorescence standards. The beads were stable in refrigerated storage in the dark for more than eight months. This work demonstrates the first preparation of porphyrin-functionalized flow cytometry control beads.

Keywords: tetraaryl porphyrin, polystyrene beads, flow cytometry, peptide coupling

Procedia PDF Downloads 82
748 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 415
747 Highly-Efficient Photoreaction Using Microfluidic Device

Authors: Shigenori Togashi, Yukako Asano

Abstract:

We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.

Keywords: microfluidic device, photoreaction, black aluminum oxide, benzophenone, yield improvement

Procedia PDF Downloads 234
746 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 67
745 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids

Authors: Debadi Chakraborty, John E. Sader

Abstract:

Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping

Procedia PDF Downloads 261
744 Characterization of InGaAsP/InP Quantum Well Lasers

Authors: K. Melouk, M. Dellakrachaï

Abstract:

Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.

Keywords: InGaAsP, laser, quantum well, semiconductor

Procedia PDF Downloads 361
743 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field

Authors: Sergei Voychuk

Abstract:

Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.

Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response

Procedia PDF Downloads 312
742 MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology

Authors: Kamélia Bouderbala, Hichem Nouira, Etienne Videcoq, Manuel Girault, Daniel Petit

Abstract:

Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system.

Keywords: modal identification method (MIM), thermal behavior and drift, dimensional metrology, measurement

Procedia PDF Downloads 384
741 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 405
740 Thiourea: Single Crystal with Non Linear Optical Characteristics

Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj

Abstract:

During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.

Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea

Procedia PDF Downloads 132
739 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition

Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg

Abstract:

This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.

Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties

Procedia PDF Downloads 207
738 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 350
737 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 234
736 Investigating the Environmental Impact of Additive Manufacturing Compared to Conventional Manufacturing through Life Cycle Assessment

Authors: Gustavo Menezes De Souza Melo, Arnaud Heitz, Johannes Henrich Schleifenbaum

Abstract:

Additive manufacturing is a growing market that is taking over in many industries as it offers numerous advantages like new design possibilities, weight-saving solutions, ease of manufacture, and simplification of assemblies. These are all unquestionable technical or financial assets. As to the environmental aspect, additive manufacturing is often discussed whether it is the best solution to decarbonize our industries or if conventional manufacturing remains cleaner. This work presents a life cycle assessment (LCA) comparison based on the technological case of a motorbike swing-arm. We compare the original equipment manufacturer part made with conventional manufacturing (CM) methods to an additive manufacturing (AM) version printed using the laser powder bed fusion process. The AM version has been modified and optimized to achieve better dynamic performance without any regard to weight saving. Lightweight not being a priority in the creation of the 3D printed part brings us a unique perspective in this study. To achieve the LCA, we are using the open-source life cycle, and sustainability software OpenLCA combined with the ReCiPe 2016 at midpoint and endpoint level method. This allows the calculation and the presentation of the results through indicators such as global warming, water use, resource scarcity, etc. The results are then showing the relative impact of the AM version compared to the CM one and give us a key to understand and answer questions about the environmental sustainability of additive manufacturing.

Keywords: additive manufacturing, environmental impact, life cycle assessment, laser powder bed fusion

Procedia PDF Downloads 247
735 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation

Authors: P. Selyshchev

Abstract:

We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.

Keywords: irradiation, primary defects, interaction, fluctuations

Procedia PDF Downloads 332
734 Terrestrial Laser Scans to Assess Aerial LiDAR Data

Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani

Abstract:

The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.

Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy

Procedia PDF Downloads 90
733 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods

Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux

Abstract:

Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.

Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing

Procedia PDF Downloads 177
732 Effect of Laser Ablation OTR Films on the Storability of Endive and Pak Choi by Baby Vegetables in Modified Atmosphere Condition

Authors: In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

As the consumption trends of vegetables become different from the past, it is increased using vegetable more convenience such as fresh-cut vegetables, sprouts, baby vegetables rather than an existing hole piece of vegetables. Selected baby vegetables have various functional materials but they have short shelf life. This study was conducted to improve storability by using suitable laser ablation OTR (oxygen transmission rate) films. Baby vegetable of endive (Cichorium endivia L.) and pak choi (Brassica rapa chinensis) for this research, around 10 cm height, cultivated in glass greenhouse during 3 weeks. Harvested endive and pak choi were stored at 8 ℃ for 5 days and were packed by PP (Polypropylene) container and covered different types of laser ablation OTR film (DaeRyung Co., Ltd.) such as 1,300 cc, 10,000 cc, 20,000 cc, 40,000 cc /m2•day•atm, and control (perforated film) with heat sealing machine (SC200-IP, Kumkang, Korea). All the samples conducted 5 times replication. Statistical analysis was carried out using a Microsoft Excel 2010 program and results were expressed as standard deviations. The fresh weight loss rate of both baby vegetables were less than 0.3 % in treated films as maximum weight loss rate. On the other hands, control in the final storage day had around 3.0 % weight loss rate and it followed decreasing quantity. Endive had less 2.0 % carbon dioxide contents as maximum contents in 20,000 cc and 40,000 cc. Oxygen contents was maintained between 17 and 20 % in endive, 19 and 20 % in pak choi. Ethylene concentration of both vegetables maintained little lower contents in 20,000 cc treatments than others at final storage day without statistical significance. In the case of hardness, 40,000 cc film was shown little higher value at both baby vegetables without statistical significance. Visual quality was good at 10,000 cc and 20,000 cc in endive and pak choi, and off-flavor was not appeard any off-flavor in both vegetables. Chlorophyll (SPAD-502, Minolta, Japan) value of endive was shown as similar result with initial in all treatments except 20,000 cc as little lower. And chlorophyll value of pak choi decreased in all treatments compared with initial value but was not shown significantly difference each other. Color of leaves (CR-400, Minolta, Japan) changed significantly in 40,000 cc at endive. In an event of pak choi, all the treatments started yellowing by increasing hunter b value, among them control increased substantially. As above the result, 10,000 cc film was most reasonable packaging film for storing at endive and 20,000 cc at pak choi with good quality.

Keywords: carbon dioxide, shelf-life, visual quality, pak choi

Procedia PDF Downloads 778
731 Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light

Authors: Md. Maksudur Rahman Khan, M. Rahim Uddin, Hamidah Abdullah, Kaykobad Md. Rezaul Karim, Abu Yousuf, Chin Kui Cheng, Huei Ruey Ong

Abstract:

A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe2O4 as tetragonal phase incorporation with anatase TiO2 in CuFe2O4/TiO2 hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe2O4 phases along with predominantly anatase phase of TiO2 in the CuFe2O4/TiO2 hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO2. Photoluminescence (PL) technique was used to study the electron–hole (e/h+) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e/h+) pairs in the CuFe2O4/TiO2 hetero-structure. The photocatalytic performance of CuFe2O4/TiO2 was evaluated based on the methanol yield with varying amount of TiO2 over CuFe2O4 (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO2 in aqueous phase were dissolved CO2 and HCO3- at pH ~5.9. It was evident that the CuFe2O4 could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO2 to increase the life time of the electron and facilitating the reactions of CO2 to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe2O4, but loading with TiO2 remarkably increased the methanol yield. Methanol yield over CuFe2O4/TiO2 was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO2/CH3OH.

Keywords: photocatalysis, CuFe2O4/TiO2, band-gap energy, methanol

Procedia PDF Downloads 234
730 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 173
729 Comparison of Stereotactic Body Radiation Therapy Virtual Treatment Plans Obtained With Different Collimators in the Cyberknife System in Partial Breast Irradiation: A Retrospective Study

Authors: Öznur Saribaş, Si̇bel Kahraman Çeti̇ntaş

Abstract:

It is aimed to compare target volume and critical organ doses by using CyberKnife (CK) in accelerated partial breast irradiation (APBI) in patients with early stage breast cancer. Three different virtual plans were made for Iris, fixed and multi-leaf collimator (MLC) for 5 patients who received radiotherapy in the CyberKnife system. CyberKnife virtual plans were created, with 6 Gy per day totaling 30 Gy. Dosimetric parameters for the three collimators were analyzed according to the restrictions in the NSABP-39/RTOG 0413 protocol. The plans ensured critical organs were protected and GTV received 95 % of the prescribed dose. The prescribed dose was defined by the isodose curve of a minimum of 80. Homogeneity index (HI), conformity index (CI), treatment time (min), monitor unit (MU) and doses taken by critical organs were compared. As a result of the comparison of the plans, a significant difference was found for the duration of treatment, MU. However, no significant difference was found for HI, CI. V30 and V15 values of the ipsi-lateral breast were found in the lowest MLC. There was no significant difference between Dmax values for lung and heart. However, the mean MU and duration of treatment were found in the lowest MLC. As a result, the target volume received the desired dose in each collimator. The contralateral breast and contralateral lung doses were the lowest in the Iris. Fixed collimator was found to be more suitable for cardiac doses. But these values did not make a significant difference. The use of fixed collimators may cause difficulties in clinical applications due to the long treatment time. The choice of collimator in breast SBRT applications with CyberKnife may vary depending on tumor size, proximity to critical organs and tumor localization.

Keywords: APBI, CyberKnife, early stage breast cancer, radiotherapy.

Procedia PDF Downloads 108
728 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering

Authors: Tuba Kizilirmak

Abstract:

Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.

Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals

Procedia PDF Downloads 186
727 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 75
726 Combining Laser Scanning and High Dynamic Range Photography for the Presentation of Bloodstain Pattern Evidence

Authors: Patrick Ho

Abstract:

Bloodstain Pattern Analysis (BPA) forensic evidence can be complex, requiring effective courtroom presentation to ensure clear and comprehensive understanding of the analyst’s findings. BPA witness statements can often involve reference to spatial information (such as location of rooms, objects, walls) which, when coupled with classified blood patterns, may illustrate the reconstructed movements of suspects and injured parties. However, it may be difficult to communicate this information through photography alone, despite this remaining the UK’s established method for presenting BPA evidence. Through an academic-police partnership between the University of Warwick and West Midlands Police (WMP), an integrated 3D scanning and HDR photography workflow for BPA was developed. Homicide scenes were laser scanned and, after processing, the 3D models were utilised in the BPA peer-review process. The same 3D models were made available for court but were not always utilised. This workflow has improved the ease of presentation for analysts and provided 3D scene models that assist with the investigation. However, the effects of incorporating 3D scene models in judicial processes may need to be studied before they are adopted more widely. 3D models from a simulated crime scene and West Midlands Police cases approved for conference disclosure are presented. We describe how the workflow was developed and integrated into established practices at WMP, including peer-review processes and witness statement delivery in court, and explain the impact the work has had on the Criminal Justice System in the West Midlands.

Keywords: bloodstain pattern analysis, forensic science, criminal justice, 3D scanning

Procedia PDF Downloads 79
725 Effect of Laser Ablation OTR Films and High Concentration Carbon Dioxide for Maintaining the Freshness of Strawberry ‘Maehyang’ for Export in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

This study was conducted to improve storability by using suitable laser ablation oxygen transmission rate (OTR) films and effectiveness of high carbon dioxide at strawberry 'Maehyang' for export. Strawberries were grown by hydroponic system in Gyeongsangnam-do province. These strawberries were packed by different laser ablation OTR films (Daeryung Co., Ltd.) such as 1,300 cc, 20,000 cc, 40,000 cc, 80,000 cc, and 100,000 cc•m-2•day•atm. And CO2 injection (30%) treatment was used 20,000 cc•m-2•day•atm OTR film and perforated film was as a control. Temperature conditions were applied simulated shipping and distribution conditions from Korea to Singapore, there were stored at 3 ℃ (13 days), 10 ℃ (an hour), and 8 ℃ (7 days) for 20 days. Fresh weight loss rate was under 1% as maximum permissible weight loss in treated OTR films except perforated film as a control during storage. Carbon dioxide concentration within a package for the storage period showed a lower value than the maximum CO2 concentration tolerated range (15 %) in treated OTR films and even the concentration of high OTR film treatment; from 20,000cc to 100,000cc were less than 3%. 1,300 cc had a suitable carbon dioxide range as over 5 % under 15 % at 5 days after storage until finished experiments and CO2 injection treatment was quickly drop the 15 % at storage after 1 day, but it kept around 15 % during storage. Oxygen concentration was maintained between 10 to 15 % in 1,300 cc and CO2 injection treatments, but other treatments were kept in 19 to 21 %. Ethylene concentration was showed very higher concentration at the CO2 injection treatment than OTR treatments. In the OTR treatments, 1,300 cc showed the highest concentration in ethylene and 20,000 cc film had lowest. Firmness was maintained highest in 1,300cc, but there was not shown any significant differences among other OTR treatments. Visual quality had shown the best result in 20,000 cc that showed marketable quality until 20 days after storage. 20,000 cc and perforated film had better than other treatments in off-odor and the 1,300 cc and CO2 injection treatments have occurred strong off-odor even after 10 minutes. As a result of the difference between Hunter ‘L’ and ‘a’ values of chroma meter, the 1,300cc and CO2 injection treatments were delayed color developments and other treatments did not shown any significant differences. The results indicate that effectiveness for maintaining the freshness was best achieved at 20,000 cc•m-2•day•atm. Although 1,300 cc and CO2 injection treatments were in appropriate MA condition, it showed darkening of strawberry calyx and excessive reduction of coloring due to high carbon dioxide concentration during storage. While 1,300cc and CO2 injection treatments were considered as appropriate treatments for exports to Singapore, but the result was shown different. These results are based on cultivar characteristics of strawberry 'Maehyang'.

Keywords: carbon dioxide, firmness, shelf-life, visual quality

Procedia PDF Downloads 390
724 Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation

Authors: Jinge Liu, Shuyuan Min, Bingchuan Liu, Bangzhao Yin, Bo Peng, Peng Wen, Yun Tian

Abstract:

WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%.

Keywords: laser powder bed fusion, biodegradable metal, high temperature oxidation, biodegradation behavior, WE43

Procedia PDF Downloads 93