Search results for: exchange rate forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9885

Search results for: exchange rate forecasting

9285 A Crystal Plasticity Approach to Model Dynamic Strain Aging

Authors: Burak Bal, Demircan Canadinc

Abstract:

Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity.

Keywords: crystal plasticity, dynamic strain aging, Hadfield steel, negative strain rate sensitivity

Procedia PDF Downloads 261
9284 Predicting Financial Distress in South Africa

Authors: Nikki Berrange, Gizelle Willows

Abstract:

Business rescue has become increasingly popular since its inclusion in the Companies Act of South Africa in May 2011. The Alternate Exchange (AltX) of the Johannesburg Stock Exchange has experienced a marked increase in the number of companies entering business rescue. This study sampled twenty companies listed on the AltX to determine whether Altman’s Z-score model for emerging markets (ZEM) or Taffler’s Z-score model is a more accurate model in predicting financial distress for small to medium size companies in South Africa. The study was performed over three different time horizons; one, two and three years prior to the event of financial distress, in order to determine how many companies each model predicted would be unlikely to succeed as well as the predictive ability and accuracy of the respective models. The study found that Taffler’s Z-score model had a greater ability at predicting financial distress from all three-time horizons.

Keywords: Altman’s ZEM-score, Altman’s Z-score, AltX, business rescue, Taffler’s Z-score

Procedia PDF Downloads 378
9283 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 32
9282 Household Size and Poverty Rate: Evidence from Nepal

Authors: Basan Shrestha

Abstract:

The relationship between the household size and the poverty is not well understood. Malthus followers advocate that the increasing population add pressure to the dwindling resource base due to increasing demand that would lead to poverty. Others claim that bigger households are richer due to availability of household labour for income generation activities. Facts from Nepal were analyzed to examine the relationship between the household size and poverty rate. The analysis of data from 3,968 Village Development Committee (VDC)/ municipality (MP) located in 75 districts of all five development regions revealed that the average household size had moderate positive correlation with the poverty rate (Karl Pearson's correlation coefficient=0.44). In a regression analysis, the household size determined 20% of the variation in the poverty rate. Higher positive correlation was observed in eastern Nepal (Karl Pearson's correlation coefficient=0.66). The regression analysis showed that the household size determined 43% of the variation in the poverty rate in east. The relation was poor in far-west. It could be because higher incidence of poverty was there irrespective of household size. Overall, the facts revealed that the bigger households were relatively poorer. With the increasing level of awareness and interventions for family planning, it is anticipated that the household size will decrease leading to the decreased poverty rate. In addition, the government needs to devise a mechanism to create employment opportunities for the household labour force to reduce poverty.

Keywords: household size, poverty rate, nepal, regional development

Procedia PDF Downloads 364
9281 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 99
9280 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.

Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment

Procedia PDF Downloads 469
9279 Solvent-Aided Dispersion of Tannic Acid to Enhance Flame Retardancy of Epoxy

Authors: Matthew Korey, Jeffrey Youngblood, John Howarter

Abstract:

Background and Significance: Tannic acid (TA) is a bio-based high molecular weight organic, aromatic molecule that has been found to increase thermal stability and flame retardancy of many polymer matrices when used as an additive. Although it is biologically sourced, TA is a pollutant in industrial wastewater streams, and there is a desire to find applications in which to downcycle this molecule after extraction from these streams. Additionally, epoxy thermosets have revolutionized many industries, but are too flammable to be used in many applications without additives which augment their flame retardancy (FR). Many flame retardants used in epoxy thermosets are synthesized from petroleum-based monomers leading to significant environmental impacts on the industrial scale. Many of these compounds also have significant impacts on human health. Various bio-based modifiers have been developed to improve the FR of the epoxy resin; however, increasing FR of the system without tradeoffs with other properties has proven challenging, especially for TA. Methodologies: In this work, TA was incorporated into the thermoset by use of solvent-exchange using methyl ethyl ketone, a co-solvent for TA, and epoxy resin. Samples were then characterized optically (UV-vis spectroscopy and optical microscopy), thermally (thermogravimetric analysis and differential scanning calorimetry), and for their flame retardancy (mass loss calorimetry). Major Findings: Compared to control samples, all samples were found to have increased thermal stability. Further, the addition of tannic acid to the polymer matrix by the use of solvent greatly increased the compatibility of the additive in epoxy thermosets. By using solvent-exchange, the highest loading level of TA found in literature was achieved in this work (40 wt%). Conclusions: The use of solvent-exchange shows promises for circumventing the limitations of TA in epoxy.

Keywords: sustainable, flame retardant, epoxy, tannic acid

Procedia PDF Downloads 133
9278 Video Heart Rate Measurement for the Detection of Trauma-Related Stress States

Authors: Jarek Krajewski, David Daxberger, Luzi Beyer

Abstract:

Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states.

Keywords: heart rate, PTSD, PPGI, stress, preprocessing

Procedia PDF Downloads 127
9277 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie

Abstract:

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 417
9276 Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge

Authors: K. Eryilmaz, G. Mercanoglu

Abstract:

Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages.

Keywords: lanthanide, peptide, labeling, purification, radionuclide, radiopharmaceutical, synthesis

Procedia PDF Downloads 164
9275 Growth Performance, Survival Rate and Feed Efficacy of Climbing Perch, Anabas testudineus, Feed Experimental Diet with Several Dosages of Papain Enzyme

Authors: Zainal A. Muchlisin, Muhammad Iqbal, Abdullah A. Muhammadar

Abstract:

The objective of the present study was to determine the optimum dose of papain enzyme in the diet for growing, survival rate and feed efficacy of climbing perch (Anabas testudineus). The study was conducted at the Laboratory of Aquatic of Faculty of Veterinary, Syiah Kuala University from January to March 2016. The completely randomized design was used in this study. Six dosages level of papain enzyme were tested with 4 replications i.e. 0 g kg-1 of feed, 20.0 g kg-1 feed, 22.5 g kg-1 of feed, 25.0 g kg-1 of feed, 27.5 g kg-1 of feed, and 30.0 g kg-1 of feed. The experimental fish fed twice a day at feeding level of 5% for 60 days. The results showed that weight gain ranged from 2.41g to 7.37g, total length gain ranged from 0.67cm to 3.17cm, specific growth rate ranged from 1.46 % day to 3.41% day, daily growth rate ranged from 0.04 g day to 0.13 g day, feed conversion ratio ranged from 1.94 to 3.59, feed efficiency ranged from 27.99% to 51.37%, protein retention ranged from 3.38% to 28.28%, protein digestibility ranged from 50.63% to 90.38%, and survival rate ranged from 88.89% to 100%. The highest rate for all parameters was found in the dosage of 3.00% papain enzyme kg feed. The ANOVA test showed that enzyme papain gave a significant effect on the weight gain, total length gain, daily growth rate, specific growth rate, feed conversion ratio, feed efficiency, protein retention, protein digestibility, and survival rate of the climbing perch (Anabas testudieus). The best enzyme papain dosage was 3.0%.

Keywords: betok, feed conversion ratio, freshwater fish, nutrition, feeding

Procedia PDF Downloads 239
9274 Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell

Authors: Kwangho Lee, Joongmyeon Bae

Abstract:

Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application.

Keywords: hydrogen, diesel, reforming, ATR, WGS, PROX, membrane, pressure

Procedia PDF Downloads 437
9273 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 113
9272 Mathematical Model to Simulate Liquid Metal and Slag Accumulation, Drainage and Heat Transfer in Blast Furnace Hearth

Authors: Hemant Upadhyay, Tarun Kumar Kundu

Abstract:

It is utmost important for a blast furnace operator to understand the mechanisms governing the liquid flow, accumulation, drainage and heat transfer between various phases in blast furnace hearth for a stable and efficient blast furnace operation. Abnormal drainage behavior may lead to high liquid build up in the hearth. Operational problems such as pressurization, low wind intake, and lower material descent rates, normally be encountered if the liquid levels in the hearth exceed a critical limit when Hearth coke and Deadman start to float. Similarly, hot metal temperature is an important parameter to be controlled in the BF operation; it should be kept at an optimal level to obtain desired product quality and a stable BF performance. It is not possible to carry out any direct measurement of above due to the hostile conditions in the hearth with chemically aggressive hot liquids. The objective here is to develop a mathematical model to simulate the variation in hot metal / slag accumulation and temperature during the tapping of the blast furnace based on the computed drainage rate, production rate, mass balance, heat transfer between metal and slag, metal and solids, slag and solids as well as among the various zones of metal and slag itself. For modeling purpose, the BF hearth is considered as a pressurized vessel, filled with solid coke particles. Liquids trickle down in hearth from top and accumulate in voids between the coke particles which are assumed thermally saturated. A set of generic mass balance equations gives the amount of metal and slag intake in hearth. A small drainage (tap hole) is situated at the bottom of the hearth and flow rate of liquids from tap hole is computed taking in account the amount of both the phases accumulated their level in hearth, pressure from gases in the furnace and erosion behaviors of tap hole itself. Heat transfer equations provide the exchange of heat between various layers of liquid metal and slag, and heat loss to cooling system through refractories. Based on all that information a dynamic simulation is carried out which provides real time information of liquids accumulation in hearth before and during tapping, drainage rate and its variation, predicts critical event timings during tapping and expected tapping temperature of metal and slag on preset time intervals. The model is in use at JSPL, India BF-II and its output is regularly cross-checked with actual tapping data, which are in good agreement.

Keywords: blast furnace, hearth, deadman, hotmetal

Procedia PDF Downloads 187
9271 Efficient Principal Components Estimation of Large Factor Models

Authors: Rachida Ouysse

Abstract:

This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.

Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting

Procedia PDF Downloads 152
9270 Forecasting Materials Demand from Multi-Source Ordering

Authors: Hui Hsin Huang

Abstract:

The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.

Keywords: recency, ordering time, materials demand quantity, multi-source ordering

Procedia PDF Downloads 539
9269 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 56
9268 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 83
9267 Investigating the Interaction of Individuals' Knowledge Sharing Constructs

Authors: Eugene Okyere-Kwakye

Abstract:

Knowledge sharing is a practice where individuals commonly exchange both tacit and explicit knowledge to jointly create a new knowledge. Knowledge management literature vividly express that knowledge sharing is the keystone and perhaps it is the most important aspect of knowledge management. To enhance the understanding of knowledge sharing domain, this study is aimed to investigate some factors that could influence employee’s attitude and behaviour to share their knowledge. The researchers employed the social exchange theory as a theoretical foundation for this study. Three essential factors namely: Trust, mutual reciprocity and perceived enjoyment that could influence knowledge sharing behaviour has been incorporated into a research model. To empirically validate this model, data was collected from one hundred and twenty respondents. The multiple regression analysis was employed to analyse the data. The results indicate that perceived enjoyment and trust have a significant influence on knowledge sharing. Surprisingly, mutual reciprocity did not influence knowledge sharing. The paper concludes by highlight the practical implications of the findings and areas for future research to consider.

Keywords: perceived enjoyment, trust, knowledge sharing, knowledge management

Procedia PDF Downloads 449
9266 CSR: Corporate Social Responsibility Performance of Indian Automobiles Companies

Authors: Jagbir Singh Kadyan

Abstract:

This research paper critically analyse the performance of those Indian Automobile Companies which are listed and traded on the National Stock Exchange (NSE) of India and which are also included in the NSE nifty auto Index. In India, CSR–Corporate Social Responsibility is mandatory for certain qualifying companies under the Indian Companies Act 2013, which replaces the erstwhile Companies Act 1956. There has been a significant shift in the focus and approaches of the Indian Corporates towards their CSR obligations with the insertion of section 135, revision of section 198 and introduction of schedule VII of the Indian Companies Act 2013. Every such qualifying companies are required to mandatorily spend at least 2% of their annual average net profit of the immediately preceding three financial years on such CSR activities as specified under schedule VII of the Companies act 2013. This research paper analyzes the CSR performance of such Indian companies. This research work is originally based on the secondary data. The annual reports of the selected Indian automobile companies have been extensively used and considered for this research work.

Keywords: board of directors, corporate social responsibility, CSR committees, Indian automobile companies, Indian companies act 2013, national stock exchange

Procedia PDF Downloads 541
9265 Heart Rate Variability as a Measure of Dairy Calf Welfare

Authors: J. B. Clapp, S. Croarkin, C. Dolphin, S. K. Lyons

Abstract:

Chronic pain or stress in farm animals impacts both on their welfare and productivity. Measuring chronic pain or stress can be problematic using hormonal or behavioural changes because hormones are modulated by homeostatic mechanisms and observed behaviour can be highly subjective. We propose that heart rate variability (HRV) can quantify chronic pain or stress in farmed animal and represents a more robust and objective measure of their welfare.

Keywords: dairy calf, welfare, heart rate variability, non-invasive, biomonitor

Procedia PDF Downloads 602
9264 Determinants for Discontinuing Contraceptive Use and Regional Variations in Bangladesh: A Sociological Perspective

Authors: Md. Shahriar Sabuz

Abstract:

Bangladesh, a South Asian developing country, has experienced an increasing rate of contraceptive use in the last few decades. But one-third of the pregnancies are still unintended, and the fertility rate surpasses the desired rate of children. It may be because of the discontinuation of the use of contraceptive methods. So, it is necessary to find out the reasons for the discontinuation of the use of contraceptives. Moreover, the rate of contraception discontinuation varies from rural to urban, region to region. In this study, our objectives are to find out the reasons behind the discontinuation of the use of the contraceptive method, and the regional variations of the rate of those reasons. We are using the dataset of Bangladesh Demographic and Health Surveys (BDHS) 2014 for this study and the ever-married women of Bangladesh who have discontinued the use of contraceptive methods aged 15-49. The data was collected from the seven districts of the country. The finding shows that currently there are 23% of women have stopped using their contraception. The most common reasons for stopping using the method are that either they are pregnant or want to be pregnant. A significant number of people are not using the contraceptive method because of the fear of side effects. Though the rate of non-user is higher in rural areas than in urban areas, reasons for method discontinuation are not significantly different between urban and rural areas. However, reasons for discontinuing contraceptive methods significantly vary from region to region.

Keywords: discontinuation of contraceptive, health, pregnant, fertility

Procedia PDF Downloads 97
9263 Relationship between Cinema and Culture: Reel and Real life in India

Authors: Prachi Chavda

Abstract:

The world, as of today, is smaller than it was for those who lived few decades ago. Internet, media and telecommunications have impacted the world like never before. Culture is the pillar upon which a society mushrooms. A culture develops with human creativity over the years and also by the exchange and intermixing of ideas and way of life across different civilizations and we can say that one of the influencing medium of exchange and intermixing of these ideas is cinema. Cinema has been the wonderful as well as important medium of communication since it has been emerged. Change is the thumb rule of life and so have been Indian cinema. As society has evolved from time to time so has the stories of Indian Cinema and its characters, hence it directly effects to the Indian culture as cinema has been very strong mediator for information exchange. The paper tries to discuss deeply how Indian cinema (reel life) and Indian culture (real life) has been influencing each other that results into a constant modification in both. Moreover, the research tries to deal with the issue with some examples that as a outcome how movies impact the Indian culture positively and negatively on culture. Therefore, it spreads the wave of change in cultural settings of society. The paper also tries to light the psychology of youth of India. Today, children and youth greatly admire the ostentatious materialistic display of outfits and style of the actors in the movies. Also, the movies bearing romanticism and showcasing disputatious issues like pre-marital sex, live-in relationship, homo-sexuality etc. though without highlighting them extensively have indeed inspired the commoners. Pros and cons always exist. Such revelation of issues certainly give a spark in the minds of those who are in their formative years and the effect of which is seen with the passage of time Thus, we can say that emergence of cinema as a strong tool of social change as well as culture as a triggering factor for transformation in cinema. As, a finding we can say that culture and cinema of India are influencing factors for each other. Cinema and culture are two sides of a coin, where both are responsible for evolution of each other.

Keywords: cinema, culture, influence, transformation

Procedia PDF Downloads 401
9262 Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea

Authors: S. Venkatramanan, S. Y. Chung, S. Selvam, E. E. Hussam, G. Gnanachandrasamy

Abstract:

The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes.

Keywords: WQI (Water Quality Index), saturation index, groundwater types, ion exchange

Procedia PDF Downloads 265
9261 An Experimental Study of the Parameters Affecting the Compression Index of Clay Soil

Authors: Rami Rami Mahmoud Bakr

Abstract:

The constant rate of strain (CRS) test is a rapid technique that effectively measures specific properties of cohesive soil, including the rate of consolidation, hydraulic conductivity, compressibility, and stress history. Its simple operation and frequent readings enable efficient definition, especially of the compression curve. However, its limitations include an inability to handle strain-rate-dependent soil behavior, initial transient conditions, and pore pressure evaluation errors. There are currently no effective techniques for interpreting CRS data. In this study, experiments were performed to evaluate the effects of different parameters on CRS results. Extensive tests were performed on two types of clay to analyze the soil behavior during strain consolidation at a constant rate. The results were used to evaluate the transient conditions and pore pressure system.

Keywords: constant rate of strain (CRS), resedimented boston blue clay (RBBC), resedimented vicksburg buckshot clay (RVBC), compression index

Procedia PDF Downloads 45
9260 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 132
9259 Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries

Authors: Min-Hwa Lim, Mi-Jeong Park, Ho-Young Jung

Abstract:

Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation.

Keywords: vanadium redox flow battery, ion exchange membrane, permeability, degradation, chemical stability

Procedia PDF Downloads 304
9258 Determination Power and Sample Size Zero-Inflated Negative Binomial Dependent Death Rate of Age Model (ZINBD): Regression Analysis Mortality Acquired Immune Deficiency De ciency Syndrome (AIDS)

Authors: Mohd Asrul Affendi Bin Abdullah

Abstract:

Sample size calculation is especially important for zero inflated models because a large sample size is required to detect a significant effect with this model. This paper verify how to present percentage of power approximation for categorical and then extended to zero inflated models. Wald test was chosen to determine power sample size of AIDS death rate because it is frequently used due to its approachability and its natural for several major recent contribution in sample size calculation for this test. Power calculation can be conducted when covariates are used in the modeling ‘excessing zero’ data and assist categorical covariate. Analysis of AIDS death rate study is used for this paper. Aims of this study to determine the power of sample size (N = 945) categorical death rate based on parameter estimate in the simulation of the study.

Keywords: power sample size, Wald test, standardize rate, ZINBDR

Procedia PDF Downloads 438
9257 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 349
9256 Temperature Effect on Corrosion and Erosion in Transfer Line Exchange by CFD

Authors: S. Hehni Meidani Behzad, Mokhtari Karchegani Amir, Mabodi Samad

Abstract:

There are some TLE (Transfer Line Exchanger) that their lifetime reduced to 4 years instead of 30 years and after 4 years, we saw corroded area on one part of those T.L.E. that named Oval header and this happened in condition that other parts of those TLE were safe and perfect. By using of thickness measurement devices, we find that thickness reduces unusually on that part and after research and doing computer analysis with fluent software, it was recognized that on that part, we have high temperature and when this out of range temperature adds to bad quality of water, corrosion increased with high rate on that part and after more research it became obviously that it case by more excess air in furnace that located before this T.L.E. that this more air case to consuming more fuel to reach same furnace temperature so it concluded that inner coil fluid temperature increased and after received to T.L.E, this case happened and deflector condition, creep in coil and material analysis confirmed that condition.

Keywords: Transfer Line Exchanger (TLE), CFD, corrosion, erosion, tube, oval header

Procedia PDF Downloads 431