Search results for: amorphous materials
6436 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys
Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov
Abstract:
We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).Keywords: dendrite, kinetics, model, solidification
Procedia PDF Downloads 1206435 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption
Authors: Mookyada Mankrut, Manit Nithitanakul
Abstract:
An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion
Procedia PDF Downloads 2736434 Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors
Authors: Igor Svishchev, Kashif Choudhry
Abstract:
Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor.Keywords: high-temperature corrosion, non-intrusive monitoring, reactor materials, supercritical water
Procedia PDF Downloads 1356433 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs
Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani
Abstract:
Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation
Procedia PDF Downloads 5126432 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water
Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh
Abstract:
Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.Keywords: graphite to graphene, oleophilic, produced water, separation
Procedia PDF Downloads 1226431 Thermally Stimulated Depolarization Current (TSDC) and Transient Current Study in Polysulfone (PSF) and Polyvinylidenefluoride (PVDF) Blends
Authors: S. Patel, T. Mitra, R. Dubey, J. Keller
Abstract:
In the present investigations, an attempt has been made to study the charge storage mechanism and mechanism for the flow of transient charging and discharging current in an amorphous polymer (Polysulfone) (PSF) and a semi-crystalline polar Polyvinylidene fluoride (PVDF) blends in ratio PSF: PVDF: 80:20;85:15;90:10 and 95:05 at various poling temperatures (i.e. 60, 75, 90 and 1150C) and with field strength (100, 150, 200 and 250kVcm⁻¹). Thermally stimulated depolarizing current TSDC thermograms for (Polysulfone (PSF) and Polyvinylidene fluoride (PVDF) Blends sample have been obtained under different polarizing conditions. Peaks are found at high-temperature side. The variation of structure on blending and poling condition affects the magnitude of TSDC. The activation energy values have been calculated using the initial rise method of Garlick and Gibson. The transient current with the similar polarizing condition has been investigated over a period of 3X10³ sec. The observed characteristics obey Curie-Von Schweidler law in the studied temperature range. The charging current versus polarizing temperature curves at a constant time, i.e., isochronal current characteristics were studied and the activation energies were calculated. The activation energy in transient thermograms calculated by different methods is in good agreement with the values obtained from TSDC studies.Keywords: activation energy, polysulfone (PSF), polyvinylidenefluoride (PVDF), thermally stimulated depolarizing current (TSDC)
Procedia PDF Downloads 1706430 Breaking Stress Criterion that Changes Everything We Know About Materials Failure
Authors: Ali Nour El Hajj
Abstract:
Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering
Procedia PDF Downloads 786429 Biosorption of Manganese Mine Effluents Using Crude Chitin from Philippine Bivalves
Authors: Randy Molejona Jr., Elaine Nicole Saquin
Abstract:
The area around the Ajuy river in Iloilo, Philippines, is currently being mined for manganese ore, and river water samples exceed the maximum manganese contaminant level set by US-EPA. At the same time, the surplus of local bivalve waste is another environmental concern. Synthetic chemical treatment compromises water quality, leaving toxic residues. Therefore, an alternative treatment process is biosorption or using the physical and chemical properties of biomass to adsorb heavy metals in contaminated water. The study aims to extract crude chitin from shell wastes of Bractechlamys vexillum, Perna viridis, and Placuna placenta and determine its adsorption capacity on manganese in simulated and actual mine water. Crude chitin was obtained by pulverization, deproteinization, demineralization, and decolorization of shells. Biosorption by flocculation followed 5 g: 50 mL chitin-to-water ratio. Filtrates were analyzed using MP-AES after 24 hours. In both actual and simulated mine water, respectively, B. vexillum yielded the highest adsorption percentage of 91.43% and 99.58%, comparable to P. placenta of 91.43% and 99.37%, while significantly different to P. viridis of -57.14% and 31.53%, (p < 0.05). FT-IR validated the presence of chitin in shells based on carbonyl-containing functional groups at peaks 1530-1560 cm⁻¹ and 1660-1680 cm⁻¹. SEM micrographs showed the amorphous and non-homogenous structure of chitin. Thus, crude chitin from B. vexillum and P. placenta can be bio-sorbents for water treatment of manganese-impacted effluents, and promote appropriate waste management of local bivalves.Keywords: biosorption, chitin, FT-IR, mine effluents, SEM
Procedia PDF Downloads 2006428 Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene
Authors: Yingqian Chen, Sergei Manzhos
Abstract:
Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes.Keywords: organic ion batteries, tetracyanoethylene, cohesive energies, electrolytes
Procedia PDF Downloads 6406427 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 2856426 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 2696425 Study of Management of Waste Construction Materials in Civil Engineering Projects
Authors: Jalindar R. Patil, Harish P. Gayakwad
Abstract:
The increased economic growth across the globe as well as urbanization in developing countries have led into extensive construction activities that generate large amounts of wastes. Material wastage in construction projects resulted into huge financial setbacks to builders and contractors. In addition to this, it may also cause significant effects over aesthetics, health, and the general environment. However in many cities across the globe where construction wastes material management is still a problem. In this paper, the discussion is all about the method for the management of waste construction materials. The objectives of this seminar are to identify the significant source of construction waste globally, to improve the performance of by extracting the major barriers construction waste management and to determine the cost impact on the construction project. These wastes needs to be managed as well as their impacts needs to be ascertained to pave way for their proper management. The seminar includes the details of construction waste management with the reference to construction project. The application of construction waste management in the civil engineering projects is to describe the reduction in the construction wastes.Keywords: civil engineering, construction materials, waste management, construction activities
Procedia PDF Downloads 5306424 Howard Mold Count of Tomato Pulp Commercialized in the State of São Paulo, Brazil
Authors: M. B. Atui, A. M. Silva, M. A. M. Marciano, M. I. Fioravanti, V. A. Franco, L. B. Chasin, A. R. Ferreira, M. D. Nogueira
Abstract:
Fungi attack large amount of fruits and those who have suffered an injury on the surface are more susceptible to the growth, as they have pectinolytic enzymes that destroy the edible portion forming an amorphous and soft dough. The spores can reach the plant by the wind, rain and insects and fruit may have on its surface, besides the contaminants from the fruit trees, land and water, forming a flora composed mainly of yeasts and molds. Other contamination can occur for the equipment used to harvest, for the use of boxes and contaminated water to the fruit washing, for storage in dirty places. The hyphae in tomato products indicate the use of raw materials contaminated or unsuitable hygiene conditions during processing. Although fungi are inactivated in heat processing step, its hyphae remain in the final product and search for detection and quantification is an indicator of the quality of raw material. Howard Method count of fungi mycelia in industrialized pulps evaluates the amount of decayed fruits existing in raw material. The Brazilian legislation governing processed and packaged products set the limit of 40% of positive fields in tomato pulps. The aim of this study was to evaluate the quality of the tomato pulp sold in greater São Paulo, through a monitoring during the four seasons of the year. All over 2010, 110 samples have been examined; 21 were taking in spring, 31 in summer, 31 in fall and 27 in winter, all from different lots and trademarks. Samples have been picked up in several stores located in the city of São Paulo. Howard method was used, recommended by the AOAC, 19th ed, 2011 16:19:02 technique - method 965.41. Hundred percent of the samples contained fungi mycelia. The count average of fungi mycelia per season was 23%, 28%, 8,2% and 9,9% in spring, summer, fall and winter, respectively. Regarding the spring samples of the 21 samples analyzed, 14.3% were off-limits proposed by the legislation. As for the samples of the fall and winter, all were in accordance with the legislation and the average of mycelial filament count has not exceeded 20%, which can be explained by the low temperatures during this time of the year. The acquired samples in the summer and spring showed high percentage of fungal mycelium in the final product, related to the high temperatures in these seasons. Considering that the limit of 40% of positive fields is accepted for the Brazilian Legislation (RDC nº 14/2014), 3 spring samples (14%) and 6 summer samples (19%) will be over this limit and subject to law penalties. According to gathered data, 82% of manufacturers of this product manage to keep acceptable levels of fungi mycelia in their product. In conclusion, only 9.2% samples were for the limits established by Resolution RDC. 14/2014, showing that the limit of 40% is feasible and can be used by these segment industries. The result of the filament count mycelial by Howard method is an important tool in the microscopic analysis since it measures the quality of raw material used in the production of tomato products.Keywords: fungi, howard, method, tomato, pulps
Procedia PDF Downloads 3746423 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification
Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto
Abstract:
Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.Keywords: membranes, 2D materials, hydrogen purification, nanocomposites
Procedia PDF Downloads 1346422 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: model predictive control, optimal control, process control, crystal growth
Procedia PDF Downloads 3596421 Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis
Authors: Pratima Kumari, Sukha Ranjan Samadder
Abstract:
This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis.Keywords: spent primary batteries, spent secondary batteries, graphite extraction, advanced material synthesis, circular economy approach
Procedia PDF Downloads 546420 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes
Authors: Mohamed Osama Hassaan
Abstract:
Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).Keywords: strengthening, columns, advanced composite materials, earthquakes
Procedia PDF Downloads 786419 An Ultrasonic Approach to Investigate the Effect of Aeration on Rheological Properties of Soft Biological Materials with Bubbles Embedded
Authors: Hussein M. Elmehdi
Abstract:
In this paper, we present the results of our recent experiments done to examine the effect of air bubbles, which were introduced to bio-samples during preparation, on the rheological properties of soft biological materials. To effectively achieve this, we three samples each prepared with differently. Our soft biological systems comprised of three types of flour dough systems made from different flour varieties with variable protein concentrations. The samples were investigated using ultrasonic waves operated at low frequency in transmission mode. The sample investigated included dough made from bread flour, wheat flour and all-purpose flour. During mixing, the main ingredient of the samples (the flour) was transformed into cohesive dough comprised of the continuous dough matrix and air pebbles. The rheological properties of such materials determine the quality of the end cereal product. Two ultrasonic parameters, the longitudinal velocity and attenuation coefficient were found to be very sensitive to properties such as the size of the occluded bubbles, and hence have great potential of providing quantitative evaluation of the properties of such materials. The results showed that the magnitudes of the ultrasonic velocity and attenuation coefficient peaked at optimum mixing times; the latter of which is taken as an indication of the end of the mixing process. There was an agreement between the results obtained by conventional rheology and ultrasound measurements, thus showing the potential of the use of ultrasound as an on-line quality control technique for dough-based products. The results of this work are explained with respect to the molecular changes occurring in the dough system as the mixing process proceeds; particular emphasis is placed on the presence of free water and bound water.Keywords: ultrasound, soft biological materials, velocity, attenuation
Procedia PDF Downloads 2776418 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 396417 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence
Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz
Abstract:
Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.Keywords: automotive brake, friction material, brake dynamometer, compressibility test
Procedia PDF Downloads 2376416 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound
Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim
Abstract:
People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution
Procedia PDF Downloads 2686415 An Investigation into Sealing Materials for Vacuum Glazing
Authors: Paul Onyegbule, Harjit Singh
Abstract:
Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 0C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 0C with the addition of an adhesive (borax flux) should be used for future vacuum seals.Keywords: double glazed windows, U-value, heat loss, borax powder, edge seal
Procedia PDF Downloads 2376414 Effect of Instructional Materials on Academic Performance in Heat Transfer Concept among Secondary School Physics Students in Fagge Educational Zone, Kano State, Nigeria
Authors: Shehu Aliyu
Abstract:
This study investigated the effects of instructional materials on academic achievement among senior secondary school students on the concept of Heat Transfer in physics in Fagge Educational Zone, Kano State Nigeria. The population consisted of SSII students from 10 public schools. Out of this, 87 students were randomly selected from which 24 males and 22 females formed the experimental group and 41 students as control group. A quasi experiential design with pretest and post-test for both the groups was adopted. Two research questions and null hypotheses guided the conduct of the study. The experimental group was exposed to teaching using instructional materials while the control group was taught using the normal lecture mode. Head Transfer Performance Test (HTPT) was used for data collection. The instrument was validated by experts in the science education field. A Pearson Product Moment Correlation (PPMC) was used to determine the reliability co-efficient and was found to be r=0.83. The research questions were answered using descriptive statistics while the hypotheses were tested at p≤ 0.05 level of significance using t-test. The result obtained from the data analysis showed that students in experimental group performed significantly better than those in the control group and that there was no significant difference in the academic performance between male and female students in the experimental group. Based on the findings of this study, it was recommended among others that the physics teachers should be receiving regular training on the importance of using instructional materials whether ready made or improved in their teaching.Keywords: heat transfer, physics, instructional materials, academic performance
Procedia PDF Downloads 1826413 Study of Biodegradable Composite Materials Based on Polylactic Acid and Vegetal Reinforcements
Authors: Manel Hannachi, Mustapha Nechiche, Said Azem
Abstract:
This study focuses on biodegradable materials made from Poly-lactic acid (PLA) and vegetal reinforcements. Three materials are developed from PLA, as a matrix, and : (i) olive kernels (OK); (ii) alfa (α) short fibers and (iii) OK+ α mixture, as reinforcements. After processing of PLA pellets and olive kernels in powder and alfa stems in short fibers, three mixtures, namely PLA-OK, PLA-α, and PLA-OK-α are prepared and homogenized in Turbula®. These mixtures are then compacted at 180°C under 10 MPa during 15 mn. Scanning Electron Microscopy (SEM) examinations show that PLA matrix adheres at surface of all reinforcements and the dispersion of these ones in matrix is good. X-ray diffraction (XRD) analyses highlight an increase of PLA inter-reticular distances, especially for the PLA-OK case. These results are explained by the dissociation of some molecules derived from reinforcements followed by diffusion of the released atoms in the structure of PLA. This is consistent with Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis results.Keywords: alfa short fibers, biodegradable composite, olive kernels, poly-lactic acid
Procedia PDF Downloads 1476412 Revealing Insights into the Mechanisms of Biofilm Adhesion on Surfaces in Crude Oil Environments
Authors: Hadjer Didouh, Mohammed Hadj Meliani, Izzaddine Sameut Bouhaik
Abstract:
This study employs a multidisciplinary approach to investigate the intricate processes governing biofilm-surface interactions. Results indicate that surface properties significantly influence initial microbial attachment, with materials characterized by increased roughness and hydrophobicity promoting enhanced biofilm adhesion. Moreover, the chemical composition of materials plays a crucial role in impacting the development of biofilms. Environmental factors, such as temperature fluctuations and nutrient availability, were identified as key determinants affecting biofilm formation dynamics. Advanced imaging techniques revealed complex three-dimensional biofilm structures, emphasizing microbial communication and cooperation within these networks. These findings offer practical implications for industries operating in crude oil environments, guiding the selection and design of materials to mitigate biofilm-related challenges and enhance operational efficiency in such settings.Keywords: biofilm adhesion, surface properties, crude oil environments, microbial interactions, multidisciplinary investigation
Procedia PDF Downloads 736411 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 546410 Cd1−xMnxSe Thin Films Preparation by Cbd: Aspect on Optical and Electrical Properties
Authors: Jaiprakash Dargad
Abstract:
CdMnSe dilute semiconductor or semimagnetic semiconductors have become the focus of intense research due to their interesting combination of magnetic and semiconducting properties, and are employed in a variety of devices including solar cells, gas sensors etc. A series of thin films of this material, Cd1−xMnxSe (0 ≤ x ≤ 0.5), were therefore synthesized onto precleaned amorphous glass substrates using a solution growth technique. The sources of cadmium (Cd2+) and manganese (Mn2+) were aqueous solutions of cadmium sulphate and manganese sulphate, and selenium (Se2−) was extracted from a reflux of sodium selenosulphite. The different deposition parameters such as temperature, time of deposition, speed of mechanical churning, pH of the reaction mixture etc were optimized to yield good quality deposits. The as-grown samples were thin, relatively uniform, smooth and tightly adherent to the substrate support. The colour of the deposits changed from deep red-orange to yellowish-orange as the composition parameter, x, was varied from 0 to 0.5. The terminal layer thickness decreased with increasing value of, x. The optical energy gap decreased from 1.84 eV to 1.34 eV for the change of x from 0 to 0.5. The coefficient of optical absorption is of the order of 10-4 - 10-5 cm−1 and the type of transition (m = 0.5) is of the band-to-band direct type. The dc electrical conductivities were measured at room temperature and in the temperature range 300 K - 500 K. It was observed that the room temperature electrical conductivity increased with the composition parameter x up to 0.1, gradually decreasing thereafter. The thermo power measurements showed n-type conduction in these films.Keywords: dilute semiconductor, reflux, CBD, thin film
Procedia PDF Downloads 2316409 Digital Curriculum Preservation Planning, Actions, and Challenges
Authors: Misook Ahn
Abstract:
This study examined the Digital Curriculum Repository (DCR) project initiated at Defense Language Institute Foreign Language Center (DLIFLC). The purpose of the DCR is to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The DCR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the DCR. The DCR website was designed with MS SharePoint for easy accessibility by the DLIFLC’s faculty and students. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The study documents digital curriculum preservation planning, actions, and challenges, including collecting, coding, collaborating, designing DCR SharePoint, and policymaking. DCR Survey data is also collected and analyzed for this research. Based on the finding, the study concludes that the mandatory policy for the DCR system and collaboration with school leadership are critical elements of a successful repository system. The sample collected items, metadata, and DCR SharePoint site are presented in the evaluation section.Keywords: MS share point, digital preservation, repository, policy
Procedia PDF Downloads 1596408 Evolution of Leather in Fashion Industry
Authors: Utkarsh Goley
Abstract:
Leather has been a valued material for clothing and accessories for centuries, and its use has evolved along with fashion trends and technological advancements. From ancient times when leather was used for practical purposes, to the modern fashion industry, where it is used for both functional and decorative purposes, leather has undergone significant changes in its production and usage. In recent years, there has been a growing awareness of ethical and sustainable fashion, leading to a shift towards alternative materials and production methods. The leather industry has responded to this by exploring new techniques and materials, such as vegetable-tanned leather and leather substitutes made from plant-based materials. The evolution of leather in the fashion industry is also closely tied to cultural and social trends. The use of leather has been associated with rebellion and counterculture in the past, and today it is often used to evoke a sense of luxury and sophistication. Despite the challenges and controversies surrounding its production, leather continues to be a popular material in the fashion industry, with designers and consumers alike valuing its durability, versatility, and aesthetic appeal. As fashion continues to evolve, so will the role and use of leather in the industry. This research paper provides a detailed overview of the evolution of leather in the fashion industry throughout the different decades and centuries.Keywords: evolution, fashion, leather, sustainable
Procedia PDF Downloads 926407 Cycle-Oriented Building Components and Constructions Made from Paper Materials
Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider
Abstract:
The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources
Procedia PDF Downloads 277