Search results for: cotton materials
904 Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, heterogeneous Fenton, micropollutant, photocatalysis
Procedia PDF Downloads 297903 Enhancing the Quality of Silage Bales Produced by a Commercial Scale Silage Producer in Northern province, Sri Lanka: A Step Toward Supporting Smallholder Dairy Farmers in the Northern Province Sri Lanka
Authors: Harithas Aruchchunan
Abstract:
Silage production is an essential aspect of dairy farming, used to provide high-quality feed to ruminants. However, dairy farmers in Northern Province Sri Lanka are facing multiple challenges that compromise the quality and quantity of silage produced. To tackle these challenges, promoting silage feeding has become an essential component of sustainable dairy farming practices. In this study, silage bale samples were collected from a newly started silage baling factory in Jaffna, Northern province and their quality was analysed at the Veterinary Research Institute laboratory in Kandy in March 2023. The results show the nutritional composition of three Napier grass cultivars: Super Napier, CO6, and Indian Red Napier (BH18). The main parameters analysed were dry matter, pH, lactic acid, soluble carbohydrate, ammonia nitrogen, ash, crude protein, NDF, and ADF. The results indicate that Super Napier and CO6 have higher crude protein content and lower ADF levels, making them suitable for producing high-quality silage. The pH levels of all three cultivars were safe, and the ammonia nitrogen levels were considered appropriate. However, laboratory results indicate that the quality of silage bales produced can be further enhanced. Dairy farmers should be encouraged to adopt these cultivars to achieve better yields as they are high in protein and are better suited to Northern Province's soil and climate. Therefore, it is vital to educate small-scale fodder producers, who supply the raw material to silage factories, on the best practices of cultivating these new cultivars. To improve silage bale production and quality in Northern Province Sri Lanka, we recommend increasing public awareness about silage feeding, providing education and training to dairy farmers and small-scale fodder producers on modern silage production techniques and improving the availability of raw materials for silage production. Additionally, Napier grass cultivars need to be promoted among dairy farmers for better production and quality of silage bales. Failing to improve the quality and quantity of silage bale production could not only lead to the decline of dairy farming in Northern Province Sri Lanka but also the negative impact on the economyKeywords: silage bales, dairy farming, economic crisis, Sri Lanka
Procedia PDF Downloads 93902 Effect of Grain Size and Stress Parameters on Ratcheting Behaviour of Two Different Single Phase FCC Metals
Authors: Jayanta Kumar Mahato, Partha Sarathi De, Amrita Kundu, P. C. Chakraborti
Abstract:
Ratcheting is one of the most important phenomena to be considered for design and safety assessment of structural components subjected to stress controlled asymmetric cyclic loading in the elasto-plastic domain. In the present study uniaxial ratcheting behavior of commercially pure annealed OFHC copper and aluminium with two different grain sizes has been investigated. Stress-controlled tests have been conducted at various combinations of stress amplitude and mean stress. These stresses were selected in such a way that the ratio of equivalent stress amplitude (σₐeq) to ultimate tensile strength (σUTS) of the selected materials remains constant. It is found that irrespective of grain size the ratcheting fatigue lives decrease with the increase of both stress amplitude and mean stress following power relationships. However, the effect of stress amplitude on ratcheting lives is observed higher as compared to mean stress for both the FCC metals. It is also found that for both FCC metals ratcheting fatigue lives at a constant ratio of equivalent stress amplitude (σ ₐeq) to ultimate tensile strength (σUTS) are more in case fine grain size. So far ratcheting strain rate is concerned, it decreases rapidly within first few cycles and then a steady state is reached. Finally, the ratcheting strain rate increases up to the complete failure of the specimens due to a very large increase of true stress for a substantial reduction in cross-sectional area. The steady state ratcheting strain rate increases with the increase in both stress amplitude and mean stress. Interestingly, a unique perfectly power relationship between steady state ratcheting strain rate and cycles to failure has been found irrespective of stress combination for both FCC metals. Similar to ratcheting strain rate, the strain energy density decreases rapidly within first few cycles followed by steady state and then increases up to a failure of the specimens irrespective of stress combinations for both FCC metals; but strain energy density at steady state decreases with increase in mean stress and increases with the increase of stress amplitude. From the fractography study, it is found that the void density increases with the increase of maximum stress, but the void size and void density are almost same for any combination of stress parameters considering constant maximum stress.Keywords: ratcheting phenomena, grain size, stress parameter, ratcheting lives, ratcheting strain rate
Procedia PDF Downloads 291901 Energy Efficiency Line Guides for School Buildings in Florence in a Postgraduate Master Course
Authors: Lucia Ceccherini Nelli, Alessandra Donato
Abstract:
The ABITA Master course of the University of Florence offered by the Department of Architecture covers nearly all the energy-relevant issues that can arise in public and private companies and sectors. The main purpose of the Master course, active since 2003, is to analyse the energy consumption of building technologies, components, and structures at the conceptual design stage, so it could be very helpful, for designers, when making decisions related to the selection of the most suitable design alternatives and for the materials choice that will be used in an energy-efficient building. The training course provides a solid basis for increasing the knowledge and skills of energy managers and is developed with an emphasis on practical experiences related to the knowledge through case studies, measurements, and verification of energy-efficient solutions in buildings, in the industry and in the cities. The main objectives are: i)To raise the professional standards of those engaged in energy auditing, ii) To improve the practice of energy auditors by encouraging energy auditing professionals in a continuing education program of professional development, iii) Implement in the use of instrumentations for the typical measurements, iv) To propose an integrated methodology that links energy analysis tools with green building certification systems. This methodology will be applied at the early design stage of a project’s life. The final output of the practical training is to achieve an elevated professionalism in the study of environmental design and Energy management in buildings. The results are the redaction of line guides instruction for the energy refurbishment of Public schools in Florence. The school heritage of the Municipality of Florence requires interventions for the control of energy performance, as old construction buildings are often made without taking into account the necessary envelope performance. For this reason, every year, the Master's course aims to study groups of public schools to enable the Municipality to carry out energy redevelopment interventions on the existing building heritage. The future challenges of the education and training program are related to follow-up activities, the development of interactive tools and the curriculum's customization to meet the constantly growing needs of energy experts from industry.Keywords: expert in energy, energy auditing, public buildings, thermal analysis
Procedia PDF Downloads 190900 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process
Authors: Jitendar Kumar Tiwari, Ajay Mandal, N. Sathish, A. K. Srivastava
Abstract:
Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.Keywords: graphene, hardness, porosity, powder bed fusion, tensile properties
Procedia PDF Downloads 128899 Urban Furniture in a New Setting of Public Spaces within the Kurdistan Region: Educational Targets and Course Design Process
Authors: Sinisa Prvanov
Abstract:
This research is an attempt to analyze the existing urban form of outdoor public space of Duhok city and to give proposals for their improvements in terms of urban seating. The aim of this research is to identify the main urban furniture elements and behaviour of users of three central parks of Duhok city, recognizing their functionality and the most common errors. Citizens needs, directly related to the physical characteristics of the environment, are categorized in terms of contact with nature. Parks as significant urban environments express their aesthetic preferences, as well as the need for recreation and play. Citizens around the world desire to contact with nature and places where they can socialize, play and practice different activities, but also participate in building their community and feeling the identity of their cities. The aim of this research is also to reintegrate these spaces in the wider urban context of the city of Duhok, to develop new functions by designing new seating patterns, more improved urban furniture, and necessary supporting facilities and equipment. Urban furniture is a product that uses an enormous number of people in public space. It has a high level of wear and damage due to intense use, exposure to sunlight and weather conditions. Iraq has a hot and dry climate characterized by long, warm, dry summers and short, cold winters. The climate is determined by the Iraq location at the crossroads of Arab desert areas and the subtropical humid climate of the Persian Gulf. The second part of this analysis will describe the possibilities of traditional and contemporary materials as well as their advantages in urban furniture production, providing users protection from extreme local climate conditions, but also taking into account solidities and unwelcome consequences, such as vandalism. In addition, this research represents a preliminary stage in the development of IND307 furniture design course for needs of the Department of Interior design, at the American University in Duhok. Based on results obtained in this research, the course would present a symbiosis between people and technology, promotion of new street furniture design that perceives pedestrian activities in an urban setting, and practical use of anthropometric measurements as a tool for technical innovations.Keywords: Furniture design, Street furniture, Social interaction, Public space
Procedia PDF Downloads 136898 Investigation of the Association of Vitamin D Receptor Gene Polymorphism in Female Genital: Tuberculosis Cases
Authors: Swati Gautam, Amita Jain, Shyampyari Jaiswar
Abstract:
Objective: To elucidate the role of (ApaI&TaqI) VDR gene polymorphism in the pathogenesis of female genital tuberculosis (FGTB) cases. Background: Female genital TB represents about 15-20% of total extra-pulmonary TB (EPTB). Female subjects with vitamin D deficiency have been shown to be at higher risk of pulmonary TB as well as FGTB. In same context few functional polymorphism in vitamin D receptor (VDR) gene has been considered as an important genetic risk factor that modulate the development of FGTB. Therefore we aimed, to elucidate the role of (ApaI&TaqI) VDR gene polymorphism in the pathogenesis of FGTB. Study design: Case-Control study. Sample size: Cases (60) and Controls (60). Study site: Department of Obstetrics & Gynecology & Department of Microbiology, K.G.M.U. Lucknow, (UP). Inclusion criteria: Cases: Women with age group 20-35 years, premenstrual endometrial aspiration collected and included in the study, those were positive with acid-fast bacilli (AFB)/ TB-PCR/ LJ culture/ liquid culture. Controls: Women with age group 20-35 years having no history of ATT and all test negative for TB recruited as control. Exclusion criteria: -Women with endometriosis, polycystic ovaries (PCOD), positive on Chlamydia & gonorrhea, already on anti-tubercular therapy (ATT) excluded. Materials and Methods: Blood samples were collected in EDTA tubes from cases and controls stored at -20ºC. Genomic DNA extraction was carried out by salting-out method. Genotyping of VDR gene (ApaI&TaqI) polymorphism was performed by using single amplification refractory mutation system (ARMS) PCR technique. PCR products were analyzed by electrophoresis on 2% agarose gel. Statistical analysis was done by SPSS16.3 software & computing odds ratio (OR) with 95% CI. Results: Increased risk of female genital tuberculosis was observed in AA genotype (OR =1.1419-6.212 95% CI, P*<0.036) and A allele (OR =1.255-3.518, 95% CI, P* < 0.006) in FGTB as compared to controls. Moreover A allele was found more frequent in FGTB patients. No significant difference was observed in TaqI gene polymorphism of VDR gene. Conclusion: The ApaI polymorphism is significantly associated with etiology of FGTB and plays an important role as a genetic risk factor in FGTB women.Keywords: ARMS, ATT, EPTB, FGTB, VDR
Procedia PDF Downloads 287897 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag
Abstract:
MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂
Procedia PDF Downloads 192896 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design
Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect
Procedia PDF Downloads 109895 Barriers and Challenges to a Healthy Lifestyle for Postpartum Women and the Possibilities in an Information Technology-Based Intervention: A Qualitative Study
Authors: Pernille K. Christiansen, Mette Maria Skjøth, Line Lorenzen, Eva Draborg, Christina Anne Vinter, Trine Kjær, Mette Juel Rothmann
Abstract:
Background and aims: Overweight and obesity are an increasing challenge on a global level. In Denmark, more than one-third of all pregnant women are overweight or obese, and many women exceed the gestational weight gain recommendations from the Institute of Medicine. Being overweight or obese, is associated with a higher risk of adverse maternal and fetal outcomes, including gestational diabetes and childhood obesity. Thus, it is important to focus on the women’s lifestyles between their pregnancies to lower the risk of gestational weight retention in the long run. The objective of this study was to explorer what barriers and challenges postpartum women experience with respect to healthy lifestyles during the postpartum period and to access whether an Information Technology based intervention might be a supportive tool to assist and motivate postpartum women to a healthy lifestyle. Materials and methods: The method is inspired by participatory design. A systematic text condensation was applied to semi-structured focus groups. Five focus group interviews were carried out with a total of 17 postpartum women and two interviews with a total of six health professionals. Participants were recruited through the municipality in Svendborg, Denmark, and at Odense University Hospital in Odense, Denmark, during a four-month period in early 2018. Results: From the women’s perspective, better assistance is needed from the health professionals to obtain or maintain a healthy lifestyle. The women need tools that inform and help them understand and prioritise their own health-related risks, and to motivate them to plan and take care of their own health. As the women use Information Technology on a daily basis, the solution could be delivered through Information Technology. Finally, there is room for engaging the partner more in the communication related to the baby and family’s lifestyle. Conclusion: Postpartum women need tools that inform and motivate a healthy lifestyle postpartum. The tools should allow access to high-quality information from health care professionals, when the information is needed, and also allow engagement from the partner. Finally, Information Technology is a potential tool for delivering tools.Keywords: information technology, lifestyle, overweight, postpartum
Procedia PDF Downloads 147894 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies
Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid
Abstract:
Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.Keywords: climate, renewable energy, R strategies, sustainability
Procedia PDF Downloads 137893 The Women-In-Mining Discourse: A Study Combining Corpus Linguistics and Discourse Analysis
Authors: Ylva Fältholm, Cathrine Norberg
Abstract:
One of the major threats identified to successful future mining is that women do not find the industry attractive. Many attempts have been made, for example in Sweden and Australia, to create organizational structures and mining communities attractive to both genders. Despite such initiatives, many mining areas are developing into gender-segregated fly-in/fly out communities dominated by men with both social and economic consequences. One of the challenges facing many mining companies is thus to break traditional gender patterns and structures. To do this increased knowledge about gender in the context of mining is needed. Since language both constitutes and reproduces knowledge, increased knowledge can be gained through an exploration and description of the mining discourse from a gender perspective. The aim of this study is to explore what conceptual ideas are activated in connection to the physical/geographical mining area and to work within the mining industry. We use a combination of critical discourse analysis implying close reading of selected texts, such as policy documents, interview materials, applications and research and innovation agendas, and analyses of linguistic patterns found in large language corpora covering millions of words of contemporary language production. The quantitative corpus data serves as a point of departure for the qualitative analysis of the texts, that is, suggests what patterns to explore further. The study shows that despite technological and organizational development, one of the most persistent discourses about mining is the conception of dangerous and unfriendly areas infused with traditional notions of masculinity ideals and manual hard work. Although some of the texts analyzed highlight gender issues, and describe gender-equalizing initiatives, such as wage-mapping systems, female networks and recruitment efforts for women executives, and thereby render the discourse less straightforward, it is shown that these texts are not unambiguous examples of a counter-discourse. They rather illustrate that discourses are not stable but include opposing discourses, in dialogue with each other. For example, many texts highlight why and how women are important to mining, at the same time as they suggest that gender and diversity are all about women: why mining is a problem for them, how they should be, and what they should do to fit in. Drawing on a constitutive view of discourse, knowledge about such conflicting perceptions of women is a prerequisite for succeeding in attracting women to the mining industry and thereby contributing to the development of future mining.Keywords: discourse, corpus linguistics, gender, mining
Procedia PDF Downloads 265892 Flowback Fluids Treatment Technology with Water Recycling and Valuable Metals Recovery
Authors: Monika Konieczyńska, Joanna Fajfer, Olga Lipińska
Abstract:
In Poland works related to the exploration and prospection of unconventional hydrocarbons (natural gas accumulated in the Silurian shale formations) started in 2007, based on the experience of the other countries that have created new possibilities for the use of existing hydrocarbons resources. The highly water-consuming process of hydraulic fracturing is required for the exploitation of shale gas which implies a need to ensure large volume of water available. As a result considerable amount of mining waste is generated, particularly liquid waste, i.e. flowback fluid with variable chemical composition. The chemical composition of the flowback fluid depends on the composition of the fracturing fluid and the chemistry of the fractured geological formations. Typically, flowback fluid is highly salinated, can be enriched in heavy metals, including rare earth elements, naturally occurring radioactive materials and organic compounds. The generated fluids considered as the extractive waste should be properly managed in the recovery or disposal facility. Problematic issue is both high hydration of waste as well as their variable chemical composition. Also the limited capacity of currently operating facilities is a growing problem. Based on the estimates, currently operating facilities will not be sufficient for the need of waste disposal when extraction of unconventional hydrocarbons starts. Further more, the content of metals in flowback fluids including rare earth elements is a considerable incentive to develop technology of metals recovery. Also recycling is a key factor in terms of selection of treatment process, which should provide that the thresholds required for reuse are met. The paper will present the study of the flowback fluids chemical composition, based on samples from hydraulic fracturing processes performed in Poland. The scheme of flowback fluid cleaning and recovering technology will be reviewed along with a discussion of the results and an assessment of environmental impact, including all generated by-products. The presented technology is innovative due to the metal recovery, as well as purified water supply for hydraulic fracturing process, which is significant contribution to reducing water consumption.Keywords: environmental impact, flowback fluid, management of special waste streams, metals recovery, shale gas
Procedia PDF Downloads 262891 Crafting of Paper Cutting Techniques for Embellishment of Fashion Textiles
Authors: A. Vaidya-Soocheta, K. M. Wong-Hon-Lang
Abstract:
Craft and fashion have always been interlinked. The combination of both often gives stunning results. The present study introduces ‘Paper Cutting Craft Techniques’ like the Japanese –Kirigami, Mexican –PapelPicado, German –Scherenschnitte, Polish –Wycinankito in textiles to develop innovative and novel design structures as embellishments and ornamentation. The project studies various ways of using these paper cutting techniques to obtain interesting features and delicate design patterns on fabrics. While paper has its advantages and related uses, it is fragile rigid and thus not appropriate for clothing. Fabric is sturdy, flexible, dimensionally stable and washable. In the present study, the cut out techniques develop creative design motifs and patterns to give an inventive and unique appeal to the fabrics. The beauty and fascination of lace in garments have always given them a nostalgic charm. Laces with their intricate and delicate complexity in combination with other materials add a feminine touch to a garment and give it a romantic, mysterious appeal. Various textured and decorative effects through fabric manipulation are experimented along with the use of paper cutting craft skills as an innovative substitute for developing lace or “Broderie Anglaise” effects on textiles. A number of assorted fabric types with varied textures were selected for the study. Techniques to avoid fraying and unraveling of the design cut fabrics were introduced. Fabrics were further manipulated by use of interesting prints with embossed effects on cut outs. Fabric layering in combination with assorted techniques such as cutting of folded fabric, printing, appliqué, embroidery, crochet, braiding, weaving added a novel exclusivity to the fabrics. The fabrics developed by these innovative methods were then tailored into garments. The study thus tested the feasibility and practicability of using these fabrics by designing a collection of evening wear garments based on the theme ‘Nostalgia’. The prototypes developed were complemented by designing fashion accessories with the crafted fabrics. Prototypes of accessories add interesting features to the study. The adaptation and application of this novel technique of paper cutting craft on textiles can be an innovative start for a new trend in textile and fashion industry. The study anticipates that this technique will open new avenues in the world of fashion to incorporate its use commercially.Keywords: collection, fabric cutouts, nostalgia, prototypes
Procedia PDF Downloads 359890 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C
Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner
Abstract:
Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applicationsKeywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity
Procedia PDF Downloads 85889 A Small-Scale Survey on Risk Factors of Musculoskeletal Disorders in Workers of Logistics Companies in Cyprus and on the Early Adoption of Industrial Exoskeletons as Mitigation Measure
Authors: Kyriacos Clerides, Panagiotis Herodotou, Constantina Polycarpou, Evagoras Xydas
Abstract:
Background: Musculoskeletal disorders (MSDs) in the workplace is a very common problem in Europe which are caused by multiple risk factors. In recent years, wearable devices and exoskeletons for the workplace have been trying to address the various risk factors that are associated with strenuous tasks in the workplace. The logistics sector is a huge sector that includes warehousing, storage, and transportation. However, the task associated with logistics is not well-studied in terms of MSDs risk. This study was aimed at looking into the MSDs affecting workers of logistics companies. It compares the prevalence of MSDs among workers and evaluates multiple risk factors that contribute to the development of MSDs. Moreover, this study seeks to obtain user feedback on the adoption of exoskeletons in such a work environment. Materials and Methods: The study was conducted among workers in logistics companies in Nicosia, Cyprus, from July to September 2022. A set of standardized questionnaires was used for collecting different types of data. Results: A high proportion of logistics professionals reported MSDs in one or more other body regions, the lower back being the most commonly affected area. Working in the same position for long periods, working in awkward postures, and handling an excessive load, were found to be the most commonly reported job risk factor that contributed to the development of MSDs, in this study. A significant number of participants consider the back region as the most to be benefited from a wearable exoskeleton device. Half of the participants would like to have at least a 50% reduction in their daily effort. The most important characteristics for the adoption of exoskeleton devices were found to be how comfortable the device is and its weight. Conclusion: Lower back and posture were the highest risk factors among all logistics professionals assessed in this study. A larger scale study using quantitative analytical tools may give a more accurate estimate of MSDs, which would pave the way for making more precise recommendations to eliminate the risk factors and thereby prevent MSDs. A follow-up study using exoskeletons in the workplace should be done to assess whether they assist in MSD prevention.Keywords: musculoskeletal disorders, occupational health, safety, occupational risk, logistic companies, workers, Cyprus, industrial exoskeletons, wearable devices
Procedia PDF Downloads 108888 Frustration Measure for Dipolar Spin Ice and Spin Glass
Authors: Konstantin Nefedev, Petr Andriushchenko
Abstract:
Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.Keywords: frustrations, parameter of order, statistical physics, magnetism
Procedia PDF Downloads 170887 Effect of Operative Stabilization on Rib Fracture Healing in Porcine Experimental Model: A Pilot Study
Authors: Maria Stepankova, Lucie Vistejnova, Pavel Klein, Tereza Blassova, Marketa Slajerova, Radek Sedlacek, Martin Bartos, Jaroslav Chlupac
Abstract:
Background: Clinical outcome benefits of the segment rib fracture surgical therapy are well known and follow from better stabilization of the chest wall. Despite this, some authors still incline to conservative therapy and point out to possible rib fracture healing failure in connection with the bone vascular supply disturbance caused by metal plate implantation. This suggestion met neither experimental nor clinical verification and remains the object of discussion. In our pilot study we investigated the titanium plate fixation effect on the rib fracture healing in porcine model and its histological, biomechanical and radiological aspects. Materials and Method: Two porcine models (experimental group) underwent the operative chest wall stabilization with a titanium plate implantation after osteotomy. Two other porcine models (control group) were treated conservatively after osteotomy. Three weeks after surgery, all animals were sacrificed, treated ribs were explanted and the histological analysis, µCT imaging and biomechanical testing of the calluses tissue were performed. Results: In µCT imaging, experimental group showed a higher cortical bone volume compared to the control group. Histological analysis using the non-decalcified bone tissue blocks demonstrated more maturated callus with higher newly-formed osseous tissue ratio in experimental group in comparison to controls. In contrast, no significant differences in bone blood vessels supply in both groups were observed. This finding suggests that the bone blood supply in experimental group was not impaired. Biomechanical analysis using 3-point bending test demonstrated significantly higher bending stiffness and the maximum force in experimental group. Conclusion: Based on our observation, it could be concluded, that the titanium plate fixation of the rib fractures leads to faster bone callus maturation whereas does not cause the vascular supply impairment after 3 weeks and thus has a beneficial effect on the rib fracture healing.Keywords: bone vascular supply, chest wall stabilization, fracture healing, histological analysis, titanium plate implantation
Procedia PDF Downloads 141886 Fabric-Reinforced Cementitious Matrix (FRCM)-Repaired Corroded Reinforced Concrete (RC) Beams under Monotonic and Fatigue Loads
Authors: Mohammed Elghazy, Ahmed El Refai, Usama Ebead, Antonio Nanni
Abstract:
Rehabilitating corrosion-damaged reinforced concrete (RC) structures has been accomplished using various techniques such as steel plating, external post-tensioning, and external bonding of fiber reinforced polymer (FRP) composites. This paper reports on the use of an innovative technique to strengthen corrosion-damaged RC structures using fabric-reinforced cementitious matrix (FRCM) composites. FRCM consists of dry-fiber fabric embedded in cement-based matrix. Twelve large-scale RC beams were constructed and tested in flexural monotonic and fatigue loads. Prior to testing, ten specimens were subjected to accelerated corrosion process for 140 days leading to an average mass loss in the tensile steel bars of 18.8 %. Corrosion was restricted to the main reinforcement located in the middle third of the beam span. Eight corroded specimens were repaired and strengthened while two virgin and two corroded-unrepaired/unstrengthened beams were used as benchmarks for comparison purpose. The test parameters included the FRCM materials (Carbon-FRCM, PBO-FRCM), the number of FRCM plies, the strengthening scheme, and the type of loading (monotonic and fatigue). The effects of the pervious parameters on the flexural response, the mode of failure, and the fatigue life were reported. Test results showed that corrosion reduced the yield and ultimate strength of the beams. The corroded-unrepaired specimen failed to meet the provisions of the ACI-318 code for crack width criteria. The use of FRCM significantly increased the ultimate strength of the corroded specimen by 21% and 65% more than that of the corroded-unrepaired specimen. Corrosion significantly decreased the fatigue life of the corroded-unrepaired beam by 77% of that of the virgin beam. The fatigue life of the FRCM repaired-corroded beams increased to 1.5 to 3.8 times that of the corroded-unrepaired beam but was lower than that of the virgin specimen. The specimens repaired with U-wrapped PBO-FRCM strips showed higher fatigue life than those repaired with the end-anchored bottom strips having similar number of PBO-FRCM-layers. PBO-FRCM was more effective than Carbon-FRCM in restoring the fatigue life of the corroded specimens.Keywords: corrosion, concrete, fabric-reinforced cementitious matrix (FRCM), fatigue, flexure, repair
Procedia PDF Downloads 296885 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions
Authors: Eun-Soo Lim, Young-Min Kang
Abstract:
M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties
Procedia PDF Downloads 212884 Utilising Indigenous Knowledge to Design Dykes in Malawi
Authors: Martin Kleynhans, Margot Soler, Gavin Quibell
Abstract:
Malawi is one of the world’s poorest nations and consequently, the design of flood risk management infrastructure comes with a different set of challenges. There is a lack of good quality hydromet data, both in spatial terms and in the quality thereof and the challenge in the design of flood risk management infrastructure is compounded by the fact that maintenance is almost completely non-existent and that solutions have to be simple to be effective. Solutions should not require any further resources to remain functional after completion, and they should be resilient. They also have to be cost effective. The Lower Shire Valley of Malawi suffers from frequent flood events. Various flood risk management interventions have been designed across the valley during the course of the Shire River Basin Management Project – Phase I, and due to the data poor environment, indigenous knowledge was relied upon to a great extent for hydrological and hydraulic model calibration and verification. However, indigenous knowledge comes with the caveat that it is ‘fuzzy’ and that it can be manipulated for political reasons. The experience in the Lower Shire valley suggests that indigenous knowledge is unlikely to invent a problem where none exists, but that flood depths and extents may be exaggerated to secure prioritization of the intervention. Indigenous knowledge relies on the memory of a community and cannot foresee events that exceed past experience, that could occur differently to those that have occurred in the past, or where flood management interventions change the flow regime. This complicates communication of planned interventions to local inhabitants. Indigenous knowledge is, for the most part, intuitive, but flooding can sometimes be counter intuitive, and the rural poor may have a lower trust of technology. Due to a near complete lack of maintenance of infrastructure, infrastructure has to be designed with no moving parts and no requirement for energy inputs. This precludes pumps, valves, flap gates and sophisticated warning systems. Designs of dykes during this project included ‘flood warning spillways’, that double up as pedestrian and animal crossing points, which provide warning of impending dangerous water levels behind dykes to residents before water levels that could cause a possible dyke failure are reached. Locally available materials and erosion protection using vegetation were used wherever possible to keep costs down.Keywords: design of dykes in low-income countries, flood warning spillways, indigenous knowledge, Malawi
Procedia PDF Downloads 284883 Strategic Innovation of Nanotechnology: Novel Applications of Biomimetics and Microfluidics in Food Safety
Authors: Boce Zhang
Abstract:
Strategic innovation of nanotechnology to promote food safety has drawn tremendous attentions among research groups, which includes the need for research support during the implementation of the Food Safety Modernization Act (FSMA) in the United States. There are urgent demands and knowledge gaps to the understanding of a) food-water-bacteria interface as for how pathogens persist and transmit during food processing and storage; b) minimum processing requirement needed to prevent pathogen cross-contamination in the food system. These knowledge gaps are of critical importance to the food industry. However, the lack of knowledge is largely hindered by the limitations of research tools. Our groups recently endeavored two novel engineering systems with biomimetics and microfluidics as a holistic approach to hazard analysis and risk mitigation, which provided unprecedented research opportunities to study pathogen behavior, in particular, contamination, and cross-contamination, at the critical food-water-pathogen interface. First, biomimetically-patterned surfaces (BPS) were developed to replicate the identical surface topography and chemistry of a natural food surface. We demonstrated that BPS is a superior research tool that empowers the study of a) how pathogens persist through sanitizer treatment, b) how to apply fluidic shear-force and surface tension to increase the vulnerability of the bacterial cells, by detaching them from a protected area, etc. Secondly, microfluidic devices were designed and fabricated to study the bactericidal kinetics in the sub-second time frame (0.1~1 second). The sub-second kinetics is critical because the cross-contamination process, which includes detachment, migration, and reattachment, can occur in a very short timeframe. With this microfluidic device, we were able to simulate and study these sub-second cross-contamination scenarios, and to further investigate the minimum sanitizer concentration needed to sufficiently prevent pathogen cross-contamination during the food processing. We anticipate that the findings from these studies will provide critical insight on bacterial behavior at the food-water-cell interface, and the kinetics of bacterial inactivation from a broad range of sanitizers and processing conditions, thus facilitating the development and implementation of science-based food safety regulations and practices to mitigate the food safety risks.Keywords: biomimetic materials, microbial food safety, microfluidic device, nanotechnology
Procedia PDF Downloads 359882 The Environmental Impacts of Textiles Reuse and Recycling: A Review on Life-Cycle-Assessment Publications
Authors: Samuele Abagnato, Lucia Rigamonti
Abstract:
Life-Cycle-Assessment (LCA) is an effective tool to quantify the environmental impacts of reuse models and recycling technologies for textiles. In this work, publications in the last ten years about LCA on textile waste are classified according to location, goal and scope, functional unit, waste composition, impact assessment method, impact categories, and sensitivity analysis. Twenty papers have been selected: 50% are focused only on recycling, 30% only on reuse, the 15% on both, while only one paper considers only the final disposal of the waste. It is found that reuse is generally the best way to decrease the environmental impacts of textiles waste management because of the avoided impacts of manufacturing a new item. In the comparison between a product made with recycled yarns and a product from virgin materials, in general, the first option is less impact, especially for the categories of climate change, water depletion, and land occupation, while for other categories, such as eutrophication or ecotoxicity, under certain conditions the impacts of the recycled fibres can be higher. Cultivation seems to have quite high impacts when natural fibres are involved, especially in the land use and water depletion categories, while manufacturing requires a remarkable amount of electricity, with its associated impact on climate change. In the analysis of the reuse processes, relevant importance is covered by the laundry phase, with water consumption and impacts related to the use of detergents. About the sensitivity analysis, it can be stated that one of the main variables that influence the LCA results and that needs to be further investigated in the modeling of the LCA system about this topic is the substitution rate between recycled and virgin fibres, that is the amount of recycled material that can be used in place of virgin one. Related to this, also the yield of the recycling processes has a strong influence on the results of the impact. The substitution rate is also important in the modeling of the reuse processes because it represents the number of avoided new items bought in place of the reused ones. Another aspect that appears to have a large influence on the impacts is consumer behaviour during the use phase (for example, the number of uses between two laundry cycles). In conclusion, to have a deeper knowledge of the impacts of a life-cycle approach of textile waste, further data and research are needed in the modeling of the substitution rate and of the use phase habits of the consumers.Keywords: environmental impacts, life-cycle-assessment, textiles recycling, textiles reuse, textiles waste management
Procedia PDF Downloads 89881 Possible Role of Fenofibrate and Clofibrate in Attenuated Cardioprotective Effect of Ischemic Preconditioning in Hyperlipidemic Rat Hearts
Authors: Gurfateh Singh, Mu Khan, Razia Khanam, Govind Mohan
Abstract:
Objective: The present study has been designed to investigate the beneficial role of Fenofibrate & Clofibrate in attenuated the cardioprotective effect of ischemic preconditioning (IPC) in hyperlipidemic rat hearts. Materials & Methods: Experimental hyperlipidemia was produced by feeding high fat diet to rats for a period of 28 days. Isolated langendorff’s perfused normal and hyperlipidemic rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 120 min. The myocardial infarct size was assessed macroscopically using triphenyltetrazolium chloride staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase-MB release to assess the extent of cardiac injury. Moreover, the oxidative stress in heart was assessed by measuring thiobarbituric acid reactive substance, superoxide anion generation and reduced form of glutathione. Results: The ischemia-reperfusion (I/R) has been noted to induce oxidative stress by increasing TBARS, superoxide anion generation and decreasing reduced form of glutathione in normal and hyperlipidemic rat hearts. Moreover, I/R produced myocardial injury, which was assessed in terms of increase in myocardial infarct size, LDH and CK-MB release in coronary effluent and decrease in coronary flow rate in normal and hyperlipidemic rat hearts. In addition, the hyperlipidemic rat hearts showed enhanced I/R-induced myocardial injury with high degree of oxidative stress as compared with normal rat hearts subjected to I/R. Four episodes of IPC (5 min each) afforded cardioprotection against I/R-induced myocardial injury in normal rat hearts as assessed in terms of improvement in coronary flow rate and reduction in myocardial infarct size, LDH, CK-MB and oxidative stress. On the other hand, IPC mediated myocardial protection against I/R-injury was abolished in hyperlipidemic rat hearts. However, Treatment with Fenofibrate (100 mg/kg/day, i.p.), Clofibrate (300mg/kg/day, i.p.) as a agonists of PPAR-α have not affected the cardioprotective effect of IPC in normal rat hearts, but its treatment markedly restored the cardioprotective potentials of IPC in hyperlipidemic rat hearts. Conclusion: It is noted that the high degree of oxidative stress produced in hyperlipidemic rat heart during reperfusion and consequent down regulation of PPAR-α may be responsible to abolish the cardioprotective potentials of IPC.Keywords: Hyperlipidemia, ischemia-reperfusion injury, ischemic preconditioning, PPAR-α
Procedia PDF Downloads 290880 The Textual Criticism on the Age of ‘Wan Li’ Shipwreck Porcelain and Its Comparison with ‘Whitte Leeuw’ and Hatcher Shipwreck Porcelain
Authors: Yang Liu, Dongliang Lyu
Abstract:
After the Wan li shipwreck was discovered 60 miles off the east coast of Tan jong Jara in Malaysia, numerous marvelous ceramic shards have been salvaged from the seabed. Remarkable pieces of Jing dezhen blue-and-white porcelain recovered from the site represent the essential part of the fascinating research. The porcelain cargo of Wan li shipwreck is significant to the studies on exported porcelains and Jing dezhen porcelain manufacture industry of Late-Ming dynasty. Using the ceramic shards categorization and the study of the Chinese and Western historical documents as a research strategy, the paper wants to shed new light on the Wan li shipwreck wares classification with Jingdezhen kiln ceramic as its main focus. The article is also discussing Jing dezhen blue-and-white porcelains from the perspective of domestic versus export markets and further proceeding to the systematization and analyses of Wan li shipwreck porcelain which bears witness to the forms, styles, and types of decoration that were being traded in this period. The porcelain data from two other shipwrecked projects -White Leeuw and Hatcher- were chosen as comparative case studies and Wan li shipwreck Jing dezhen blue-and-white porcelain is being reinterpreted in the context of art history and archeology of the region. The marine archaeologist Sten Sjostrand named the ship ‘Wanli shipwreck’ because its porcelain cargoes are typical of those made during the reign of Emperor Wan li of Ming dynasty. Though some scholars question the appropriateness of the name, the final verdict of the history is still to be made. Based on previous historical argumentation, the article uses a comparative approach to review the Wan li shipwreck blue-and-white porcelains on the grounds of the porcelains unearthed from the tomb or abandoned in the towns and carrying the time-specific reign mark. All these materials provide a very strong evidence which suggests that the porcelain recovered from Wan li ship can be dated to as early as the second year of Tianqi era (1622) and early Chongzhen reign. Lastly, some blue-and-white porcelain intended for the domestic market and some bowls of blue-and-white porcelain from Jing dezhen kilns recovered from the Wan li shipwreck all carry at the bottom the specific residue from the firing process. The author makes the corresponding analysis for these two interesting phenomena.Keywords: blue-and-white porcelain, Ming dynasty, Jing dezhen kiln, Wan li shipwreck
Procedia PDF Downloads 191879 Fabrication of Carbon Nanoparticles and Graphene Using Pulsed Laser Ablation
Authors: Davoud Dorranian, Hajar Sadeghi, Elmira Solati
Abstract:
Carbon nanostructures in various forms were synthesized using pulsed laser ablation of a graphite target in different liquid environment. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7-ns pulse width is employed to irradiate the solid target in water, acetone, alcohol, and cetyltrimethylammonium bromide (CTAB). Then the effect of the liquid environment on the characteristic of carbon nanostructures produced by laser ablation was investigated. The optical properties of the carbon nanostructures were examined at room temperature by UV–Vis-NIR spectrophotometer. The crystalline structure of the carbon nanostructures was analyzed by X-ray diffraction (XRD). The morphology of samples was investigated by field emission scanning electron microscope (FE-SEM). Transmission electron microscope (TEM) was employed to investigate the form of carbon nanostructures. Raman spectroscopy was used to determine the quality of carbon nanostructures. Results show that different carbon nanostructures such as nanoparticles and few-layer graphene were formed in various liquid environments. The UV-Vis-NIR absorption spectra of samples reveal that the intensity of absorption peak of nanoparticles in alcohol is higher than the other liquid environments due to the larger number of nanoparticles in this environment. The red shift of the absorption peak of the sample in acetone confirms that produced carbon nanoparticles in this liquid are averagely larger than the other medium. The difference in the intensity and shape of the absorption peak indicated the effect of the liquid environment in producing the nanoparticles. The XRD pattern of the sample in water indicates an amorphous structure due to existence the graphene sheets. X-ray diffraction pattern shows that the degree of crystallinity of sample produced in CTAB is higher than the other liquid environments. Transmission electron microscopy images reveal that the generated carbon materials in water are graphene sheet and in the other liquid environments are graphene sheet and spherical nanostructures. According to the TEM images, we have the larger amount of carbon nanoparticles in the alcohol environment. FE-SEM micrographs indicate that in this liquids sheet like structures are formed however in acetone, produced sheets are adhered and these layers overlap with each other. According to the FE-SEM micrographs, the surface morphology of the sample in CTAB was coarser than that without surfactant. From Raman spectra, it can be concluded the distinct shape, width, and position of the graphene peaks and corresponding graphite source.Keywords: carbon nanostructures, graphene, pulsed laser ablation, graphite
Procedia PDF Downloads 316878 Copyright Infringement for Academic Authorship in Uganda: Implications on Exemptions of Fair Use for Educational Purposes in Universities
Authors: Elisam Magara
Abstract:
Like any other property, Intellectual Property (IP) must be regarded, respected, and remunerated to address the historical, ethical, economical and informational needs of society. Article 26 of the Constitution of the Republic of Uganda 1995, the Copyright and Neighbouring Rights (CNR) Act 2006 and CNR Regulations 2010 guide copyright protection in Uganda. However, an unpredictable environment has negatively impact on certain author/intellectual freedoms; and the infringements on academic works that affect the economic rights of authors that limit authors from fully enjoying the benefits of authorship. Notwithstanding the different licensing systems and copyright protection avenues, educational institutions and custodians of copyright works (libraries, archives) have continued to advocate for open access to information resources, under the legal exceptions of fair use for educational purposes. Thus, a study was conducted in educational institutions, libraries and archives in Uganda to assess the state of copyright infringement in Uganda in an increased use of academic authored works. The study attempted to establish the nature and forms of Copyright Infringement, the circumstances for copyright infringement, assessed the opinions from the custodians on strategies for balancing copyright protection for economic and moral gains by authors and increased access to information for educational purposes and fair-use. Through a survey, using a self-administered questionnaire, interviews and physical visits, the study was conducted in higher education institutions, libraries and archives among the officers that manage and keep copyright works. It established that the uncontrolled reproduction of copyright works in educational institutions and information institutions, have contributed copyright infringement robbing authors of their potential economic earnings and limiting their academic innovativeness and creativity. The study also established that lack of consciousness and awareness on copyright issues by lecturers, universities and libraries has made copyright works in Universities highly susceptible to copyright infringement. Thus the increased access to materials without restrictions has resulted in copyright infringement among the educational institutions, libraries and archives. A strategic alliance by the collecting Society (Uganda Reproduction Rights Organisation (URRO), government, Universities and right holders organisations (UTANA) to work together and institute a programme to address copyright protection and access to information is pertinently required.Keywords: access to information, academic Writing, copyright, copyright infringement, copyright protection, exemptions of fair use, intellectual property rights
Procedia PDF Downloads 456877 Didactic Games for the Development of Reading and Writing: Proeduca Program
Authors: Andreia Osti
Abstract:
The context experienced in the face of the COVID-19 pandemic substantially changed the way children communicate and the way literacy teaching was carried out. Officially, according to the Brazilian Institute of Geography and Statistics, children who should be literate were seriously impacted by the pandemic, and it was found that the number of illiterate children increased from 1.4 million, in 2019, to 2.4 million in 2021. In this context, this work presents partial results of an intervention project in which classroom monitoring of students in the literacy phase was carried out. Methodologically, pedagogical games were developed that work on specific reading and writing content, such as 1) games with direct regularities and; 2) Games with contextual regularities. The project involves the elaboration and production of games and their application by the classroom teacher. All work focused on literacy and improving understanding of grapheme and phoneme relationships among students, aiming to improve reading and writing comprehension levels. The project, still under development, is carried out in two schools and supports 60 students. The teachers participate in the research, as they apply the games produced at the university and monitor the children's learning process. The project is developed with financial support for research from FAPESP - in the public education improvement program – PROEDUCA. The initial results show that children are more involved in playful activities, that games provide better moments of interaction in the classroom and that they result in effective learning since they constitute a different way of approaching the content to be taught. It is noteworthy that the pedagogical games produced directly involve the teaching and learning processes of curricular components – in this case, reading and writing, which are basic components in elementary education and constitute teaching methodologies as specific and guided activities are planned in literacy methods. In this presentation, some of the materials developed will be shown, as well as the results of the assessments carried out with the students. In relation to the Sustainable Development objectives (SDGs) linked to this project, we have 4 – Quality Education, 10 – Reduction of inequalities. It is noteworthy that the research seeks to improve Public Education and promote the articulation between theory and practice in the educational context with a view to consolidating the tripod of teaching, research and university extension and promoting a humanized education.Keywords: didactic, teaching, games, learning, literacy
Procedia PDF Downloads 24876 Urban Livelihoods and Climate Change: Adaptation Strategies for Urban Poor in Douala, Cameroon
Authors: Agbortoko Manyigbe Ayuk Nkem, Eno Cynthia Osuh
Abstract:
This paper sets to examine the relationship between climate change and urban livelihood through a vulnerability assessment of the urban poor in Douala. Urban development in Douala places priority towards industrial and city-centre development with little focus on the urban poor in terms of housing units and areas of sustenance. With the high rate of urbanisation and increased land prices, the urban poor are forced to occupy marginal lands which are mainly wetlands, wastelands and along abandoned neighbourhoods prone to natural hazards. Due to climate change and its effects, these wetlands are constantly flooded thereby destroying homes, properties, and crops. Also, most of these urban dwellers have found solace in urban agriculture as a means for survival. However, since agriculture in tropical regions like Cameroon depends largely on seasonal rainfall, the changes in rainfall pattern has led to misplaced periods for crop planting and a huge wastage of resources as rainfall becomes very unreliable with increased temperature levels. Data for the study was obtained from both primary and secondary sources. Secondary sources included published materials related to climate change and vulnerability. Primary data was obtained through focus-group discussions with some urban farmers while a stratified sampling of residents within marginal lands was done. Each stratum was randomly sampled to obtain information on different stressors related to climate change and their effect on livelihood. Findings proved that the high rate of rural-urban migration into Douala has led to increased prevalence of the urban poor and their vulnerability to climate change as evident in their constant fight against flood from unexpected sea level rise and irregular rainfall pattern for urban agriculture. The study also proved that women were most vulnerable as they depended solely on urban agriculture and its related activities like retailing agricultural products in different urban markets which to them serves as a main source of income in the attainment of basic needs for the family. Adaptation measures include the constant use of sand bags, raised makeshifts as well as cultivation along streams, planting after evidence of constant rainfall has become paramount for sustainability.Keywords: adaptation, Douala, Cameroon, climate change, development, livelihood, vulnerability
Procedia PDF Downloads 294875 Comparing the Gap Formation around Composite Restorations in Three Regions of Tooth Using Optical Coherence Tomography (OCT)
Authors: Rima Zakzouk, Yasushi Shimada, Yuan Zhou, Yasunori Sumi, Junji Tagami
Abstract:
Background and Purpose: Swept source optical coherence tomography (OCT) is an interferometric imaging technique that has been recently used in cariology. In spite of progress made in adhesive dentistry, the composite restoration has been failing due to secondary caries which occur due to environmental factors in oral cavities. Therefore, a precise assessment to effective marginal sealing of restoration is highly required. The aim of this study was evaluating gap formation at composite/cavity walls interface with or without phosphoric acid etching using SS-OCT. Materials and Methods: Round tapered cavities (2×2 mm) were prepared in three locations, mid-coronal, cervical, and root of bovine incisors teeth in two groups (SE and PA Groups). While self-etching adhesive (Clearfil SE Bond) was applied for the both groups, Group PA had been already pretreated with phosphoric acid etching (K-Etchant gel). Subsequently, both groups were restored by Estelite Flow Quick Flowable Composite Resin. Following 5000 thermal cycles, three cross-sectionals were obtained from each cavity using OCT at 1310-nm wavelength at 0°, 60°, 120° degrees. Scanning was repeated after two months to monitor the gap progress. Then the average percentage of gap length was calculated using image analysis software, and the difference of mean between both groups was statistically analyzed by t-test. Subsequently, the results were confirmed by sectioning and observing representative specimens under Confocal Laser Scanning Microscope (CLSM). Results: The results showed that pretreatment with phosphoric acid etching, Group PA, led to significantly bigger gaps in mid-coronal and cervical compared to SE group, while in the root cavity no significant difference was observed between both groups. On the other hand, the gaps formed in root’s cavities were significantly bigger than those in mid-coronal and cervical within the same group. This study investigated the effect of phosphoric acid on gap length progress on the composite restorations. In conclusions, phosphoric acid etching treatment did not reduce the gap formation even in different regions of the tooth. Significance: The cervical region of tooth was more exposing to gap formation than mid-coronal region, especially when we added pre-etching treatment.Keywords: image analysis, optical coherence tomography, phosphoric acid etching, self-etch adhesives
Procedia PDF Downloads 221