Search results for: interfacial properties
3013 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract
Authors: Farideh Namvar, Rosfarizan Mohamed
Abstract:
In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed
Procedia PDF Downloads 3183012 Electrochemical Detection of Polycyclic Aromatic Hydrocarbons in Urban Air by Exfoliated Graphite Based Electrode
Authors: A. Sacko, H. Nyoni, T. A. M. Msagati, B. Ntsendwana
Abstract:
Carbon based materials to target environmental pollutants have become increasingly recognized in science. Electrochemical methods using carbon based materials are notable methods for high sensitive detection of organic pollutants in air. It is therefore in this light that exfoliated graphite electrode was fabricated for electrochemical analysis of PAHs in urban atmospheric air. The electrochemical properties of the graphite electrode were studied using CV and EIS in the presence of acetate buffer supporting electrolyte with 2 Mm ferricyanide as a redox probe. The graphite electrode showed enhanced current response which confirms facile kinetics and enhanced sensitivity. However, the peak to peak (DE) separation increased as a function of scan rate. The EIS showed a high charger transfer resistance. The detection phenanthrene on the exfoliated graphite was studied in the presence of acetate buffer solution at PH 3.5 using DPV. The oxidation peak of phenanthrene was observed at 0.4 V. Under optimized conditions (supporting electrolyte, pH, deposition time, etc.). The detection limit observed was at 5x 10⁻⁸ M. Thus the results demonstrate with further optimization and modification lower concentration detection can be achieved.Keywords: electrochemical detection, exfoliated graphite, PAHs (polycyclic aromatic hydrocarbons), urban air
Procedia PDF Downloads 2123011 Using of TFC Polysulfone Electrospun Nanofiber Mats in Oil-Water Separation
Authors: Nasser A. M. Barakat
Abstract:
Membrane technology is the most promising process for oil-water separation operation if the hydrophilicity, fouling and reusability properties could be improved. In this study, novel effective and reusable membrane for oil-water separation process is introduced based on modification of polysulfone (PSF) electrospun nanofiber mats. The modification process was achieved by incorporation of NaOH nanoparticles inside the PSF nanofibers, and formation of a thin layer from a polyamide polymer on the surface of the electrospun mat. Typically, solutions composed of PSF and NaOH (twelve solutions were prepared based on different PSF concentrations; 15, 18 and 20 wt%, and various NaOH content; 1.5, 1.7 and 2.5 wt%) have been electrospun, then the dried nanofiber mats were treated by m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride to form polyamide thin layer on the surface of the mats. The results indicated that incorporation of NaOH and the formed polyamide could decrease the water contact angle from ~ 130˚ to 13˚ for the nanofiber mats obtained from 20 wt% PSF solutions containing 1.7 wt% sodium hydroxide powders. Interestingly, the membrane having the lowest contact angle could separate oil-water mixture for three successive cycles and 100% removal of the oil with relatively high water flux; 5.5 m3/m2.day. Overall, simplicity of the manufacturing technique, and effectiveness and reusability of the produced nanofiber mats open new avenue for the introduced as promising membranes for the oil-water separation process.Keywords: electrospinning, oil-water separation, hydrophilic membrane, nanofibers
Procedia PDF Downloads 3473010 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth
Authors: Rajiv Arora
Abstract:
Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification
Procedia PDF Downloads 1803009 Nature of a Supercritical Mesophase
Authors: Hamza Javar Magnier, Leslie V. Woodcock
Abstract:
It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters
Procedia PDF Downloads 4293008 A Study on Shock Formation over a Transonic Aerofoil
Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana
Abstract:
Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow
Procedia PDF Downloads 5343007 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving
Authors: Dimassi Wissem
Abstract:
In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation
Procedia PDF Downloads 3983006 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems
Authors: Lei Chen, Jian Jiao, Tingdi Zhao
Abstract:
Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system
Procedia PDF Downloads 1263005 Performance Improvement of SBR Polymer Concrete Used in Construction of Rigid Pavement Highway
Authors: Mohammed Abbas Al-Jumaili
Abstract:
There are some studies which have been conducted in resent years to investigate the possibility of producing high performance polymer concrete. However, despite the great important of this subject, very limited amount of literature is available about the strength and performance of this type of concrete in case using in rigid pavement highway. In this study, the possibility of producing high performance polymer concrete by using Styrene Butadiene Rubber (SBR) emulsion with various (SBR) percents of 5,10 ,15, and 20 % by weight of cement has been investigated. The compressive, splitting tensile and flexural strengths and dynamic modulus of elasticity tests were conducted after age of 7 and 28 days for control without polymer and SBR concretes. A total of (30) cubes, (30) cylinders and (30) prisms were prepared using different types of concrete mixes. The AASHTO guide-1993 method was used to determine slab concrete thickness of rigid pavement highway in case of using various SBR polymer concrete mixture types. The research results indicate that the use of 10% SBR by weight of cement leads to produce high performance concrete especially with regard to mechanical properties and structural relative to corresponding control concrete.Keywords: rigid pavement highway, styrene–butadiene rubber (SBR) latex, compressive test, splitting tensile test, flexural test and dynamic modulus of elasticity test
Procedia PDF Downloads 3293004 Development of a Scale for Evaluating the Efficacy of Vacationing
Authors: Ju Yeon Lee, Seol Ah Oh, Hong il Kim, Hae Yong Do, Sung Won Choi
Abstract:
The purpose of this study was to develop a Well-being and Moments Scale (WAMS) for evaluating the efficacy of ‘vacationing’ as a form of mental health recuperation. ‘Vacationing’ is defined as a going outside one’s usual environment to seek refreshment and relief from one’s daily life. To develop WAMS, we followed recommended procedures for scale development, including reviewing related studies, conducting focus group interviews to elucidate the need for this assessment area, and modifying items based on expert opinion. Through this process, we developed the WAMS. The psychometric properties of the WAMS were then tested in two separate samples. Exploratory factor analysis (EFA) was conducted using 1.41 participants (mean age = 30.45 years; range: 20-50 years) to identify the underlying 3-factor structure of 'Positive Emotions', 'Life Satisfaction' and 'Self-Confidence.' The 26 items retained based on the EFA procedures were associated with excellent reliability (i.e., α = 0.93). Confirmatory factor analysis was then conducted using 200 different participants (mean age = 29.51 years; range: 20-50 years) and revealed good model fit for our hypothesized 3-factor model. Convergent validity tests also revealed correlations with other scales in the expected direction and range. Study limitations as well as the importance and utility of WMAS are also discussed.Keywords: vacationing, positive affect, life satisfaction, self-confidence, WAMS
Procedia PDF Downloads 3453003 New Challenge: Reduction of Aflatoxin M1 Residues in Cow’s Milk by MilBond Dietary Hydrated Sodium Calcium Aluminosilicate (HSCAS) and Its Effect on Milk Composition
Authors: A. Aly Salwa, H. Diekmann, S. Hafiz Ragaa, DG Abo Elhassan
Abstract:
This study was aimed to evaluate the effect of Milbond (HSCAS) on aflatoxin M1 in artificially contaminated cows milk. Chemisorption compounds used in this experiment were MIlBond, hydrated sodium calcium aluminosilicate (HSCAS). Raw cow milk were artificially exposed to aflatoxin M1 in a concentration of 100 ppb) with addition of Nilbond at 0.5, 1, 2 and 3 % at room temperature for 30 minutes. Aflatoxin M1 was decreased more than 95% by HSCAS at 2%. Milk composition consist of protein, fat, lactose, solid non fat and total solid were affected by addition of some adsorbents were not significantly affected (p 0.05). Tthis method did not involve degrading the toxin, milk may be free from toxin degradation products and is safe for consumption. In addition, the added material may be easily separated from milk after the substance adsorbs the toxin. Thus, this method should be developed by further researches for determining effects of these compounds on functional properties of milk. The ability of hydrated sodium calcium aluminosilicate to prevent or reduce the level of aflatoxin MI residues in milk is critically needed. This finding has important implications, because milk is ultimately consumed by humans and animals, and the reduction of aflatoxin contamination in the milk could have an important impact on their health.Keywords: aflatoxin M1, Hydrated sodium calcium aluminium silicate, detoxification, raw cow milk
Procedia PDF Downloads 4403002 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens
Authors: Vaclav Mentl, P. Zlabek, J. Volak
Abstract:
New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test
Procedia PDF Downloads 5433001 Child Soldier in Africa: A Big Challenge to Human Right
Authors: Adegboyega Adeolapo Ola, Gerelene Jagganath
Abstract:
One of the greatest challenges of human right in the world, especially African states is the use of child soldiers in armed conflict, constituting a major source of destruction of lives and properties. Mostly, they are in developing countries with the situation in Sub-Saharan Africa, the abduction and employment of children as soldiers is a form of exploitative labour that is tantamount to slavery. Since the end of cold war, Child soldier has increased in Africa countries like Angola, Liberia, Sierra Leone and Uganda. This study examines the main cause of the recruitment and use of child soldiers and its challenges to human right. It further assesses the role of international regional bodies and various governments in curbing child soldiers with a view to proffer suggestions on how to address some of the resultant threat of human right. The study posits that the control of small arms and light weapons is essential in curtailing the spread of child soldier and abuse of human right. This hopefully should result in the sustainability of human/child right in African continent. It is a recommendation of this study that, in order to sustain human right in the region, all Africa leaders, government and regional bodies; such as African Union, Economic Community of West African States, South African Development Community among others, should cooperate and work together to address the issue of illicit small arms, which could eventually lead to child soldier.Keywords: arms control, child soldier, human right, small arms
Procedia PDF Downloads 2113000 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling
Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger
Abstract:
Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.Keywords: finite element analysis, fused deposition modelling, residual stress, warpage
Procedia PDF Downloads 1972999 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells
Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah
Abstract:
Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell
Procedia PDF Downloads 2872998 Using OMICs Approaches to Investigate Venomic Insights into the Spider Web Silk
Authors: Franciele G. Esteves, Jose R. A. dos Santos-Pinto, Caroline L. de Souza, Mario S. Palma
Abstract:
Orb-weaving spiders use a very strong, stickiness, and elastic web to catch the prey. These web properties would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets on the web, which are being revealed now. Here we provide strong proteome, peptidome, and transcriptomic evidence for the presence of toxic components on the web silk from Nephila clavipes. Our scientific outcomes revealed, both in the web silk and in the silk-producing glands, a wide diversity of toxins/neurotoxins, defensins, and proteolytic enzymes. These toxins/neurotoxins are similar to toxins isolated from animal venoms, such as Sphigomyelinase D, Latrotoxins, Zodatoxins, Ctenitoxin Pn and Pk, Agatoxins and Theraphotoxin. Moreover, the insect-toxicity results with the web silk crude extract demonstrated that these toxic components can be lethal and/or cause paralytic effects to the prey. Therefore, through OMICs approaches, the results presented until now may contribute to a better understanding of the chemical and ecological interaction of these compounds in insect-prey capture by spider web N. clavipes, demonstrating that the web is not only a simple mechanical tool but has a chemical-active involvement in prey capture. Moreover, the results can also contribute to future studies of possible development of a selective insecticide or even in possible pharmacological applications.Keywords: web silk toxins, silk-produncing glands, de novo transcriptome assembly, LCMS-based proteomics
Procedia PDF Downloads 1412997 Synthesis, Density Functional Theory (DFT) and Antibacterial Studies of Highly Functionalized Novel Spiropyrrolidine 4-Quinolone-3-Carboxylic Acids Derived from 6-Acetyl Quinolone
Authors: Thangaraj Arasakumar, Athar Ata, Palathurai Subramaniam Mohan
Abstract:
A series of novel 4-quinolone-3-carboxylic acid grafted spiropyrrolidines as new type of antibacterial agents were synthesized via multicomponent 1,3-dipolar cycloaddition reaction of an azomethine ylides with a newly prepared (E)-4-oxo-6-(3-phenyl-acryloyl)-1,4-dihydro-quinoline-3-carboxylic acids in high regioselectivity with good yields. The structure of cycloadduct characterized by FT IR, mass, 1H, 13C, 2D NMR techniques and elemental analysis. Structure and spectrometry of compound 8a has been investigated theoretically by using HF and DFT approach at B3LYP, M05-2x/6-31G* levels of theories. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. A good agreement is found between the measured and calculated values. The DFT studies support the molecular mechanism of this cycloaddition reaction and determine the molecular electrostatic potential and thermodynamic properties. Furthermore, the antibacterial activities of synthesized compounds were evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria strains (Escherichia coli, Klebsiella pneumoniae). Among 21 compounds screened, 8f and 8p were found to be more active against tested bacteria.Keywords: antibacterial activity, azomethine ylide, DFT calculation, spirooxindole
Procedia PDF Downloads 2212996 The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods
Authors: Lukman Andi Priyatna, Vivi Fauzia, Ferry Anggoro Ardy Nugroho
Abstract:
Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures.Keywords: atomic nebulizer, photocurrent density, photoelectrochemical water splitting, ZnO nanorods
Procedia PDF Downloads 372995 Nanobiomaterials: Revolutionizing Drug Delivery and Tissue Engineering for Advanced Therapeutic Applications
Authors: Mohammad Hamed Asosheh
Abstract:
The development of nanobiomaterials has opened new avenues in the field of biomedical engineering, offering unparalleled possibilities for advanced therapeutic applications. This study explores the synthesis and characterization of a distinct class of nanobiomaterials designed to enhance drug delivery systems and support tissue engineering. By integrating biodegradable polymers with bioactive nanoparticles, we have engineered a multifunctional platform that ensures controlled drug release, targeted delivery, and improved biocompatibility. Our findings demonstrate that these nanobiomaterials not only exhibit excellent mechanical properties but also promote cell proliferation and differentiation, making them ideal candidates for regenerative medicine. Furthermore, in vitro and in vivo assessments reveal that the engineered materials significantly reduce cytotoxicity while enhancing the therapeutic efficacy of encapsulated drugs. This research presents a promising approach to addressing current challenges in drug delivery and tissue regeneration, with the potential to revolutionize the treatment of chronic diseases and injury repair. Future work will focus on optimizing the material composition for specific clinical applications and conducting large-scale studies to evaluate long-term safety and effectiveness.Keywords: nanobiomaterials, drug delivery systems, therapeutic efficacy, bioactive nanoparticles
Procedia PDF Downloads 362994 Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels
Authors: Valentina Obradović, Josip Mesić, Maja Ergović Ravančić, Kamila Mijowska, Brankica Svitlica
Abstract:
French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slavonian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and color density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels, had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slavonian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slavonian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.Keywords: chardonnay, French oak, Slavonian oak, sur lie
Procedia PDF Downloads 2452993 Determination of the Phytochemicals Composition and Pharmacokinetics of whole Coffee Fruit Caffeine Extract by Liquid Chromatography-Tandem Mass Spectrometry
Authors: Boris Nemzer, Nebiyu Abshiru, Z. B. Pietrzkowski
Abstract:
Coffee cherry is one of the most ubiquitous agricultural commodities which possess nutritional and human health beneficial properties. Between the two most widely used coffee cherries Coffea arabica (Arabica) and Coffea canephora (Robusta), Coffea arabica remains superior due to its sensory properties and, therefore, remains in great demand in the global coffee market. In this study, the phytochemical contents and pharmacokinetics of Coffeeberry® Energy (CBE), a commercially available Arabica whole coffee fruit caffeine extract, are investigated. For phytochemical screening, 20 mg of CBE was dissolved in an aqueous methanol solution for analysis by mass spectrometry (MS). Quantification of caffeine and chlorogenic acids (CGAs) contents of CBE was performed using HPLC. For the bioavailability study, serum samples were collected from human subjects before and after 1, 2 and 3 h post-ingestion of 150mg CBE extract. Protein precipitation and extraction were carried out using methanol. Identification of compounds was performed using an untargeted metabolomic approach on Q-Exactive Orbitrap MS coupled to reversed-phase chromatography. Data processing was performed using Thermo Scientific Compound Discover 3.3 software. Phytochemical screening identified a total of 170 compounds, including organic acids, phenolic acids, CGAs, diterpenoids and hydroxytryptamine. Caffeine & CGAs make up more than, respectively, 70% & 9% of the total CBE composition. For serum samples, a total of 82 metabolites representing 32 caffeine- and 50 phenolic-derived metabolites were identified. Volcano plot analysis revealed 32 differential metabolites (24 caffeine- and 8 phenolic-derived) that showed an increase in serum level post-CBE dosing. Caffeine, uric acid, and trimethyluric acid isomers exhibited 4- to 10-fold increase in serum abundance post-dosing. 7-Methyluric acid, 1,7-dimethyluric acid, paraxanthine and theophylline exhibited a minimum of 1.5-fold increase in serum level. Among the phenolic-derived metabolites, iso-feruloyl quinic acid isomers (3-, 4- and 5-iFQA) showed the highest increase in serum level. These compounds were essentially absent in serum collected before dosage. More interestingly, the iFQA isomers were not originally present in the CBE extract, as our phytochemical screen did not identify these compounds. This suggests the potential formation of the isomers during the digestion and absorption processes. Pharmacokinetics parameters (Cmax, Tmax and AUC0-3h) of caffeine- and phenolic-derived metabolites were also investigated. Caffeine was rapidly absorbed, reaching a maximum concentration (Cmax) of 10.95 µg/ml in just 1 hour. Thereafter, caffeine level steadily dropped from the peak level, although it did not return to baseline within the 3-hour dosing period. The disappearance of caffeine from circulation was mirrored by the rise in the concentration of its methylxanthine metabolites. Similarly, serum concentration of iFQA isomers steadily increased, reaching maximum (Cmax: 3-iFQA, 1.54 ng/ml; 4-iFQA, 2.47 ng/ml; 5-iFQA, 2.91 ng/ml) at tmax of 1.5 hours. The isomers remained well above the baseline during the 3-hour dosing period, allowing them to remain in circulation long enough for absorption into the body. Overall, the current study provides evidence of the potential health benefits of a uniquely formulated whole coffee fruit product. Consumption of this product resulted in a distinct serum profile of bioactive compounds, as demonstrated by the more than 32 metabolites that exhibited a significant change in systemic exposure.Keywords: phytochemicals, mass spectrometry, pharmacokinetics, differential metabolites, chlorogenic acids
Procedia PDF Downloads 722992 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery
Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén
Abstract:
A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery
Procedia PDF Downloads 4562991 The Characteristics of Settlement Owing to the Construction of Several Parallel Tunnels with Short Distances
Authors: Lojain Suliman, Xinrong Liu, Xiaohan Zhou
Abstract:
Since most tunnels are built in crowded metropolitan settings, the excavation process must take place in highly condensed locations, including high-density cities. In this way, the tunnels are typically located close together, which leads to more interaction between the parallel existing tunnels, and this, in turn, leads to more settlement. This research presents an examination of the impact of a large-scale tunnel excavation on two forms of settlement: surface settlement and settlement surrounding the tunnel. Additionally, research has been done on the properties of interactions between two and three parallel tunnels. The settlement has been evaluated using three primary techniques: theoretical modeling, numerical simulation, and data monitoring. Additionally, a parametric investigation on how distance affects the settlement characteristic for parallel tunnels with short distances has been completed. Additionally, it has been observed that the sequence of excavation has an impact on the behavior of settlements. Nevertheless, a comparison of the model test and numerical simulation yields significant agreement in terms of settlement trend and value. Additionally, when compared to the FEM study, the suggested analytical solution exhibits reduced sensitivity in the settlement prediction. For example, the settlement of the small tunnel diameter does not appear clearly on the settlement curve, while it is notable in the FEM analysis. It is advised, however, that additional studies be conducted in the future employing analytical solutions for settlement prediction for parallel tunnels.Keywords: settlement, FEM, analytical solution, parallel tunnels
Procedia PDF Downloads 472990 Evaluation of the Potability Qualities of Pretreated Distilled Water Produced from Biomass Fuelled Water Distiller
Authors: E. I. Oluwasola, J. A. V. Famurewa, R. Aboloma, K. Adesina
Abstract:
Water samples with pretreatment and without pretreatment were obtained from locally constructed biomass fuelled stainless steel water distiller. The water samples were subjected to Microbial, Physicochemical and Minerals analyses for comparison with NAFDAC and WHO Standards for potable water. The results of the physicochemical and microbiological properties of the raw water(A), and the two distilled water samples (B; distill water without pretreatment) and (C; distill water with pretreatment) showed reduction in most of the quality parameters evaluated in the distilled water samples to the level that conforms to the W.H.O standards for drinking water however, lower values were obtained for the pretreated distilled water sample. The values of 0.0016mg/l, 0.0052mg/l and 0.0528mg/l for the arsenic, chromium and lead content respectively in the raw water were within the permissible limit specified by WHO however; the values of cadmium (0.067mg/l) and mercury (0.0287mg/l) are above the maximum tolerable for drinking water thus, making the raw water unsafe for human consumption. Similarly, the high total plate count (278cfu /ml) and coliform count (1100/100ml) indicate that the raw water is potentially harmful while the distilled water samples showed nil coliform count and low total plate count (35cfu/ml,18cfu/ml) for B and C respectively making the distilled water microbiologically safer for human consumption.Keywords: biomass, distillation, mineral, potable, physicochemical
Procedia PDF Downloads 5002989 Characterization of Stabilized Earth in the Construction Field
Authors: Sihem Chaibeddra, Fatoum Kharchi
Abstract:
This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material.Keywords: behavior, characterization, construction, earth, stabilization
Procedia PDF Downloads 2442988 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method
Authors: Gamze Karanfil Celep, Kevser Dincer
Abstract:
The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method
Procedia PDF Downloads 2092987 Impact of Cytokines Alone and Primed with Macrophages on Balamuthia mandrillaris Interactions with Human Brain Microvascular Endothelial Cells in vitro
Authors: Abdul Matin, Salik Nawaz, Suk-Yul Jung
Abstract:
Balamuthia mandrillaris is well known to cause fatal Balamuthia amoebic encephalitis (BAE). Amoebic transmission into the central nervous system (CNS), haematogenous spread is thought to be the prime step, followed by blood-brain barrier (BBB) dissemination. Macrophages are considered to be the foremost line of defense and present in excessive numbers during amoebic infections. The aim of the present investigation was to evaluate the effects of macrophages alone or primed with cytokines on the biological characteristics of Balamuthia in vitro. Using human brain microvascular endothelial cells (HBMEC), which constitutes the BBB, we have shown that Balamuthia demonstrated > 90% binding and > 70% cytotoxicity to host cells. However, macrophages further increased amoebic binding and Balamuthia-mediated cell cytotoxicity. Furthermore, macrophages exhibited no amoebicidal effect against Balamuthia. Zymography assay demonstrated that macrophages exhibited no inhibitory effect on proteolytic activity of Balamuthia. Overall, to our best knowledge, we have shown for the first time macrophages has no inhibitory effects on the biological properties of Balamuthia in vitro. This also strengthened the concept that how and why Balamuthia can cause infections in both immuno-competent and immuno-compromised individuals.Keywords: Balamuthia mandrillaris, macrophages, cytokines, human brain microvascular endothelial cells, Balamuthia amoebic encephalitis
Procedia PDF Downloads 1602986 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.Keywords: ZnO thin films, sol-gel, photocatalysis, aging time
Procedia PDF Downloads 3842985 Evaluation of Erodibility Status of Soils in Some Areas of Imo and Abia States of Nigeria
Authors: Andy Obinna Ibeje
Abstract:
In this study, the erodibility indices and some soil properties of some cassava farms in selected areas of Abia and Imo States were investigated. This study involves taking measurements of some soil parameters such as permeability, soil texture and particle size analysis from which the erodibility indices were compared. Results showed that soils of the areas are very sandy. The results showed that Isiukwuato with index of 72 has the highest erodibility index. The results also showed that Arondizuogu with index of 34 has the least erodibility index. The results revealed that soil erodibility (k) values varied from 34 to 72. Nkporo has the highest sand content; Inyishie has the least silt content. The result indicates that there were respectively strong inverse relationship between clay and silt contents and erodibility index. On the other hand, sand, organic matter and moisture contents as well as soil permeability has significantly high positive correlation with soil erodibility and it can be concluded that particle size distribution is a major finger print on the erodibility index of soil in the study area. It is recommended that safe cultural practices like crop rotation, matching and adoption of organic farming techniques be incorporated into farming communities of Abia and Imo States in order to stem the advances of erosion in the study area.Keywords: erodibility, indices, soil, sand
Procedia PDF Downloads 3522984 Influence of Heat Treatment of 7Cr-0.93Mo-2.27W Steel on Mechanical Properties
Authors: Saeed Ghali
Abstract:
Designed martensitic stainless steel was produced in a 30 kg induction furnace. The molten metal was cast into a refractory sand mold at 1600 °C. The produced ingots were recharged into the reheating furnace. Martensitic stainless steel was held for 1 hour at a temperature of 1150°C. The forging process starts and finishes at 1150 °C and 900 °C, respectively. A chemical analysis was carried out. Microstructure was studied. Heat treatment for martensitic stainless steel was carried out at 300 oC, 400 oC, 500 oC, 600 oC and 700 oC for 5 min, 20 min, 45 min, 120 min and 240 min. Hardness was measured after each heat treatment. The contribution influence of each time and temperature on hardness was investigated using factorial design for tempering temperature range (500 oC – 700 oC) for time up to 240 min. It was found that the microstructure is mainly a martensitic phase, and it conforms to the Schaeffler diagram. The results showed that time, temperature and their interaction combination have a negative effect on hardness in the temperature range ( 500 oC – 700 oC) with time range (5 min – 240 min). The model was built up in the form of coded variables and in actual variables. The predicted values – from coded and actual variables - of hardness are compatible with the experimental values. Factorial design is a useful technique to predict the effect and contribution effect of both time and temperature on the hardness of 7Cr-0.93Mo-2.27W martensitic stainless steel.Keywords: steel, factorial design, hardness, heat treatment, temperature
Procedia PDF Downloads 13