Search results for: sound absorption coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3251

Search results for: sound absorption coefficients

2681 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete

Authors: Gashaw Abebaw

Abstract:

Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.

Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan

Procedia PDF Downloads 119
2680 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation

Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang

Abstract:

Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.

Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart

Procedia PDF Downloads 283
2679 Experimental Analysis of Structure Borne Noise in an Enclosure

Authors: Waziralilah N. Fathiah, A. Aminudin, U. Alyaa Hashim, T. Vikneshvaran D. Shakirah Shukor

Abstract:

This paper presents the experimental analysis conducted on a structure borne noise in a rectangular enclosure prototype made by joining of sheet aluminum metal and plywood. The study is significant as many did not realized the annoyance caused by structural borne-noise. In this study, modal analysis is carried out to seek the structure’s behaviour in order to identify the characteristics of enclosure in frequency domain ranging from 0 Hz to 200 Hz. Here, numbers of modes are identified and the characteristic of mode shape is categorized. Modal experiment is used to diagnose the structural behaviour while microphone is used to diagnose the sound. Spectral testing is performed on the enclosure. It is acoustically excited using shaker and as it vibrates, the vibrational and noise responses sensed by tri-axis accelerometer and microphone sensors are recorded respectively. Experimental works is performed on each node lies on the gridded surface of the enclosure. Both experimental measurement is carried out simultaneously. The modal experimental results of the modal modes are validated by simulation performed using MSC Nastran software. In pursuance of reducing the structure borne-noise, mitigation method is used whereby the stiffener plates are perpendicularly placed on the sheet aluminum metal. By using this method, reduction in structure borne-noise is successfully made at the end of the study.

Keywords: enclosure, modal analysis, sound analysis, structure borne-noise

Procedia PDF Downloads 436
2678 Generalized Correlation for the Condensation and Evaporation Heat Transfer Coefficients of Propane (R290), Butane (R600), R134a, and R407c in Porous Horizontal Tubes: Experimental Investigation

Authors: M. Tarawneh

Abstract:

This work is an experimental study on the heat transfer characteristics and pressure drop of different refrigerants during the condensation and evaporation processes in porous media. Four different refrigerants (R134a, R407C, 600a, R290), with different porosities were used to reach a real understanding of the actual heat transfer characteristics and pressure drop when using porous material inside the condenser and evaporator. Steel balls were used as porous media with different porosities (38%, 43%, 48%). The main goal of this project is to enhance the heat transfer coefficient during the condensation and evaporation processes when using different refrigerants and different porosities. Different correlations for the heat transfer coefficient and the pressure drop of the different refrigerants were developed. Also a generalized empirical correlation was developed for the different refrigerants. The experimental and predicted heat transfer coefficients and pressure drops were compared. It was found that, the Absolute standard deviation for the heat transfer coefficient and the pressure drop not exceeded values of 15% and 20%, respectively.

Keywords: condensation, evaporation, porous media, horizontal tubes, heat transfer coefficient, propane, butane

Procedia PDF Downloads 538
2677 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location

Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa

Abstract:

This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.

Keywords: specific absorption rate (SAR), ultra wideband (UWB), coordinates, cancer detection

Procedia PDF Downloads 403
2676 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: gas turbine, blade tip, heat transfer, unsteady wakes

Procedia PDF Downloads 373
2675 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator

Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib

Abstract:

Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.

Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model

Procedia PDF Downloads 306
2674 Design and Parametric Analysis of Pentaband Meander Line Antenna for Mobile Handset Applications

Authors: Shrinivas P. Mahajan, Aarti C. Kshirsagar

Abstract:

Wireless communication technology is rapidly changing with recent developments in portable devices and communication protocols. This has generated demand for more advanced and compact antenna structures and therefore, proposed work focuses on Meander Line Antenna (MLA) design. Here, Pentaband MLA is designed on a FR4 substrate (85 mm x 40 mm) with dielectric constant (ϵr) 4.4, loss tangent (tan ) 0.018 and height 1.6 mm with coplanar feed and open stub structure. It can be operated in LTE (0.670 GHz-0.696 GHz) GPS (1.564 GHz-1.579 GHz), WCDMA (1.920 GHz-2.135 GHz), LTE UL frequency band 23 (2-2.020 GHz) and 5G (3.10 GHz-3.550 GHz) application bands. Also, it gives good performance in terms of Return Loss (RL) which is < -10 dB, impedance bandwidth with maximum Bandwidth (BW) up to 0.21 GHz and realized gains with maximum gain up to 3.28 dBi. Antenna is simulated with open stub and without open stub structures to see the effect on impedance BW coverage. In addition to this, it is checked with human hand and head phantoms to assure that it falls within specified Specific Absorption Rate (SAR) limits.

Keywords: coplanar feed, L shaped ground, Meander Line Antenna, MLA, Phantom, Specific Absorption Rate, SAR

Procedia PDF Downloads 133
2673 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations

Authors: G. Vinitha, A. Ramalingam

Abstract:

In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Z-scan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20° and when the intensity ratio of the writing beams is unity.

Keywords: diffraction efficiency, nonlinear optical material, saturable absorption, surface-relief-gratings

Procedia PDF Downloads 299
2672 The Analysis of Noise Harmfulness in Public Utility Facilities

Authors: Monika Sobolewska, Aleksandra Majchrzak, Bartlomiej Chojnacki, Katarzyna Baruch, Adam Pilch

Abstract:

The main purpose of the study is to perform the measurement and analysis of noise harmfulness in public utility facilities. The World Health Organization reports that the number of people suffering from hearing impairment is constantly increasing. The most alarming is the number of young people occurring in the statistics. The majority of scientific research in the field of hearing protection and noise prevention concern industrial and road traffic noise as the source of health problems. As the result, corresponding standards and regulations defining noise level limits are enforced. However, there is another field uncovered by profound research – leisure time. Public utility facilities such as clubs, shopping malls, sport facilities or concert halls – they all generate high-level noise, being out of proper juridical control. Among European Union Member States, the highest legislative act concerning noise prevention is the Environmental Noise Directive 2002/49/EC. However, it omits the problem discussed above and even for traffic, railway and aircraft noise it does not set limits or target values, leaving these issues to the discretion of the Member State authorities. Without explicit and uniform regulations, noise level control at places designed for relaxation and entertainment is often in the responsibility of people having little knowledge of hearing protection, unaware of the risk the noise pollution poses. Exposure to high sound levels in clubs, cinemas, at concerts and sports events may result in a progressive hearing loss, especially among young people, being the main target group of such facilities and events. The first step to change this situation and to raise the general awareness is to perform reliable measurements the results of which will emphasize the significance of the problem. This project presents the results of more than hundred measurements, performed in most types of public utility facilities in Poland. As the most suitable measuring instrument for such a research, personal noise dosimeters were used to collect the data. Each measurement is presented in the form of numerical results including equivalent and peak sound pressure levels and a detailed description considering the type of the sound source, size and furnishing of the room and the subjective sound level evaluation. In the absence of a straight reference point for the interpretation of the data, the limits specified in EU Directive 2003/10/EC were used for comparison. They set the maximum sound level values for workers in relation to their working time length. The analysis of the examined problem leads to the conclusion that during leisure time, people are exposed to noise levels significantly exceeding safe values. As the hearing problems are gradually progressing, most people underplay the problem, ignoring the first symptoms. Therefore, an effort has to be made to specify the noise regulations for public utility facilities. Without any action, in the foreseeable future the majority of Europeans will be dealing with serious hearing damage, which will have a negative impact on the whole societies.

Keywords: hearing protection, noise level limits, noise prevention, noise regulations, public utility facilities

Procedia PDF Downloads 223
2671 Experimental and Numerical Study on Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This work focuses on the energy absorption capacity of each group of buffers particularly. The quasi-static compression tests were carried out to obtain the pre-compression force and the load-defection response of the buffers. Then a finite element (FE) model was constructed using Ls_dyna program. The rubber material was modeled with a tabulated method easily, in which no more material constants need to be fitted. The simulation results agreed with the experimental results well. Numerical study of the buffers was performed using the validated FE model and the influence of the initial pressure on the buffers was obtained. In addition, the interaction between the two groups of buffers was also investigated and the optimum distribution of the two was found.

Keywords: initial pressure, rubber buffer, simulation, tabulated method

Procedia PDF Downloads 145
2670 Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy

Authors: Ruqyyah Mushtaq, Chiacar Gamberdella, Roberta Miroglio, Fabio Novelli, Domenica Papro, M. Paturzo, A. Rubano, Angela Sardo

Abstract:

Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length.

Keywords: THz-TDS spectroscopy, diatoms, marine ecotoxicology, marine pollution

Procedia PDF Downloads 31
2669 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology

Authors: Alime Cengiz, Talip Kahyaoglu

Abstract:

Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.

Keywords: genetic expression programming, response surface methodology, roasting, sesame seed

Procedia PDF Downloads 418
2668 Measure the Gas to Dust Ratio Towards Bright Sources in the Galactic Bulge

Authors: Jun Yang, Norbert Schulz, Claude Canizares

Abstract:

Knowing the dust content in the interstellar matter is necessary to understand the composition and evolution of the interstellar medium (ISM). The metal composition of the ISM enables us to study the cooling and heating processes that dominate the star formation rates in our Galaxy. The Chandra High Energy Transmission Grating (HETG) Spectrometer provides a unique opportunity to measure element dust compositions through X-ray edge absorption structure. We measure gas to dust optical depth ratios towards 9 bright Low-Mass X-ray Binaries (LMXBs) in the Galactic Bulge with the highest precision so far. Well calibrated and pile-up free optical depths are measured with the HETG spectrometer with respect to broadband hydrogen equivalent absorption in bright LMXBs: 4U 1636-53, Ser X-1, GX 3+1, 4U 1728-34, 4U 1705-44, GX 340+0, GX 13+1, GX 5-1, and GX 349+2. From the optical depths results, we deduce gas to dust ratios for various silicates in the ISM and present our results for the Si K edge in different lines of sight towards the Galactic Bulge.

Keywords: low-mass X-ray binaries, interstellar medium, gas to dust ratio, spectrometer

Procedia PDF Downloads 143
2667 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 278
2666 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: clay, coal, resistance to compression, insulating bricks

Procedia PDF Downloads 329
2665 Evaluation of Fresh, Strength and Durability Properties of Self-Compacting Concrete Incorporating Bagasse Ash

Authors: Abdul Haseeb Wani, Shruti Sharma, Rafat Siddique

Abstract:

Self-compacting concrete is an engineered concrete that flows and de-airs without additional energy input. Such concrete requires a high slump which can be achieved by the addition of superplasticizers to the concrete mix. In the present work, bagasse ash is utilised as a replacement of cement in self-compacting concrete. This serves the purpose of both land disposal and environmental concerns related to the disposal of bagasse ash. Further, an experimental program was carried out to study the fresh, strength, and durability properties of self-compacting concrete made with bagasse ash. The mixes were prepared with four percentages (0, 5, 10 and 15) of bagasse ash as partial replacement of cement. Properties investigated were; Slump-flow, V-funnel and L-box, Compressive strength, Splitting tensile strength, Chloride-ion penetration resistance and Water absorption. Compressive and splitting tensile strength tests were conducted at the age of 7 and 28 days. Rapid chloride-ion permeability test was carried at the age of 28 days and water absorption test was carried out at the age of 7 days after initial curing of 28 days. Test results showed that there is an increase in the compressive strength and splitting tensile strength of the concrete specimens having up to 10% replacement level, however, there is a slight decrease at 15% level of replacement. Resistance to chloride-ion penetration of the specimens increased as the percentage of replacement was increased. The charge passed in all the specimens containing bagasse ash was lower than that of the specimen without bagasse ash. Water absorption of the specimens decreased up to 10% replacement level and increased at 15% level of replacement. Hence, it can be concluded that optimum level of replacement of cement with bagasse ash in self-compacting concrete comes out to be 10%; at which the self-compacting concrete has satisfactory flow characteristics (as per the European guidelines), improved compressive and splitting tensile strength and better durability properties as compared to the control mix.

Keywords: bagasse ash, compressive strength, self-compacting concrete, splitting tensile strength

Procedia PDF Downloads 352
2664 Perception of Greek Vowels by Arabic-Greek Bilinguals: An Experimental Study

Authors: Georgios P. Georgiou

Abstract:

Infants are able to discriminate a number of sound contrasts in most languages. However, this ability is not available in adults who might face difficulties in discriminating accurately second language sound contrasts as they filter second language speech through the phonological categories of their native language. For example, Spanish speakers often struggle to perceive the difference between the English /ε/ and /æ/ because both vowels do not exist in their native language; so they assimilate these vowels to the closest phonological category of their first language. The present study aims to uncover the perceptual patterns of Arabic adult speakers in regard to the vowels of their second language (Greek). Still, there is not any study that investigates the perception of Greek vowels by Arabic speakers and, thus, the present study would contribute to the enrichment of the literature with cross-linguistic research in new languages. To the purpose of the present study, 15 native speakers of Egyptian Arabic who permanently live in Cyprus and have adequate knowledge of Greek as a second language passed through vowel assimilation and vowel contrast discrimination tests (AXB) in their second language. The perceptual stimuli included non-sense words that contained vowels in both stressed and unstressed positions. The second language listeners’ patterns were analyzed through the Perceptual Assimilation Model which makes testable hypotheses about the assimilation of second language sounds to the speakers’ native phonological categories and the discrimination accuracy over second language sound contrasts. The results indicated that second language listeners assimilated pairs of Greek vowels in a single phonological category of their native language resulting in a Category Goodness difference assimilation type for the Greek stressed /i/-/e/ and the Greek stressed-unstressed /o/-/u/ vowel contrasts. On the contrary, the members of the Greek unstressed /i/-/e/ vowel contrast were assimilated to two different categories resulting in a Two Category assimilation type. Furthermore, they could discriminate the Greek stressed /i/-/e/ and the Greek stressed-unstressed /o/-/u/ contrasts only in a moderate degree while the Greek unstressed /i/-/e/ contrast could be discriminated in an excellent degree. Two main implications emerge from the results. First, there is a strong influence of the listeners’ native language on the perception of the second language vowels. In Egyptian Arabic, contiguous vowel categories such as [i]-[e] and [u]-[o] do not have phonemic difference but they are subject to allophonic variation; by contrast, the vowel contrasts /i/-/e/ and /o/-/u/ are phonemic in Greek. Second, the role of stress is significant for second language perception since stressed vs. unstressed vowel contrasts were perceived in a different manner by the Greek listeners.

Keywords: Arabic, bilingual, Greek, vowel perception

Procedia PDF Downloads 138
2663 Intercultural Strategies of Chinese Composers in the Organizational Structure of Their Works

Authors: Bingqing Chen

Abstract:

The Opium War unlocked the gate of China. Since then, modern western culture has been imported strongly and spread throughout this Asian country. The monologue of traditional Chinese culture in the past has been replaced by the hustle and bustle of multiculturalism. In the field of music, starting from school music, China, a country without the concept of composition, was deeply influenced by western culture and professional music composition, and entered the era of professional music composition. Recognizing the importance of national culture, a group of insightful artists began to try to add ‘China’ to musical composition. However, due to the special historical origin of Chinese professional musical composition and the three times of cultural nihilism in China, professional musical composition at this time failed to interpret the deep language structure of local culture within Chinese traditional culture, but only regarded Chinese traditional music as a ‘melody material library.’ At this time, the cross-cultural composition still takes Western music as its ‘norm,’ while our own music culture only exists as the sound of the contrast of Western music. However, after reading scores extensively, watching video performances, and interviewing several active composers, we found that at least in the past 30 years, China has created some works that can be called intercultural music. In these kinds of music, composers put Chinese and Western, traditional and modern in an almost equal position to have a dialogue based on their deep understanding and respect for the two cultures. This kind of music connects two music worlds, and links the two cultural and ideological worlds behind it, and communicates and grows together. This paper chose the works of three composers with different educational backgrounds, and pay attention to how composers can make a dialogue at the organizational structure level of their works. Based on the strategies adopted by composers in structuring their works, this paper expounds on how the composer's music procedure shows intercultural in terms of whole sound effects and cultural symbols. By actively participating in this intercultural practice, composers resorting to various musical and extra-musical procedures to arrive at the so-called ‘innovation within tradition.’ Through the dialogue, we can activate the space of creative thinking and explore the potential contained in culture. This interdisciplinary research promotes the rethinking of the possibility of innovation in contemporary Chinese intercultural music composition, spanning the fields of sound studies, dialogue theory, cultural research, music theory, and so on. Recently, China is calling for actively promoting 'the construction of Chinese music canonization,’ expecting to form a particular music style to show national-cultural identity. In the era of globalization, it is possible to form a brand-new Chinese music style through intercultural composition, but it is a question about talents, and the key lies in how composers do it. There is no recipe for the formation of the Chinese music style, only the composers constantly trying and tries to solve problems in their works.

Keywords: dialogism, intercultural music, national-cultural identity, organization/structure, sound

Procedia PDF Downloads 112
2662 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition

Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib

Abstract:

Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.

Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide

Procedia PDF Downloads 478
2661 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 165
2660 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System

Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal

Abstract:

The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.

Keywords: microgravity effect, response surface, terminal speed, unmanned system

Procedia PDF Downloads 173
2659 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 304
2658 Study of Interaction between Ascorbic Acid and Bovine Hemoglobin by Multispectroscopic Methods

Authors: Krishnamoorthy Shanmugaraj, Malaichamy Ilanchelian

Abstract:

Ascorbic acid is an essential component in the diet of humans, and also is a typical long used pharmaceutical agent. In the present contribution, we have carried out a detailed study on the binding interaction of ascorbic acid (AA) with bovine hemoglobin (BHb) using steady state emission, time resolved fluorescence, UV-Vis absorption, circular dichroism (CD), Fourier transform infra-red (FT-IR) and three dimensional emission (3D) spectral studies. The results from the emission spectral studies unveiled that the quenching of BHb emission by AA is attributed to the formation of a complex in the ground state (static in nature) after correcting for inner filter effect. The binding parameters calculated from corrected emission quenching data revealed that BHb exhibited a significant binding affinity towards AA. Moreover, AA induced tertiary and secondary conformational changes of BHb were monitored by UV-Vis absorption, CD, FT-IR and 3D emission spectral studies. The results presented here will help to further understand the credible mechanism of BHb-AA system which is expected to provide insights into conformational and microenvironmental changes of BHb.

Keywords: ascorbic acid, bovine hemoglobin, circular dichroism, three dimensional emission spectral studies

Procedia PDF Downloads 977
2657 The Comparison and Optimization of the Analytic Method for Canthaxanthin, Food Colorants

Authors: Hee-Jae Suh, Kyung-Su Kim, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee

Abstract:

Canthaxanthin is keto-carotenoid produced from beta-carotene and it has been approved to be used in many countries as a food coloring agent. Canthaxanthin has been analyzed using High Performance Liquid Chromatography (HPLC) system with various ways of pretreatment methods. Four official methods for verification of canthaxanthin at FSA (UK), AOAC (US), EFSA (EU) and MHLW (Japan) were compared to improve its analytical and the pretreatment method. The Linearity, the limit of detection (LOD), the limit of quantification (LOQ), the accuracy, the precision and the recovery ratio were determined from each method with modification in pretreatment method. All HPLC methods exhibited correlation coefficients of calibration curves for canthaxanthin as 0.9999. The analysis methods from FSA, AOAC, and MLHW showed the LOD of 0.395 ppm, 0.105 ppm, and 0.084 ppm, and the LOQ of 1.196 ppm, 0.318 ppm, 0.254 ppm, respectively. Among tested methods, HPLC method of MHLW with modification in pretreatments was finally selected for the analysis of canthaxanthin in lab, because it exhibited the resolution factor of 4.0 and the selectivity of 1.30. This analysis method showed a correlation coefficients value of 0.9999 and the lowest LOD and LOQ. Furthermore, the precision ratio was lower than 1 and the accuracy was almost 100%. The method presented the recovery ratio of 90-110% with modification in pretreatment method. The cross-validation of coefficient variation was 5 or less among tested three institutions in Korea.

Keywords: analytic method, canthaxanthin, food colorants, pretreatment method

Procedia PDF Downloads 683
2656 Organ Dose Calculator for Fetus Undergoing Computed Tomography

Authors: Choonsik Lee, Les Folio

Abstract:

Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring.

Keywords: computed tomography, fetal dose, pregnant women, radiation dose

Procedia PDF Downloads 140
2655 Manufacturing Process of Rubber Cement Composite Paver Block

Authors: Ratnadip Natwarbhai Bhoi

Abstract:

The objective of this research paper is to study waste tire crumb rubber granules as a partial concrete replacement by the different percentages of facing layer thickness and without facing layer in the production of rubber cement composite paver block. The physical properties of RCCRP compressive strength, flexural strength, abrasion strength density, and water absorption testing by the IS 15658:2006 method. All these physical properties depend upon the ratio of crumb rubber uses. The result showed that the with facing layer at 15 mm, 25 mm, totally rubberized and without facing layer had little effect on compressive strength, flexural strength and abrasion resistance properties. Water absorption is also important for the service life of the product. The crumb rubber paver block also performed quite well in both compressive strength and abrasion resistance. The rubber cement composite rubber paver block is suitable for nonstructural purposes, such as being lightweight and easy installation for the walkway, sidewalks, and playing area applications.

Keywords: rubber cement, crumb rubber, composite, layer

Procedia PDF Downloads 98
2654 Investigating the Effect of Orthographic Transparency on Phonological Awareness in Bilingual Children with Dyslexia

Authors: Sruthi Raveendran

Abstract:

Developmental dyslexia, characterized by reading difficulties despite normal intelligence, presents a significant challenge for bilingual children navigating languages with varying degrees of orthographic transparency. This study bridges a critical gap in dyslexia interventions for bilingual populations in India by examining how consistency and predictability of letter-sound relationships in a writing system (orthographic transparency) influence the ability to understand and manipulate the building blocks of sound in language (phonological processing). The study employed a computerized visual rhyme-judgment task with concurrent EEG (electroencephalogram) recording. The task compared reaction times, accuracy of performance, and event-related potential (ERP) components (N170, N400, and LPC) for rhyming and non-rhyming stimuli in two orthographies: English (opaque orthography) and Kannada (transparent orthography). As hypothesized, the results revealed advantages in phonological processing tasks for transparent orthography (Kannada). Children with dyslexia were faster and more accurate when judging rhymes in Kannada compared to English. This suggests that a language with consistent letter-sound relationships (transparent orthography) facilitates processing, especially for tasks that involve manipulating sounds within words (rhyming). Furthermore, brain activity measured by event-related potentials (ERP) showed less effort required for processing words in Kannada, as reflected by smaller N170, N400, and LPC amplitudes. These findings highlight the crucial role of orthographic transparency in optimizing reading performance for bilingual children with dyslexia. These findings emphasize the need for language-specific intervention strategies that consider the unique linguistic characteristics of each language. While acknowledging the complexity of factors influencing dyslexia, this research contributes valuable insights into the impact of orthographic transparency on phonological awareness in bilingual children. This knowledge paves the way for developing tailored interventions that promote linguistic inclusivity and optimize literacy outcomes for children with dyslexia.

Keywords: developmental dyslexia, phonological awareness, rhyme judgment, orthographic transparency, Kannada, English, N170, N400, LPC

Procedia PDF Downloads 7
2653 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 443
2652 Electronic and Optical Properties of Orthorhombic NdMnO3 with the Modified Becke-Johnson Potential

Authors: B. Bouadjemi, S. Bentata, T. Lantri, A. Abbad, W. Benstaali, A. Zitouni, S. Cherid

Abstract:

We investigate the electronic structure, magnetic and optical properties of the orthorhombic NdMnO3 through density-functional-theory (DFT) calculations using both generalized gradient approximation GGA and GGA+U approaches, the exchange and correlation effects are taken into account by an orbital independent modified Becke Johnson (MBJ). The predicted band gaps using the MBJ exchange approximation show a significant improvement over previous theoretical work with the common GGA and GGA+U very closer to the experimental results. Band gap dependent optical parameters like dielectric constant, index of refraction, absorption coefficient, reflectivity and conductivity are calculated and analyzed. We find that when using MBJ we have obtained better results for band gap of NdMnO3 than in the case of GGA and GGA+U. The values of band gap founded in this work by MBJ are in a very good agreement with corresponding experimental values compared to other calculations. This comprehensive theoretical study of the optoelectronic properties predicts that this material can be effectively used in optical devices.

Keywords: DFT, optical properties, absorption coefficient, strong correlation, MBJ, orthorhombic NdMnO3, optoelectronic

Procedia PDF Downloads 909