Search results for: MSCC (Mel s-transform cepstrum coefficients)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 889

Search results for: MSCC (Mel s-transform cepstrum coefficients)

889 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation

Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang

Abstract:

Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.

Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart

Procedia PDF Downloads 256
888 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals

Procedia PDF Downloads 349
887 Evaluation of Traumatic Spine by Magnetic Resonance Imaging

Authors: Sarita Magu, Deepak Singh

Abstract:

Study Design: This prospective study was conducted at the department of Radio Diagnosis, at Pt B.D. Sharma PGIMS, Rohtak in 57 patients of spine injury on radiographs or radiographically normal patients with neurological deficits presenting within 72 hours of injury. Aims: Evaluation of the role of Magnetic Resonance Imaging (MRI) in Spinal Trauma Patients and to compare MRI findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patient and predict the outcome. Material and Methods: Neurological status of patients was assessed at the time of admission and discharge in all the patients and at long term interval of six months to one year in 27 patients as per American spine injury association classification (ASIA). On MRI cord injury was categorized into cord hemorrhage, cord contusion, cord edema only, and normal cord. Quantitative assessment of injury on MRI was done using mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length. Neurological status at admission and neurological recovery at discharge and long term follow up was compared with various qualitative cord findings and quantitative parameters on MRI. Results: Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion show lesser neurological recovery as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean MCC, MSCC, and lesion length values were higher in patients presenting with ASIA A grade injury and showed decreasing trends towards ASIA E grade injury. Patients showing neurological recovery over the period of hospital stay and long term follow up had lower mean MCC, MSCC, and lesion length as compared to patients showing no neurological recovery. The data was statistically significant with p value <.05. Conclusion: Cord hemorrhage and higher MCC, MSCC and lesion length has poor prognostic value in spine injury patients.

Keywords: spine injury, cord hemorrhage, cord contusion, MCC, MSCC, lesion length, ASIA grading

Procedia PDF Downloads 321
886 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 290
885 Sound Analysis of Young Broilers Reared under Different Stocking Densities in Intensive Poultry Farming

Authors: Xiaoyang Zhao, Kaiying Wang

Abstract:

The choice of stocking density in poultry farming is a potential way for determining welfare level of poultry. However, it is difficult to measure stocking densities in poultry farming because of a lot of variables such as species, age and weight, feeding way, house structure and geographical location in different broiler houses. A method was proposed in this paper to measure the differences of young broilers reared under different stocking densities by sound analysis. Vocalisations of broilers were recorded and analysed under different stocking densities to identify the relationship between sounds and stocking densities. Recordings were made continuously for three-week-old chickens in order to evaluate the variation of sounds emitted by the animals at the beginning. The experimental trial was carried out in an indoor reared broiler farm; the audio recording procedures lasted for 5 days. Broilers were divided into 5 groups, stocking density treatments were 8/m², 10/m², 12/m² (96birds/pen), 14/m² and 16/m², all conditions including ventilation and feed conditions were kept same except from stocking densities in every group. The recordings and analysis of sounds of chickens were made noninvasively. Sound recordings were manually analysed and labelled using sound analysis software: GoldWave Digital Audio Editor. After sound acquisition process, the Mel Frequency Cepstrum Coefficients (MFCC) was extracted from sound data, and the Support Vector Machine (SVM) was used as an early detector and classifier. This preliminary study, conducted in an indoor reared broiler farm shows that this method can be used to classify sounds of chickens under different densities economically (only a cheap microphone and recorder can be used), the classification accuracy is 85.7%. This method can predict the optimum stocking density of broilers with the complement of animal welfare indicators, animal productive indicators and so on.

Keywords: broiler, stocking density, poultry farming, sound monitoring, Mel Frequency Cepstrum Coefficients (MFCC), Support Vector Machine (SVM)

Procedia PDF Downloads 115
884 Cepstrum Analysis of Human Walking Signal

Authors: Koichi Kurita

Abstract:

In this study, we propose a real-time data collection technique for the detection of human walking motion from the charge generated on the human body. This technique is based on the detection of a sub-picoampere electrostatic induction current, generated by the motion, flowing through the electrode of a wireless portable sensor attached to the subject. An FFT analysis of the wave-forms of the electrostatic induction currents generated by the walking motions showed that the currents generated under normal and restricted walking conditions were different. Moreover, we carried out a cepstrum analysis to detect any differences in the walking style. Results suggest that a slight difference in motion, either due to the individual’s gait or a splinted leg, is directly reflected in the electrostatic induction current generated by the walking motion. The proposed wireless portable sensor enables the detection of even subtle differences in walking motion.

Keywords: human walking motion, motion measurement, current measurement, electrostatic induction

Procedia PDF Downloads 315
883 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 358
882 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers

Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang

Abstract:

One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.

Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis

Procedia PDF Downloads 408
881 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: optimization, estimation, synchronous, machine, crow search

Procedia PDF Downloads 99
880 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim Fares Zaidi

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: ARSDS, HTK, HMM, MFCC, PLP

Procedia PDF Downloads 69
879 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)

Procedia PDF Downloads 127
878 Electron-Ion Recombination of N^{2+} and O^{3+} Ions

Authors: Shahin A. Abdel-Naby, Asad T. Hassan, Stuart Loch, Michael Fogle, Negil R. Badnell, Michael S. Pindzola

Abstract:

Accurate and reliable laboratory astrophysical data for electron-ion recombination are needed for plasma modeling. Dielectronic recombination (DR) rate coefficients are calculated for boron-like nitrogen and oxygen ions using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. The calculations are performed in intermediate coupling scheme associated with n = 0 (2  2) and n = 1 (2  3) core-excitations. Good agreements are found between the theoretically convoluted rate coefficients and the experimental measurements performed at CRYRING heavy-ion storage ring for both ions. Fitting coefficients for the rate coefficients are produced for these ions in the temperature range q2(102-107) K, where q is the ion charge before recombination.

Keywords: Atomic data, atomic processes, electron-ion collision, plasma

Procedia PDF Downloads 131
877 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: separation, activity coefficients, methyltrioctylammonium chloride, ionic liquid, capacity

Procedia PDF Downloads 112
876 Primes as Sums and Differences of Two Binomial Coefficients and Two Powersums

Authors: Benjamin Lee Warren

Abstract:

Many problems exist in additive number theory which is essential to determine the primes that are the sum of two elements from a given single-variable polynomial sequence, and most of them are unattackable in the present day. Here, we determine solutions for this problem to a few certain sequences (certain binomial coefficients and power sums) using only elementary algebra and some algebraic factoring methods (as well as Euclid’s Lemma and Faulhaber’s Formula). In particular, we show that there are finitely many primes as sums of two of these types of elements. Several cases are fully illustrated, and bounds are presented for the cases not fully illustrated.

Keywords: binomial coefficients, power sums, primes, algebra

Procedia PDF Downloads 61
875 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 316
874 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software

Authors: Marine Segui, Ruxandra Mihaela Botez

Abstract:

OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.

Keywords: aerodynamic, coefficient, cruise, improving, longitudinal, openVSP, solver, time

Procedia PDF Downloads 199
873 Subclasses of Bi-Univalent Functions Associated with Hohlov Operator

Authors: Rashidah Omar, Suzeini Abdul Halim, Aini Janteng

Abstract:

The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function f ϵ A is said to be bi-univalent in the open unit disk D if both f and f-1 are univalent in D. The symbol A denotes the class of all analytic functions f in D and it is normalized by the conditions f(0) = f’(0) – 1=0. The class of bi-univalent is denoted by  The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function φ. An analytic function f is subordinate to an analytic function g if there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g[w(z)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors.

Keywords: analytic functions, bi-univalent functions, Hohlov operator, subordination

Procedia PDF Downloads 262
872 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 391
871 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 66
870 Recombination Rate Coefficients for NIII and OIV Ions

Authors: Shahin A. Abdel-Naby, Asad T. Hassan

Abstract:

Electron-ion recombination data are needed for plasma modeling. The recombination processes include radiative recombination (RR), dielectronic recombination (DR), and trielectronic recombination (TR). When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by photon emission. Reliable laboratory astrophysics data (theory and experiment) for DR rate coefficients are needed to determine the charge state distribution in photoionized sources such as X-ray binaries and active galactic nuclei. DR rate coefficients for NIII and OIV ions are calculated using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated with Δn = 0 (2→2) and Δn = 1 (2 →3) core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are found between these rate coefficients and the experimental measurements performed at the CRYRING heavy-ion storage ring for both ions.

Keywords: atomic data, atomic process, electron-ion collision, plasmas

Procedia PDF Downloads 114
869 Chebyshev Wavelets and Applications

Authors: Emanuel Guariglia

Abstract:

In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry.

Keywords: Chebyshev wavelets, Fourier transform, connection coefficients, Taylor series, local fractional derivative, Cantor set

Procedia PDF Downloads 85
868 Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics

Authors: Mauricio Gracia, Luis Leal, Bharat Verma

Abstract:

Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients.

Keywords: CFD, current draft coefficient, STAR-CCM+, OCIMF, Bollard pull

Procedia PDF Downloads 128
867 Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels

Authors: Anshul Jain, P. Deepak Kumar, P. K. S. Dikshit

Abstract:

To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel.

Keywords: drag, lift, vanes, open channel

Procedia PDF Downloads 305
866 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns

Authors: Wajdi Mohamed Ratemi

Abstract:

The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.

Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities

Procedia PDF Downloads 333
865 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 368
864 Combination Rule for Homonuclear Dipole Dispersion Coefficients

Authors: Giorgio Visentin, Inna S. Kalinina, Alexei A. Buchachenko

Abstract:

In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466.

Keywords: combination rule, dipole-dipole dispersion coefficient, Casimir-Polder integral, Gauss-Legendre quadrature

Procedia PDF Downloads 145
863 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 408
862 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil

Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati

Abstract:

In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.

Keywords: bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients

Procedia PDF Downloads 156
861 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel

Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren

Abstract:

Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.

Keywords: flywheel energy storage, fuzzy, optimization, stress analysis

Procedia PDF Downloads 310
860 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices

Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues

Abstract:

This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.

Keywords: matrix minimization algorithm, decoding sequential search algorithm, image compression, DCT, DWT

Procedia PDF Downloads 110