Search results for: hydrophobic antibiotics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 799

Search results for: hydrophobic antibiotics

229 A Study on the Microbilogical Profile and Antibiotic Sensitivity Pattern of Bacterial Isolates Causing Urinary Tract Infection in Intensive Care Unit Patients in a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

The study was done to determine the microbiological profile and changing pattern of the pathogens causing UTI in the ICU patients. All the patients admitted to the ICU with urinary catheter insertion for more than 48hours were included in the study. Urine samples were collected in a sterile container with aseptic precaution using disposable syringe and was processed as per standards. Antimicrobial susceptibility test was done by Disc Diffusion method as per CLSI guidelines. A total of 100 urine samples were collected from ICU patients, out of which 30% showed significant bacterial growth and 7% showed growth of candida spp. Prevalence of UTI was more in female (73%) than male (27.%). Gram-negative bacilli 26(86.67%) were more common in our study followed by gram-positive cocci 4(13.33%). The most common uropathogens isolated were Escherichia coli 14 (46.67%), followed by Klebsiella spp 7(23.33%), Staphylococcus aureus 4(13.33%), Acinetobacter spp 3(10%), Enterococcus faecalis 1(3.33%) and Pseudomonas aeruginosa 1(3.33%). Most of the Gram-negative bacilli were sensitive to amikacin (80%) and nitrofurantoin (80%), where as all gram-positive organisms were sensitive to Vancomycin. A large number ESBL producers were also observed in this study. The study finding showed that E.coli is the predominant pathogen and has increasing resistance pattern to the commonly used antibiotics. The study proposes that the adherence to antibiotic policy is the key ingredients for successful outcome in ICU patients and also emphasizes that repeated evaluation of microbial characteristics and continuous surveillance of resistant bacteria is required for selection of appropriate antibiotic therapy.

Keywords: antimicrobial sensitivity, intensive care unit, nosocomial infection, urinary tract infection

Procedia PDF Downloads 274
228 Phenotypic and Symbiotic Characterization of Rhizobia Isolated from Faba Bean (Vicia faba L.) in Moroccan Soils

Authors: Y. Hajjam, I. T. Alami, S. M. Udupa, S. Cherkaoui

Abstract:

Faba bean (Vicia faba L.) is an important food legume crop in Morocco. It is mainly used as human food and feed for animals. Faba bean also plays an important role in cereal-based cropping systems, when rotated with cereals it improves soil fertility by fixing N2 in root nodules mediated by Rhizobium. Both faba bean and its biological nitrogen fixation symbiotic bacterium Rhizobium are affected by different stresses such as: salinity, drought, pH, heavy metal, and the uptake of inorganic phosphate compounds. Therefore, the aim of the present study was to evaluate the phenotypic diversity among the faba bean rhizobial isolates and to select the tolerant strains that can fix N2 under environmental constraints for inoculation particularly for affected soils, in order to enhance the productivity of faba bean and to improve soil fertility. Result have shown that 62% of isolates were fast growing with the ability of producing acids compounds , while 38% of isolates are slow growing with production of alkalins. Moreover, 42.5% of these isolates were able to solubilize inorganic phosphate Ca3(PO4)2 and the index of solubilization was ranged from 2.1 to 3.0. The resistance to extreme pH, temperature, water stress heavy metals and antibiotics lead us to classify rhizobial isolates into different clusters. Finally, the authentication test under greenhouse conditions showed that 55% of the rhizobial isolates could induce nodule formation on faba bean (Vicia faba L.) under greenhouse experiment. This phenotypic characterization may contribute to improve legumes and non legumes crops especially in affected soils and also to increase agronomic yield in the dry areas.

Keywords: rhizobia, vicia faba, phenotypic characterization, nodule formation, environmental constraints

Procedia PDF Downloads 256
227 Transport Medium That Prevents the Conversion of Helicobacter Pylori to the Coccoid Form

Authors: Eldar Mammadov, Konul Mammadova, Aytaj Ilyaszada

Abstract:

Background: According to many studies, it is known that H. pylori transform into the coccoid form, which cannot be cultured and has poor metabolic activity.In this study, we succeeded in preserving the spiral shape of H.pylori for a long time by preparing a biphase transport medium with a hard bottom (Muller Hinton with 7% HRBC (horse red blood cells) agar 5ml) and liquid top part (BH (brain heart) broth + HS (horse serum)+7% HRBC+antibiotics (Vancomycin 5 mg, Trimethoprim lactate 25 mg, Polymyxin B 1250 I.U.)) in cell culture flasks with filter caps. For comparison, we also used a BH broth medium with 7% HRBC used for the transport of H.pylori. Methods: Rapid urease test positive 7 biopsy specimens were also inoculated into biphasic and BH broth medium with 7% HRBC, then put in CO2 Gaspak packages and sent to the laboratory. Then both mediums were kept in the thermostat at 37 °C for 1 day. After microscopic, PCR and urease test diagnosis, they were transferred to Columbia Agar with 7% HRBC. Incubated at 37°C for 5-7 days, cultures were examined for colony characteristics and bacterial morphology. E-test antimicrobial susceptibility test was performed. Results: There were 3 growths from biphasic transport medium passed to Columbia agar with 7% HRBC and only 1 growth from BH broth medium with 7% HRBC. It was also observed that after the first 3 days in BH broth medium with 7%, H.pylori passed into coccoid form and its biochemical activity weakened, while its spiral shape did not change for 2-3 weeks in the biphase transport medium. Conclusions: By using the biphase transport medium we have prepared; we can culture the bacterium by preventing H.pylori from spiraling into the coccoid form. In our opinion, this may result in the wide use of culture method for diagnosis of H.pylori, study of antibiotic susceptibility and molecular genetic analysis.

Keywords: clinical trial, H.pylori, coccoid form, transport medium

Procedia PDF Downloads 76
226 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions

Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem

Abstract:

The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.

Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative

Procedia PDF Downloads 49
225 Coagulase Negative Staphylococci: Phenotypic Characterization and Antimicrobial Susceptibility Pattern

Authors: Lok Bahadur Shrestha, Narayan Raj Bhattarai, Basudha Khanal

Abstract:

Introduction: Coagulase-negative staphylococci (CoNS) are the normal commensal of human skin and mucous membranes. The study was carried out to study the prevalence of CoNS among clinical isolates, to characterize them up to species level and to compare the three conventional methods for detection of biofilm formation. Objectives: to characterize the clinically significant coagulase-negative staphylococci up to species level, to compare the three phenotypic methods for the detection of biofilm formation and to study the antimicrobial susceptibility pattern of the isolates. Methods: CoNS isolates were obtained from various clinical samples during the period of 1 year. Characterization up to species level was done using biochemical test and study of biofilm formation was done by tube adherence, congo red agar, and tissue culture plate method. Results: Among 71 CoNS isolates, seven species were identified. S. epidermidis was the most common species followed by S. saprophyticus, S. haemolyticus. Antimicrobial susceptibility pattern of CoNS documented resistance of 90% to ampicillin. Resistance to cefoxitin and ceftriaxone was observed in 55% of the isolates. We detected biofilm formation in 71.8% of isolates. The sensitivity of tube adherence method was 82% while that of congo red agar method was 78%. Conclusion: Among 71 CoNS isolated, S. epidermidis was the most common isolates followed by S. saprophyticus and S. haemolyticus. Biofilm formation was detected in 71.8% of the isolates. All of the methods were effective at detecting biofilm-producing CoNS strains. Biofilm former strains are more resistant to antibiotics as compared to biofilm non-formers.

Keywords: CoNS, congo red agar, bloodstream infections, foreign body-related infections, tissue culture plate

Procedia PDF Downloads 202
224 A Systematic Review of the Antimicrobial Effects of Different Plant Extracts (Quercus infectoria) as Possible Candidates in the Treatment of Infectious Diseases

Authors: Sajjad Jafari

Abstract:

Background and Aim: The use of herbal medicines has a long history. Today, due to the resistance of microorganisms to antibiotics and antimicrobial substances, herbal medicines have attracted attention due to their significant antimicrobial effects and low toxicity. This study aims to systematically review the antimicrobial effects of different plant extracts (Quercus infectoria) as possible candidates for treating infectious diseases. Material and Methods: The present study is a review study by searching reputable scientific databases such as PubMed, Google Scholar, Scopus, and Web of Science from 2000 to 2023 using the keywords Antimicrobial, Quercus infectoria, Medicinal herbal, Infectious diseases the latest information obtained. Results: In this study, 45 articles were found and reviewed. Quercus infectoria is a small tree native to Greece, Asia Minor, and Iran. Quercus is a plant genus in the family of Fagaceae. This species is generally known under the name ‘‘baloot” in Iran and is commonly used as a medicinal plant. The extracts used included water, hydro-alcoholic, ethanol, methanol. This plant had high inhibition activity and a lethal effect on gram-positive and gram-negative bacteria of ATCC strains, hospital, and resistant strains. Therefore, in addition to antibacterial effects, antiparasitic and antifungal effects. The seed of the plant was the most used and the most effective antimicrobial extract among the ethanol and methanol extracts. Conclusion: The findings of this study suggest that Quercus infectoria has significant antimicrobial effects against a wide range of microorganisms. This makes it a potential candidate for the development of new antimicrobial drugs. Further research is needed to confirm the efficacy and safety of Quercus infectoria in clinical trials.

Keywords: antimicrobial, Quercus infectoria, medicinal herbal, infectious diseases

Procedia PDF Downloads 100
223 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 393
222 Molecular Insights into the 5α-Reductase Inhibitors: Quantitative Structure Activity Relationship, Pre-Absorption, Distribution, Metabolism, and Excretion and Docking Studies

Authors: Richa Dhingra, Monika, Manav Malhotra, Tilak Raj Bhardwaj, Neelima Dhingra

Abstract:

5-Alpha-reductases (5AR), a membrane bound, NADPH dependent enzyme and convert male hormone testosterone (T) into more potent androgen dihydrotestosterone (DHT). DHT is the required for the development and function of male sex organs, but its overproduction has been found to be associated with physiological conditions like Benign Prostatic Hyperplasia (BPH). Thus the inhibition of 5ARs could be a key target for the treatment of BPH. In present study, 2D and 3D Quantitative Structure Activity Relationship (QSAR) pharmacophore models have been generated for 5AR based on known inhibitory concentration (IC₅₀) values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (–OH group connected with one single bond) (SsOHE-index); semi-empirical (Quadrupole2) and physicochemical descriptors (Mol. wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r² = 0.98, q² =0.84; F = 57.87, pred r² = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well validated 2D Partial Least Squares (PLS) and 3D k-nearest neighbour (kNN) models were used to search novel 5AR inhibitors with different chemical scaffold. To gain more insights into the molecular mechanism of action of these steroidal derivatives, molecular docking and in silico absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Studies have revealed the hydrophobic and hydrogen bonding of the ligand with residues Alanine (ALA) 63A, Threonine (THR) 60A, and Arginine (ARG) 456A of 4AT0 protein at the hinge region. The results of QSAR, molecular docking, in silico ADME studies provide guideline and mechanistic scope for the identification of more potent 5-Alpha-reductase inhibitors (5ARI).

Keywords: 5α-reductase inhibitor, benign prostatic hyperplasia, ligands, molecular docking, QSAR

Procedia PDF Downloads 164
221 Ghrelin, Obestatin and Ghrelin/Obestatin Ratio: A Postprandial Study in Healthy Subjects of Normal Weight

Authors: Panagiotis T. Kanellos, Vaios T. Karathanos, Andriana C. Kaliora

Abstract:

Introduction: The role of ghrelin and obestatin in appetite regulation has been investigated. However, data on ghrelin and obestatin changes after food ingestion are negligible. Objective: We aimed at assessing the appetite-regulating hormones, ghrelin, and obestatin, and furthermore calculate ghrelin/obestatin ratio in healthy normal-weight subjects after consumption of raisins. This survey is a comparative study of a glucose control with raisins containing fructose and glucose in similar concentrations as well as fibers. Methodology: Ten apparently healthy subjects who reported no history of glucose intolerance, diabetes, gastrointestinal disorders, or recent use of any antibiotics were enrolled in the study. The raisins used (Vitis vinifera) originate in Greece and are distributed worldwide as Corinthian raisins. In a randomized crossover design, all subjects after an overnight fast consumed, either 50g of glucose diluted in 240 mL of water (control) or 74 g of raisins (sugar content 50 g) with a 5-day interval between individual trials. Vein blood samples were collected at baseline and at 60, 120 and 180 min postprandially. In blood samples ghrelin and obestatin were measured applying specific enzyme linked immuno absorbent assays. Results: The subjects were of mean age 26.3 years, with BMI of 21.6 kg/m2, waist circumference of 77.7 cm, normal serum lipidemic parameters and normal HbA1c levels. Ghrelin levels were significantly lower after raisin consumption compared to glucose at 120 and at 180 min post-ingestion (p= 0.011 and p= 0.035, respectively). However, obestatin did not reach statistical significance between the two interventions. The ghrelin/obestatin ratio was found significantly lower (p=0.020) at 120 min after raisin ingestion compared to control. Conclusion: Two isocaloric foods containing equal amounts of sugars, however with a different composition, have different effects on appetite hormones ghrelin and obestatin in normal-weight healthy subjects.

Keywords: appetite, ghrelin, obestatin, raisins

Procedia PDF Downloads 401
220 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 224
219 Spectrum and Prevalence of Candida Infection in Diabetic Foot Ulcers

Authors: Seyed Reza Aghili, Tahereh Shokohi, Lotfollah Davoodi, Zahra Kashi, Azam Moslemi, Mahdi Abastabar, Iman Haghani, Sabah Mayahi, Asoudeh A.

Abstract:

Introduction: In diabetic foot ulcers, if fungal agents such as Candida species penetrate into the cutaneous or depth of ulcer, can increase the degree of the wound and cause Candia infection and make it more difficult to heal. Material & Methods: A cross-sectional study was performed on 100 diabetic foot ulcer patients in 2020 in Sari, Iran. patient's data and wound grade were recorded in a questionnaire. Candida infection was diagnosed with direct microscopic examination and culture of samples. Colony-PCR molecular method was used for ITS region of DNA and then PCR-RFLP with Msp1 enzyme and using HWP1 specific gene to determine species of Candida agent. Results: Of 100 patients, the mean age 62.1 ± 10.8 years, 95% type 2 diabetes, 83%>10 years duration diabetes, 59% male, 66%> poor education level, 99% married, 52% rural, 95% neuropathic symptoms, 88% using antibiotics, 69%HbA1C >9%, and mean ulcer degree 2.6±1.05 were. Candida infection was seen in 13% of the deep tissue of the wound and 7% cutaneous around the wound. The predominant Candida isolated was C. parapsilosis (71.5%), C .albicans (14.3%). Fungal infections caused by mold fungi were not detected. There was a statistically significant relationship between yeast infection and gender, rural, HbA1C and ulcer degree. Conclusion: Mycological evaluations often are ignored. Candida parapsilosis is the most common infectious agent in these patients and may require specific treatment. Therefore, more attention of physicians to Candida infections particularly, early diagnosis and effective treatment can help faster recovery and prevent amputation.

Keywords: diabetic foot ulcer, candida infection, risk factors, c. parapsilosis

Procedia PDF Downloads 203
218 A Histopathological Study on Leech (Hirudo medicinalis) Application in the Management of Vicarcikā (Eczema)

Authors: K. M. Pratap Shankar, Dattatreya Rao, Sai Prasad

Abstract:

Background: Skin diseases are among the most common health problems worldwide and are associated with a considerable burden. Eczema is such a skin ailment which cause psychological, social and financial burden on the patient and their families. Management of eczema with antibiotics, antihistamines, steroids etc., are available but even after their use relapses, recurrences and other complications are very common. Aim: The aim of this study was to assess the efficacy of leech application in the management of vicarcikā (Eczema) with Histopathological study. Methods: For the present study 10 patients having the classical symptoms of Vicarcikā, were randomly selected as per the inclusion and exclusion criteria from O.P.D. & I.P.D. sections of Śalya department, S.V. Āyurvedic Hospital, Tirupati. Minimum 4 sittings of Leech application was carried out with seven days interval. Total duration of treatment was 6 weeks. Biopsy samples were collected from the lesion site before and after treatment. Histopathological examination was done by the pathologist. Results: In eczema (dermatitis) the leech application therapy gives excellent response by reducing the inflammatory component, hyperkeratosis, spongiosis, irregular acanthosis and by evoking a granulation tissue response in the dermis and in most of the cases with complete recovery from the lesion. Most of the cases in the study were chronic dermatitis and sebhoric keratosis, almost all local/focal pigmented lesions is totally relieved by leech therapy especially in cases of sebhoric keratosis. Conclusion: In the present study it was found that, leech application evokes significant changes at histological level specifically in reduction of inflammatory component, hyperkeratosis, spongiosis and irregular acanthosis. It was also found that there was a considerable formation of granulation tissue, which helps in formation of healthy new tissues.

Keywords: acanthosis, eczema, hyperkeratosis, leech application, spongiosis

Procedia PDF Downloads 299
217 Effect of Dietary Graded Levels of L-Theanine on Growth Performance, Carcass Traits, Meat Quality, and Immune Response of Broilers

Authors: Muhammad Saeed, Sun Chao

Abstract:

L-theanine is water soluble non-proteinous amino acid found in green tea leaves. Despite the availability of abundant literature on green tea, studies on the use of L-theanine as an additive in animals especially broilers are scanty. The objective of this study was to evaluate the effectiveness of different dietary levels of L-theanine on growth performance, meat quality, growth, immune response and blood chemistry in broilers. A total of 400 day-old chicks were randomly divided into four treatment groups (A, B, C, and D) using a complete randomized design. Treatments were as follows: A; control (basal diet), B; basal diet+100 mg L-theanine / kg diet, C; basal diet+ 200 mg L-theanine / kg diet, and D; basal diet+ 300 mg L-theanine / kg diet. Results revealed that intermediate level of L-theanine (200 mg/ kg diet, group C) showed better results in terms of BWG, FC, and FCR compared with control and other L-theanine levels. The live weight eviscerated weight and gizzard weight was higher in all L-theanine levels as compared to that of the control group. The heaviest (P > 0.05) spleen and bursa were found in group C (200 mg L-theanine / kg diet). Analysis of meat colors according to yellowness (b*), redness (a*), and lightness (L*) showed significantly higher values of a* and b* in L-theanine groups. Supplementing broiler diet with L-theanine minimized (P=0.02) total cholesterol contents in serum. Further analysis revealed , lower mRNA expression of TNF-α and IL-6 in thymus and IFN- γ and IL-2 in spleen was observed in L-theanine group It is concluded that supplementation of L-theanine at 200mg/kg diet showed better results in terms of performance and it could be utilized as a natural feed additive alternative to antibiotics to improve overall performance of broilers. Increasing the levels up to 300 mg L-theanine /kg diet may has deleterious effects on performance and other health aspects.

Keywords: blood chemistry, broilers growth, L-theanine, meat quality

Procedia PDF Downloads 254
216 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection

Authors: Sami Khan, Kripa Varanasi

Abstract:

Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.

Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces

Procedia PDF Downloads 137
215 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 137
214 Polypropylene Matrix Enriched With Silver Nanoparticles From Banana Peel Extract For Antimicrobial Control Of E. coli and S. epidermidis To Maintain Fresh Food

Authors: Michail Milas, Aikaterini Dafni Tegiou, Nickolas Rigopoulos, Eustathios Giaouris, Zaharias Loannou

Abstract:

Nanotechnology, a relatively new scientific field, addresses the manipulation of nanoscale materials and devices, which are governed by unique properties, and is applied in a wide range of industries, including food packaging. The incorporation of nanoparticles into polymer matrices used for food packaging is a field that is highly researched today. One such combination is silver nanoparticles with polypropylene. In the present study, the synthesis of the silver nanoparticles was carried out by a natural method. In particular, a ripe banana peel extract was used. This method is superior to others as it stands out for its environmental friendliness, high efficiency and low-cost requirement. In particular, a 1.75 mM AgNO₃ silver nitrate solution was used, as well as a BPE concentration of 1.7% v/v, an incubation period of 48 hours at 70°C and a pH of 4.3 and after its preparation, the polypropylene films were soaked in it. For the PP films, random PP spheres were melted at 170-190°C into molds with 0.8cm diameter. This polymer was chosen as it is suitable for plastic parts and reusable plastic containers of various types that are intended to come into contact with food without compromising its quality and safety. The antimicrobial test against Escherichia coli DFSNB1 and Staphylococcus epidermidis DFSNB4 was performed on the films. It appeared that the films with silver nanoparticles had a reduction, at least 100 times, compared to those without silver nanoparticles, in both strains. The limit of detection is the lower limit of the vertical error lines in the presence of nanoparticles, which is 3.11. The main reasons that led to the adsorption of nanoparticles are the porous nature of polypropylene and the adsorption capacity of nanoparticles on the surface of the films due to hydrophobic-hydrophilic forces. The most significant parameters that contributed to the results of the experiment include the following: the stage of ripening of the banana during the preparation of the plant extract, the temperature and residence time of the nanoparticle solution in the oven, the residence time of the polypropylene films in the nanoparticle solution, the number of nanoparticles inoculated on the films and, finally, the time these stayed in the refrigerator so that they could dry and be ready for antimicrobial treatment.

Keywords: antimicrobial control, banana peel extract, E. coli, natural synthesis, microbe, plant extract, polypropylene films, S.epidermidis, silver nano, random pp

Procedia PDF Downloads 182
213 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 252
212 Survival and Retention of the Probiotic Properties of Bacillus sp. Strains under Marine Stress Starvation Conditions and Their Potential Use as a Probiotic for Aquaculture Objectives

Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf

Abstract:

Aquaculture is the world’s fastest growing food-production sector. However, one of the most serious problems regarding the culture of marine fishes is the mortality associated with pathogenic bacteria that occurs in the critical phases of larval development. Conventional approaches, such as the use of antimicrobial drugs to control diseases, have had limited success in the prevention or cure of aquatic diseases. Promising alternatives to antibiotics are probiotics, which are food supplements consisting of live microorganisms that benefit the host organism. In the search for more effective and environmentally friendly treatments with probionts against pathogenic species in shrimp larval culture, the probiotic properties of Bacillus strains isolated from Artemia culture such as antibacterial activity, adhesion, pathogenicity, toxicity and the effect of marine stress on viability and survival were investigated, as well as the changes occurring in their properties. Analyses showed that these bacteria corresponded to the genus Bacillus sp. Antagonism and adherence assays revealed that these strains have an inhibitory effect against pathogenic bacteria in vitro and in vivo conditions and are fairly adherent. Challenge tests performed with Artemia larvae provided evidence that the tested Bacillus strains were neither pathogenic nor toxic to the host. The tested strains maintained their viability and their probiotic properties during the period of study. The results suggest that the tested strains have suffered changes allowing them to survive in seawater in the absence of nutrients and outside their natural host, identifying them as potential probiotic candidates for Artemia culture.

Keywords: bacillus, probiotic, cell viability, stress response

Procedia PDF Downloads 390
211 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 319
210 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 148
209 Methicillin Resistant Staphylococcus aureus Specific Bacteriophage Isolation from Sewage Treatment Plant and in vivo Analysis of Phage Efficiency in Swiss Albino Mice

Authors: Pratibha Goyal, Nupur Mathur, Anuradha Singh

Abstract:

Antibiotic resistance is the worldwide threat to human health in this century. Excessive use of antibiotic after their discovery in 1940 makes certain bacteria to become resistant against antibiotics. Most common antibiotic-resistant bacteria include Staphylococcus aureus, Salmonella typhi, E.coli, Klebsiella pneumonia, and Streptococcus pneumonia. Among all Staphylococcus resistant strain called Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for several lives threatening infection in human commonly found in the hospital environment. Our study aimed to isolate bacteriophage against MRSA from the hospital sewage treatment plant and to analyze its efficiency In Vivo in Swiss albino mice model. Sewage sample for the isolation of bacteriophages was collected from SDMH hospital sewage treatment plant in Jaipur. Bacteriophages isolated by the use of enrichment technique and after characterization, isolated phages used to determine phage treatment efficiency in mice. Mice model used to check the safety and suitability of phage application in human need which in turn directly support the use of natural bacteriophage rather than synthetic chemical to kill pathogens. Results show the plaque formation in-vitro and recovery of MRSA infected mice during the experiment. Favorable lytic efficiency determination of MRSA and Salmonella presents a natural way to treat lethal infections caused by Multidrug-resistant bacteria by using their natural host-pathogen relationship.

Keywords: antibiotic resistance, bacteriophages, methicillin resistance Staphylococcus aureus, pathogens, phage therapy, Salmonella typhi

Procedia PDF Downloads 147
208 Assessment of Some Biological Activities of Methanolic Crude Extract from Polygonum maritimum L.

Authors: Imad Abdelhamid El-Haci, Wissame Mazari, Fayçal Hassani, Fawzia Atik Bekkara

Abstract:

Much attention has been paid to the antioxidants, which are expected to prevent food and living systems from peroxidative damage. Incorporation of synthetic antioxidants in food products is under strict regulation due to the potential health hazards caused by such compounds. The use of plants as traditional health remedies is very popular and important for 80% of the world’s population in African, Asian, Latin America and Middle Eastern Countries. Their use is reported to have minimal side effects. In recent years, pharmaceutical companies have spent considerable time and money in developing therapeutics based upon natural products extracted from plants. In other part, due to the continuous emergence of antibiotic-resistant strains there is continual demand for new antibiotics. Chemical compounds from medicinal plant especially are targeted by many researches. In this light, genus Polygonum (Polygonaceae), comprising about 45 genera (300 species), is distributed worldwide, mostly in north temperate regions. They have been reported to have uses in traditional medicine, such as anti-inflammation, promoting blood circulation, dysentery, diuretic, haemorrhage and many other uses. In our study, Polygonum maritimum (from Algerian coast) was extracted with 80% methanol to obtain a crude extract. P. maritimum extract (PME) had a very high content of total phenol, which was 352.49 ± 18.03 mg/g dry weight, expressed as gallic acid equivalent. PME exhibited excellent antioxidant activity, as measured using DPPH and H2O2 scavenging assays. It also showed a high antibacterial activity against gram positive bacterial strains: Bacillus cereus, Bacillus subtilis and Staphylococcus aureus with an MIC 0,12 mg/mL.

Keywords: Polygonum maritimum, crude extract, antioxidant activity, antibacterial activity

Procedia PDF Downloads 315
207 Comparison of Bactec plus Blood Culture Media to BacT/Alert FAN plus Blood Culture Media for Identification of Bacterial Pathogens in Clinical Samples Containing Antibiotics

Authors: Recep Kesli, Huseyin Bilgin, Ela Tasdogan, Ercan Kurtipek

Abstract:

Aim: The aim of this study was to compare resin based Bactec plus aerobic/anaerobic blood culture bottles (Becton Dickinson, MD, USA) and polymeric beads based BacT/Alert FA/FN plus blood culture bottles (bioMerieux, NC, USA) in terms of microorganisms recovery rates and time to detection (TTD) in the patients receiving antibiotic treatment. Method: Blood culture samples were taken from the patients who admitted to the intensive care unit and received antibiotic treatment. Forty milliliters of blood from patients were equally distributed into four types of bottles: Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus. Bactec Plus and BacT/Alert Plus media were compared to culture recovery rates and TTD. Results: Blood culture samples were collected from 382 patients hospitalized in the intensive care unit and 245 patients who were diagnosed as having bloodstream infections were included in the study. A total of 1528 Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus blood culture bottles analyzed and 176, 144, 154, 126 bacteria or fungi were isolated, respectively. Gram-negative and gram-positive bacteria were significantly more frequently isolated in the resin-based Bactec Plus bottles than in the polymeric beads based BacT/Alert Plus bottles. The Bactec Plus and BacT/Alert Plus media recovery rates were similar for fungi and anaerobic bacteria. The mean TTDs in the Bactec Plus bottles were shorter than those in the BacT/Alert Plus bottles regardless of the microorganisms. Conclusion: The results of this study showed that resin-containing media is a reliable and time-saving tool for patients who are receiving antibiotic treatment due to sepsis in the intensive care unit.

Keywords: Bactec Plus, BacT/Alert Plus, blood culture, antibiotic

Procedia PDF Downloads 147
206 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody

Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer

Abstract:

The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.

Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes

Procedia PDF Downloads 335
205 A Case of Iatrogenic Esophageal Perforation in an Extremely Low Birth Weight Neonate

Authors: Ya-Ching Fu, An-Kuo Chou, Boon-Fatt Tan, Chi-Nien Chen, Wen-Chien Yang, Pou-Leng Cheong

Abstract:

Blind oro-/naso-pharyngeal suction and feeding tube placement are very common practices in neonatal intensive care unit. Though esophageal perforation is a rare complication of these instrumentations, its prevalence is highest in extremely premature neonates. Due to its association with significant morbidity (including respiratory deterioration, pneumothorax, and sepsis) and even mortality, it is an important issue to prevent this iatrogenic complication in the field of premature care. We demonstrate an esophageal perforation in an extreme-low-birth-weight neonate after oro-gastric tube placement. This female baby weighing 680 grams was delivered by caesarean section at 25 weeks of gestational age. She initially received oro-tracheal intubation with mechanical ventilation which was smoothly weaned to non-invasive positive-pressure ventilation at 7-day-old. However, after insertion of a 5-French oro-gastric tube, the baby’s condition suddenly worsened with apnea requiring mechanical ventilation. Her chest radiogram showed the oro-gastric tube in right pleural space, and thus another oro-gastric tube was replaced, and its position was radiographically confirmed. The malpositioned tube was then removed. The baby received 2-week course of intravenous antibiotics for her esophageal perforation. Feeding was then reintroduced and increased to full feeds in a smooth course. She was discharged at 107-day-old. Esophageal perforation in newborn is very rare. Sudden respiratory deterioration in a neonate after naso-/oro-gastric tube placement should alarm us to consider esophageal perforation, and further radiological investigation is required for the diagnosis. Tube materials, patient condition, and age are major risk factors of esophageal perforation. The use of softer tube material, such as silicone, in extreme premature baby might prevent this fetal complication.

Keywords: esophageal perforation, preterm, newborn, feeding tube

Procedia PDF Downloads 273
204 Antibiogram and Molecular Characterization of Methicillin-Resistant Staphylococcus Pseudintermedius from Shelter Dogs with Skin Infections and Dog Owners in Abakaliki, Nigeria

Authors: Moses Ikechukwu Benjamin

Abstract:

The continued increase in methicillin-resistant Staphylococcuspseudintermedius (MRSP) among dogs and the zoonotic transmission event of MRSP from dogs to humans threaten veterinary medicine and public health. The cardinal objective of this study was to determine the antibiogram and frequency of toxingenes in MRSP obtained from shelter dogs with skin infections and dog owners in Abakaliki, Eastern Nigeria. Skinswabs from 61 shelter dogs with skin infections and 33 nasal swabs from dog owners were processed and analyzed using standard microbiological techniques. Susceptibility to antibiotics was determined by Kirby Bauer disc diffusion technique. The screening for Seccanine, lukD, siet, and exitoxin genes was carried out by PCR. A total of 23 (37.7 %) and 1 (3 %) MRSP strains were obtained from shelter dogs and dog owners, respectively. Generally, isolates exhibited high resistance to amoxicillin-clavulanic acid, ceftazidime, and cefepime (100 % - 66.7 %) but were very susceptible (100 % - 70.7 %) to chloramphenicol and doripenem. The only isolate from dog owners harbouredseccanine, lukD, and siet toxin genes while solatesfrom shelter dogs harbouredseccanine16 (69.6 %), lukD 17 (73.9 %), siet 20 (87 %), and exi1 (4.4 %) toxin genes. Isolates were generally observed to be more resistant than other reports from the literature. Interesting, there was a similarity in the resistance antibiotypes and frequency of toxin genes harboured by MRSP isolates between shelter dogs with skin infections and their owner in a sampled household, thus suggesting a likely zoonotic transmission event. This report of the occurrence of MRSP and high frequency of toxin genes (Seccanine,lukD, and siet) in shelter dogs and dog owners represent a major challenge, especially in terms of antibiotic therapy, and is a serious concern for both animal and public health.

Keywords: methicillin-resistant S. pseudintermedius, zoonotic transmission, antibiotic resistance, companion dogs, toxin genes

Procedia PDF Downloads 168
203 Investigation of Deep Eutectic Solvents for Microwave Assisted Extraction and Headspace Gas Chromatographic Determination of Hexanal in Fat-Rich Food

Authors: Birute Bugelyte, Ingrida Jurkute, Vida Vickackaite

Abstract:

The most complicated step of the determination of volatile compounds in complex matrices is the separation of analytes from the matrix. Traditional analyte separation methods (liquid extraction, Soxhlet extraction) require a lot of time and labour; moreover, there is a risk to lose the volatile analytes. In recent years, headspace gas chromatography has been used to determine volatile compounds. To date, traditional extraction solvents have been used in headspace gas chromatography. As a rule, such solvents are rather volatile; therefore, a large amount of solvent vapour enters into the headspace together with the analyte. Because of that, the determination sensitivity of the analyte is reduced, a huge solvent peak in the chromatogram can overlap with the peaks of the analyts. The sensitivity is also limited by the fact that the sample can’t be heated at a higher temperature than the solvent boiling point. In 2018 it was suggested to replace traditional headspace gas chromatographic solvents with non-volatile, eco-friendly, biodegradable, inexpensive, and easy to prepare deep eutectic solvents (DESs). Generally, deep eutectic solvents have low vapour pressure, a relatively wide liquid range, much lower melting point than that of any of their individual components. Those features make DESs very attractive as matrix media for application in headspace gas chromatography. Also, DESs are polar compounds, so they can be applied for microwave assisted extraction. The aim of this work was to investigate the possibility of applying deep eutectic solvents for microwave assisted extraction and headspace gas chromatographic determination of hexanal in fat-rich food. Hexanal is considered one of the most suitable indicators of lipid oxidation degree as it is the main secondary oxidation product of linoleic acid, which is one of the principal fatty acids of many edible oils. Eight hydrophilic and hydrophobic deep eutectic solvents have been synthesized, and the influence of the temperature and microwaves on their headspace gas chromatographic behaviour has been investigated. Using the most suitable DES, microwave assisted extraction conditions and headspace gas chromatographic conditions have been optimized for the determination of hexanal in potato chips. Under optimized conditions, the quality parameters of the prepared technique have been determined. The suggested technique was applied for the determination of hexanal in potato chips and other fat-rich food.

Keywords: deep eutectic solvents, headspace gas chromatography, hexanal, microwave assisted extraction

Procedia PDF Downloads 200
202 Microbial and Oocyst Count in Feacal Material of Broilers Birds Administered Phytochemicals (Naringin and Hesperidin)

Authors: Adeleye Oluwagbemmiga, Obuotor Tolulope, Dosumu Adebisi, Opowoye I., Olasoju M., Kolawole Amos, Egbeyale Lawrence

Abstract:

Gut Microbiota plays a vital role in animal health and welfare. This study investigated the effect of naringin and hesperidin administration on broiler birds. A total of 80 day – old broiler chicks were randomly divided into eight groups, with ten birds per group. Four groups were not inoculated but administered coccidiostat (1A), hesperidin alone (2A), naringin alone (3A) and a combination of naringin and hesperidin (4A) from day eight (8) to day fourteen (14) while four other groups (5A – 8A) were inoculated with 2 x 10⁴ oocysts per 0.5ml of Eimeria tenella on the 16th and 19th day of age after they were administered conventional antibiotics and coccidiostat, naringin (50mg/body weight), hesperidin (50mg/body weight) and a combination from day 8 - 14. McMaster counting technique was used to count the oocysts, while pour plate technique was used to determine the bacterial load. The results showed a significant increase in their performance with an average weight ranging from 1.55kg – 2.00kg, microbial load also improved with colony count values from 3.5 x 104 - 4.5 x 10⁴ CFU/ml. The study also found that the inclusion of naringin and hesperidin in the diets of broiler birds inoculated with coccidia oocysts significantly reduced the fecal oocyst counts, with the lowest count in combined treatment (8A) (10%) and indicating a lower degree of coccidiosis infection in the treated groups whereas control group (5A) had the highest oocyst count (35%). Mortality and Morbidity rate was 0% as none of the bird showed signs and symptoms. The reduction in oocyst counts could help to strengthen the immune system of broiler birds and limit the severity of coccidiosis infection, which could be an effective strategy for improving performance, immune function and mitigating the impact of coccidiosis infection in broiler birds.

Keywords: gut colonization, naringin, hesperidin, eimeria tenella, broilers

Procedia PDF Downloads 93
201 Prevalence and Comparison for Detection Methods of Candida Species in Vaginal Specimens from Pregnant and Non-Pregnant Saudi Women

Authors: Yazeed Al-Sheikh

Abstract:

Pregnancy represents a risk factor in the occurrence of vulvovaginal candidiasis. To investigate the prevalence rate of vaginal carriage of Candida species in Saudi pregnant and non-pregnant women, high vaginal swab (HVS) specimens (707) were examined by direct microscopy (10% KOH and Giemsa staining) and parallel cultured on Sabouraud Dextrose Agar (SDA) as well as on “CHROM agar Candida” medium. As expected, Candida-positive cultures were frequently observed in pregnant-test group (24%) than in non-pregnant group (17%). The frequency of culture positive was correlated to pregnancy (P=0.047), parity (P=0.001), use of contraceptive (P=0.146), or antibiotics (P=0.128), and diabetic-patients (P < 0.0001). Out of 707 HVS examined specimens, 157 specimens were yeast-positive culture (22%) on Sabouraud Dextrose Agar or “CHROM agar Candida”. In comparison, the sensitivities of the direct 10% KOH and the Giemsa stain microscopic examination methods were 84% (132/157) and 95% (149/157) respectively but both with 100% specificity. As for the identity of recovered 157 yeast isolates, based on API 20C biotype carbohydrate assimilation, germ tube and chlamydospore formation, C. albicansand C. glabrata constitute 80.3 and 12.7% respectively. Rates of C. tropicalis, C. kefyr, C. famata or C. utilis were 2.6, 1.3, and 0.6% respectively. Sachromyces cerevisiae and Rhodotorula mucilaginosa yeasts were also encountered at a frequency of 1.3 and 0.6% respectively. Finally, among all recovered 157 yeast-isolates, strains resistant to ketoconazole were not detected, whereas 5% of the C. albicans and as high as 55% of the non-albicans yeast isolates (majority C. glabrata) showed resistance to fluconazole. Our findings may prove helpful for continuous determination of the existing vaginal candidiasis causative species during pregnancy, its lab-diagnosis and/or control and possible measures to minimize the incidence of the disease-associated pre-term delivery.

Keywords: vaginal candidiasis, Candida spp., pregnancy, risk factors, API 20C-yeast biotypes, giemsa stain, antifungal agents

Procedia PDF Downloads 245
200 Factors Associated with Oral Cavity Colonization by Candida albicans

Authors: Nwafia Ifeyinwa Nkeiruka, Nwafia Walter Chukwuma

Abstract:

Since the early 1980’s fungi have emerged as major causes of human diseases, especially among immunocompromised. The most commonly isolated yeast is Candida albicans and constitutes the 4th most common nosocomial BSI in humans. It is progressive and cumulative and become more complex over time.It can even lead to leaky gut syndrome that causes food and environmental allergies. It is worthy of note that all the available data on oral Candida risk factors in humans were documented essentially using data from studies conducted in other areas, hence there is need for comparative and complementary information from the South eastern part of Nigeria. Method: 200 subjects of all age groups of both sexes were randomly examined,by swabbing their palatine mucosa and dorsal tongue with sterile cotton wool,then cultured into Sabouraud dextrose agar plates supplemented with antibiotics and incubated aerobically at 37 degree for 48 hrs. Identification of Candida albicans was done by germ tubes tests, chlamydospores production on cornmeal agar supplemented with 1% Tween 80.Sugar and nitrogen assimilation test using API 20C Auxanogram and potassium nitrate agar. Results: Out of 30 samples that were positive for candida, 15 (50%) were candida albicans. Using the anova test (P < 0.05) this variation is significant (P = 0016). followed by C. dublinensis 3 (13%), C. tropicalis 3 (10%), C. pseudotropicalis 3 (10%), C, glabrata 2 (7%), C. parapsilosis 2 (7%) and lastly C. krusei 1 (3%).However, 53% of the patients were female while 47% were male. Among the HIV positive isolates.67% were HIV isolates not on drugs while 33% positives isolates were on drugs and the percentages of candida species in these patients were as follows C. albicans were 45% followed by C. glabrata and C.tropicalis which were 17% each, C.parapsilosis, C.dubliensis and C.pseudotropicalis were all 8% each. Conclusion: Oral Candidiasis is a marker of systemic diseases and in some cases, it may be the first clinical presentation. There is need for more intensive clinical and laboratory monitoring and possible early intervention to prevent the reoccurrence and resistance to treatment.

Keywords: oral cavity, Candida species, oral Candidiasis, risk factors

Procedia PDF Downloads 366