Search results for: comprehensive feature extraction
5500 Study of Antibacterial Activity of Phenolic Compounds Extracted from Algerian Medicinal Plant
Authors: Khadri Sihem, Abbaci Nafissa, Zerari Labiba
Abstract:
In the context of the search for new bioactive natural products, we were interested in evaluating some antibacterial properties of two plant extracts: total phenols and flavonoids of Algerian medicinal plant. Our study occurs in two axes: The first concerns the extraction of phenolic compounds and flavonoids with methanol by liquid-liquid extraction, followed by quantification of the levels of these compounds in the end the analysis of the chemical composition of extracts. In the second axis, we studied the antibacterial power of the studied plant extracts.Keywords: antibacterial activity, flavonoids, medicinal plants, polyphenols
Procedia PDF Downloads 5545499 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 635498 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 1695497 The Effects of Extraction Methods on Fat Content and Fatty Acid Profiles of Marine Fish Species
Authors: Yesim Özogul, Fethiye Takadaş, Mustafa Durmus, Yılmaz Ucar, Ali Rıza Köşker, Gulsun Özyurt, Fatih Özogul
Abstract:
It has been well documented that polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on health, regarding prevention of cardiovascular diseases, cancer and autoimmune disorders, development the brain and retina and treatment of major depressive disorder etc. Thus, an adequate intake of omega PUFA is essential and generally marine fish are the richest sources of PUFA in human diet. Thus, this study was conducted to evaluate the efficiency of different extraction methods (Bligh and Dyer, soxhlet, microwave and ultrasonics) on the fat content and fatty acid profiles of marine fish species (Mullus babatus, Upeneus moluccensis, Mullus surmuletus, Anguilla anguilla, Pagellus erythrinus and Saurida undosquamis). Fish species were caught by trawl in Mediterranean Sea and immediately iced. After that, fish were transported to laboratory in ice and stored at -18oC in a freezer until the day of analyses. After extracting lipid from fish by different methods, lipid samples were converted to their constituent fatty acid methyl esters. The fatty acid composition was analysed by a GC Clarus 500 with an autosampler (Perkin Elmer, Shelton, CT, USA) equipped with a flame ionization detector and a fused silica capillary SGE column (30 m x 0.32 mm ID x 0.25 mm BP20 0.25 UM, USA). The results showed that there were significant differences (P < 0.05) in fatty acids of all species and also extraction methods affected fat contents and fatty acid profiles of fish species.Keywords: extraction methods, fatty acids, marine fish, PUFA
Procedia PDF Downloads 2675496 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm
Procedia PDF Downloads 4545495 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 4515494 Techno-Economic Analysis (TEA) of Circular Economy Approach in the Valorisation of Pig Meat Processing Wastes
Authors: Ribeiro A., Vilarinho C., Luisa A., Carvalho J
Abstract:
The pig meat industry generates large volumes of by- and co-products like blood, bones, skin, trimmings, organs, viscera, and skulls, among others, during slaughtering and meat processing and must be treated and disposed of ecologically. The yield of these by-products has been reported to account for about 10% to 15% of the value of the live animal in developed countries, although animal by-products account for about two-thirds of the animal after slaughter. It was selected for further valorization of the principal wastes produced throughout the value chain of pig meat production: Pig Manure, Pig Bones, Fats, Skins, Pig Hair, Wastewater, Wastewater sludges, and other animal subproducts type III. According to the potential valorization options, these wastes will be converted into Biomethane, Fertilizers (phosphorus and digestate), Hydroxyapatite, and protein hydrolysates (Keratin and Collagen). This work includes comprehensive technical and economic analyses (TEA) for each valorization route or applied technology. Metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and payback periods were used to evaluate economic feasibility. From this analysis, it can be concluded that, for Biogas Production, the scenarios using pig manure, wastewater sludges and mixed grass and leguminous wastes presented a remarkably high economic feasibility. Scenarios showed high economic feasibility with a positive payback period, NPV, and IRR. The optimal scenario combining pig manure with mixed grass and leguminous wastes had a payback period of 1.2 years and produced 427,6269 m³ of biomethane annually. Regarding the Chemical Extraction of Phosphorous and Nitrogen, results proved that the process is economically unviable due to negative cash flows despite high recovery rates. The TEA of Hydrolysis and Extraction of Keratin Hydrolysates indicate that a unit processing and valorizing 10 tons of pig hair per year for the production of keratin hydrolysate has an NPV of 907,940 €, an IRR of 13.07%, and a Payback period of 5.41 years. All of these indicators suggest a highly potential project to explore in the future. On the opposite, the results of Hydrolysis and Extraction of Collagen Hydrolysates showed a process economically unviable with negative cash flows in all scenarios due to the high-fat content in raw materials. In fact, the results from the valorization of 10 tons of pig skin had a negative cash flow of 453 743,88 €. TEA results of Extraction and purification of Hydroxyapatite from Pig Bones with Pyrolysis indicate that unit processing and valorizing 10 tons of pig bones per year for the production of hydroxyapatite has an NPV of 1 274 819,00 €, an IRR of 65.43%, and a Payback period of 1,5 years over a timeline of 10 years with a discount rate of 10%. These valorization routes, circular economy and bio-refinery approach offer significant contributions to sustainable bio-based operations within the agri-food industry. This approach transforms waste into valuable resources, enhancing both environmental and economic outcomes and contributing to a more sustainable and circular bioeconomy.Keywords: techno-economic analysis (TEA), pig meat processing wastes, circular economy, bio-refinery
Procedia PDF Downloads 155493 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning
Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.
Abstract:
Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.Keywords: image processing, python, convolution neural network (CNN), machine learning
Procedia PDF Downloads 765492 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 685491 Extraction of Saponins and Cyclopeptides from Cow Cockle (Vaccaria hispanica (Mill.) Rauschert) Seeds Grown in Turkey
Authors: Ihsan Burak Cam, Ferhan Balci-Torun, Ayhan Topuz, Esin Ari, Ismail Gokhan Deniz, Ilker Genc
Abstract:
The seeds of Vaccaria hispanica have been used in food and pharmaceutical industry. It is an important product due to its superior starch granules, triterpenic saponins, and cyclopeptides suitable for drug delivery. V. hispanica naturally grows in different climatic regions and has genotypes that differ in terms of seed content and composition. Sixty-six V. hispanica seed specimens were collected based on the representation of the distribution in all regions of Turkey and the determination of possible genotypic differences between regions. The seeds, collected from each of the 66 locations, were grown in greenhouse conditions in Akdeniz University, Antalya. Saponin and cyclopeptide contents of the V. hispanica seeds were determined after harvest. Accelerated solvent extraction (ASE) was applied for the extraction of saponins and cyclopeptides. Cyclopeptide (segetalin A) and saponin content of V. hispanica seeds were found in the range of 0.165-0.654 g/100 g and 0.15-1.14 g/100 g, respectively. The results were found to be promising for the seeds from Turkey in terms of saponin content and quality. Acknowledgment: This study was supported by the Scientific and Research Council of Turkey (TUBITAK) (project no 112 O 136).Keywords: Vaccaria hispanica, saponin, cyclopeptid, cow cockle seeds
Procedia PDF Downloads 2955490 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5175489 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel
Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende
Abstract:
Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction
Procedia PDF Downloads 6095488 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4115487 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure
Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin
Abstract:
Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.Keywords: potassium, sequential extraction process, clay mineral, TXM
Procedia PDF Downloads 2895486 Solvent Extraction, Spectrophotometric Determination of Antimony(III) from Real Samples and Synthetic Mixtures Using O-Methylphenyl Thiourea as a Sensitive Reagent
Authors: Shashikant R. Kuchekar, Shivaji D. Pulate, Vishwas B. Gaikwad
Abstract:
A simple and selective method is developed for solvent extraction spectrophotometric determination of antimony(III) using O-Methylphenyl Thiourea (OMPT) as a sensitive chromogenic chelating agent. The basis of proposed method is formation of antimony(III)-OMPT complex was extracted with 0.0025 M OMPT in chloroform from aqueous solution of antimony(III) in 1.0 M perchloric acid. The absorbance of this complex was measured at 297 nm against reagent blank. Beer’s law was obeyed up to 15µg mL-1 of antimony(III). The Molar absorptivity and Sandell’s sensitivity of the antimony(III)-OMPT complex in chloroform are 16.6730 × 103 L mol-1 cm-1 and 0.00730282 µg cm-2 respectively. The stoichiometry of antimony(III)-OMPT complex was established from slope ratio method, mole ratio method and Job’s continuous variation method was 1:2. The complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance selectivity of the method. The proposed method is successfully applied for determination of antimony(III) from real samples alloy and synthetic mixtures. Repetition of the method was checked by finding relative standard deviation (RSD) for 10 determinations which was 0.42%.Keywords: solvent extraction, antimony, spectrophotometry, real sample analysis
Procedia PDF Downloads 3325485 Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus
Authors: Violina Angelova, Stefan Krustev
Abstract:
The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated.Keywords: available soil phosphorus, certified samples, determination, soil test extractants
Procedia PDF Downloads 1515484 Chitosan Magnetic Nanoparticles and Its Analytical Applications
Authors: Eman Alzahrani
Abstract:
Efficient extraction of proteins by removing interfering materials is necessary in proteomics, since most instruments cannot handle such contaminated sample matrices directly. In this study, chitosan-coated magnetic nanoparticles (CS-MNPs) for purification of myoglobin were successfully fabricated. First, chitosan (CS) was prepared by a deacetylation reaction during its extraction from shrimp-shell waste. Second, magnetic nanoparticles (MNPs) were synthesised, using the coprecipitation method, from aqueous Fe2+ and Fe3+ salt solutions by the addition of a base under an inert atmosphere, followed by modification of the surface of MNPs with chitosan. The morphology of the formed nanoparticles, which were about 23 nm in average diameter, was observed by transmission electron microscopy (TEM). In addition, nanoparticles were characterised using X-ray diffraction patterns (XRD), which showed the naked magnetic nanoparticles have a spinel structure and the surface modification did not result in phase change of the Fe3O4. The coating of MNPs was also demonstrated by scanning electron microscopy (SEM) analysis, energy dispersive analysis of X-ray spectroscopy (EDAX), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption behaviour of MNPs and CS-MNPs towards myoglobin was investigated. It was found that the difference in adsorption capacity between MNPs and CS-MNPs was larger for CS-MNPs. This result makes CS-MNPs good adsorbents and attractive for using in protein extraction from biological samples.Keywords: chitosan, magnetic nanoparticles, coprecipitation, adsorption
Procedia PDF Downloads 4165483 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation
Procedia PDF Downloads 715482 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.Keywords: altitude estimation, drone, image processing, trajectory planning
Procedia PDF Downloads 1135481 Study Mercapto-Nanoscavenger as a Promising Analytical Tool
Authors: Mohammed M. Algaradah
Abstract:
A chelating mercapto- nanoscavenger has been developed exploiting the high surface area of monodisperse nano-sized mesoporous silica. The nanoscavenger acts as a solid phase trace metal extractant whilst suspended as a quasi-stable sol in aqueous samples. This mode of extraction requires no external agitation as the particles move naturally through the sample by Brownian motion, convection and slow sedimentation. Careful size selection enables the nanoscavenger to be easily recovered together with the extracted analyte by conventional filtration or centrifugation. The research describes the successful attachment of chelator mercapto to ca. 136 ± 15 nm high surface area (BET surface area = 1006 m2 g-1) mesoporous silica particles. The resulting material had a copper capacity of ca. 1.34 ± 0.10 mmol g-1 and was successfully applied to the collection of a trace element from water. Essentially complete recovery of Cu (II) has been achieved from freshwater samples giving typical preconcentration factors of 100 from 50 µg/l samples. Data obtained from a nanoscavenger-based extraction of copper from samples were not significantly different from those obtained by using a conventional colorimetric procedure employing complexation/solvent extraction.Keywords: nano scavenger, mesoporous silica, trace metal, preconcentration
Procedia PDF Downloads 835480 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory
Authors: Yin Yuanling
Abstract:
A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks
Procedia PDF Downloads 1445479 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection
Procedia PDF Downloads 1695478 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology
Authors: Doni Dermawan
Abstract:
Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction
Procedia PDF Downloads 2895477 Comprehensive Assessment of Energy Efficiency within the Production Process
Authors: S. Kreitlein, N. Eder, J. Franke
Abstract:
The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production
Procedia PDF Downloads 7335476 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India
Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya
Abstract:
The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall
Procedia PDF Downloads 2995475 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach
Authors: Mohamed Nasraoui
Abstract:
Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.
Procedia PDF Downloads 1655474 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization
Authors: Hironori Karachi, Haruka Yamashita
Abstract:
Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.Keywords: data science, non-negative matrix factorization, missing data, quality of services
Procedia PDF Downloads 1315473 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1265472 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1115471 Aerogel Fabrication Via Modified Rapid Supercritical Extraction (RSCE) Process - Needle Valve Pressure Release
Authors: Haibo Zhao, Thomas Andre, Katherine Avery, Alper Kiziltas, Deborah Mielewski
Abstract:
Silica aerogels were fabricated through a modified rapid supercritical extraction (RSCE) process. The silica aerogels were made using a tetramethyl orthosilicate precursor and then placed in a hot press and brought to the supercritical point of the solvent, ethanol. In order to control the pressure release without a pressure controller, a needle valve was used. The resulting aerogels were then characterized for their physical and chemical properties and compared to silica aerogels created using similar methods. The aerogels fabricated using this modified RSCE method were found to have similar properties to those in other papers using the unmodified RSCE method. Silica aerogel infused glass blanket composite, graphene reinforced silica aerogel composite were also successfully fabricated by this new method. The modified RSCE process and system is a prototype for better gas outflow control with a lower cost of equipment setup. Potentially, this process could be evolved to a continuous low-cost high-volume production process to meet automotive requirements.Keywords: aerogel, automotive, rapid supercritical extraction process, low cost production
Procedia PDF Downloads 184