Search results for: polygenic risk score
7655 Relationship between Mental Health and Food Access among Healthcare College Students in a Snowy Area in Japan
Authors: Yuki Irie, Shota Ogawa, Hitomi Kosugi, Hiromitsu Shinozaki
Abstract:
Background: Dropout from higher educational institutions is a major problem both for students and institutions, and poor mental health is one of the risk factors. Medical college students are at higher risk of poor mental health than general students because of their hard academic schedules. On the other hand, food insecurity has negative impacts on mental health. The healthcare college of the project site is located heavily snowy area. The students without own vehicles may be at higher risk of food insecurity, especially in the winter season. Therefore, they have many risks to mental health. The aim of the study is to clarify the relationship between mental health and its risk factors to promote students’ mental well-being. Method: A cross-sectional design was used to investigate the relationship between mental health status and lifestyle, including diet and food security among the students (n=421, 147 male, 274 females; 20.7 ± 2.8 years old). Participants were required to answer 3 questionnaires which consisted of diet, lifestyle, food security, and mental health. The survey was conducted during the snowy season from Dec. 2022 to Jan. 2023. Results: Mean mental score was 6.7±4.6 (max. score 27, a higher score means worse mental health). Significant risk factors in mental health were breakfast habit (p=0.02), subjective dietary habit (p=0.00), subjective health (p=0.00), exercise habit (p=0.02), food insecurity in the winter season (p=0.01), and vitamin A intakes (p=0.03). Conclusions: Nutrients intakes are not associated with mental health except vitamin A; however, some other lifestyle factors are significantly associated with mental health. Nutrition doesn’t lead to poor mental health directly; however, the promotion of a healthy lifestyle and improved food security in winter may be effective in better mental health.Keywords: mental health, winter, lifestyle, students
Procedia PDF Downloads 897654 Management as a Proxy for Firm Quality
Authors: Petar Dobrev
Abstract:
There is no agreed-upon definition of firm quality. While profitability and stock performance often qualify as popular proxies of quality, in this project, we aim to identify quality without relying on a firm’s financial statements or stock returns as selection criteria. Instead, we use firm-level data on management practices across small to medium-sized U.S. manufacturing firms from the World Management Survey (WMS) to measure firm quality. Each firm in the WMS dataset is assigned a mean management score from 0 to 5, with higher scores identifying better-managed firms. This management score serves as our proxy for firm quality and is the sole criteria we use to separate firms into portfolios comprised of high-quality and low-quality firms. We define high-quality (low-quality) firms as those firms with a management score of one standard deviation above (below) the mean. To study whether this proxy for firm quality can identify better-performing firms, we link this data to Compustat and The Center for Research in Security Prices (CRSP) to obtain firm-level data on financial performance and monthly stock returns, respectively. We find that from 1999 to 2019 (our sample data period), firms in the high-quality portfolio are consistently more profitable — higher operating profitability and return on equity compared to low-quality firms. In addition, high-quality firms also exhibit a lower risk of bankruptcy — a higher Altman Z-score. Next, we test whether the stocks of the firms in the high-quality portfolio earn superior risk-adjusted excess returns. We regress the monthly excess returns on each portfolio on the Fama-French 3-factor, 4-factor, and 5-factor models, the betting-against-beta factor, and the quality-minus-junk factor. We find no statistically significant differences in excess returns between both portfolios, suggesting that stocks of high-quality (well managed) firms do not earn superior risk-adjusted returns compared to low-quality (poorly managed) firms. In short, our proxy for firm quality, the WMS management score, can identify firms with superior financial performance (higher profitability and reduced risk of bankruptcy). However, our management proxy cannot identify stocks that earn superior risk-adjusted returns, suggesting no statistically significant relationship between managerial quality and stock performance.Keywords: excess stock returns, management, profitability, quality
Procedia PDF Downloads 917653 Italian Central Guarantee Fund: An Analysis of the Guaranteed SMEs’ Default Risk
Authors: M. C. Arcuri, L. Gai, F. Ielasi
Abstract:
Italian Central Guarantee Fund (CGF) has the purpose to facilitate Small and Medium-sized Enterprises (SMEs)’ access to credit. The aim of the paper is to study the evaluation method adopted by the CGF with regard to SMEs requiring its intervention. This is even more important in the light of the recent CGF reform. We analyse an initial sample of more than 500.000 guarantees from 2012 to 2018. We distinguish between a counter-guarantee delivered to a mutual guarantee institution and a guarantee directly delivered to a bank. We investigate the impact of variables related to the operations and the SMEs on Altman Z’’-score and the score consistent with CGF methodology. We verify that the type of intervention affects the scores and the initial condition changes with the new assessment criterions.Keywords: banks, default risk, Italian guarantee fund, mutual guarantee institutions
Procedia PDF Downloads 1737652 Risk Measure from Investment in Finance by Value at Risk
Authors: Mohammed El-Arbi Khalfallah, Mohamed Lakhdar Hadji
Abstract:
Managing and controlling risk is a topic research in the world of finance. Before a risky situation, the stakeholders need to do comparison according to the positions and actions, and financial institutions must take measures of a particular market risk and credit. In this work, we study a model of risk measure in finance: Value at Risk (VaR), which is a new tool for measuring an entity's exposure risk. We explain the concept of value at risk, your average, tail, and describe the three methods for computing: Parametric method, Historical method, and numerical method of Monte Carlo. Finally, we briefly describe advantages and disadvantages of the three methods for computing value at risk.Keywords: average value at risk, conditional value at risk, tail value at risk, value at risk
Procedia PDF Downloads 4407651 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 4997650 Maternal Mental Health and Patient Reported Outcomes: Identifying At-Risk Pregnant and Postpartum Patients
Authors: Jennifer Reese, Josh Biber, Howard Weeks, Rachel Hess
Abstract:
Aim: The Edinburgh Postnatal Depression Screen (EPDS) is a mental health screening for pregnant women that has been widely used over the last 30 years. This screen is typically given in clinic on paper to patients throughout pregnancy and postpartum. The screen helps identify patients who may be at risk for pregnancy related depression or postpartum depression. In early 2016, University of Utah Health implemented an electronic version of the EPDS as well as the PROMIS Depression v1.0 instrument for all pregnant and postpartum patients. We asked patients both instruments to understand coverage of patients identified as at risk for each instrument. Methods: The EPDS is currently administered as part of our PRO template for pregnant and postpartum women. We also administer the PROMIS Depression as part of a standard PRO assessment to all patients. Patients are asked to complete an assessment no more often than every eight weeks. PRO assessments are either completed at home or in clinic with a tablet computer. Patients with a PROMIS score of ≥ 65 or a EPDS score of ≥ 10 were identified as at risk for depression Results: From April 2016 to April 2017, 1,330 unique patients were screened at University of Utah Health in OBGYN clinics with both the EPDS and PROMIS depression instrument on the same day. There were 28 (2.1%) patients were identified as at risk for depression using the PROMIS depression screen, while 262 (19.7%) patients were identified as at risk for postpartum depression using the EPDS screen. Overall, 27 (2%) patients were identified as at risk on both instruments. Conclusion: The EPDS identified a higher percent (19.7%) of patients at risk for depression when compared to the PROMIS depression (2.1%). Ninety-six percent of patients who screened positive on the PROMIS depression screen also screened positive on the EPDS screen. Mental health is an important component to a patient’s overall wellbeing. We want to ensure all patients, particularly pregnant or post-partum women, receive screening and treatment when necessary. A combination of screenings may be necessary to provide the overall best care for patients and to identify the highest percentage of patients at risk.Keywords: patient reported outcomes, mental health, maternal, depression
Procedia PDF Downloads 3707649 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People
Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos
Abstract:
In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score. The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%). Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2. The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished. There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight. We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men). The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked. Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.Keywords: nutritional satus, MNA, BMI, elderly
Procedia PDF Downloads 3227648 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism
Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran
Abstract:
Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.Keywords: CT PA, D dimer, pulmonary embolism, wells score
Procedia PDF Downloads 2317647 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 797646 Occupational Stress and Lipid Profile among Drivers in Ismailia City, Egypt
Authors: Amani Waheed, Adel Mishriky, Rasha Farouk, Essam Abdallah, Sarah Hussein
Abstract:
Background: Occupational stress plays a crucial role in professional drivers' health. They are exposed to high workloads, low physical activity, high demand and low decisions as well as poor lifestyle factors including poor diet, sedentary work, and smoking. Dyslipidemia is a well-established modifiable cardiovascular risk factor. Occupational stress and other forms of chronic stress have been associated with raised levels of atherogenic lipids. Although stress management has some evidence in improving lipid profile, the association between occupational stress and dyslipidemia is not clear. Objectives: To assess the relational between occupational stress and lipid profile among professional drivers. Methodology: A cross-sectional study conducted at a large company in Ismailia City, Egypt, where, 131 professional drivers divided into 44 car drivers, 43 bus drivers, and 44 truck drivers were eligible after applying exclusion criteria. Occupational stress index (OSI), non-occupational risk factors of dyslipidemia were assessed using interview structured questionnaire. Blood pressure, body mass index (BMI) and lipid profile were measured. Results: The mean of total OSI score was 79.98 ± 6.14. The total OSI score is highest among truck drivers (82.16 ± 4.62), then bus drivers (80.26 ± 6.02) and lowest among car drivers (77.55 ± 6.79) with statistically significant. Eighty percent had Dyslipidemia. The duration of driving hours per day, exposure to passive smoking and increased BMI were the risk factors. No statistical significance between Total OSI score and dyslipidemia. Using, logistic regression analysis, occupational stress, duration of driving hours per day, and BMI were positive significant predictors for dyslipidemia. Conclusion: Professional drivers are exposed to occupational stress. A high proportion of drivers have dyslipidemia. Total OSI score doesn't have statistically significant relation with dyslipidemia.Keywords: body mass index, dyslipidaemia, occupational stress, professional drivers
Procedia PDF Downloads 1657645 Board Regulation and Its Impact on Composition and Effects: Evidence from German Cooperative Banks
Authors: Markus Stralla
Abstract:
This study employs a GMM framework to examine the impact of potential regulatory intervention regarding the occupations of supervisory board members in cooperative banking. To achieve insights, the study proceeds in two different ways. First, it investigates the changes in board structure prior and following to the German Act to Strengthen Financial Market and Insurance Supervision (FinVAG). Second, the study estimates the influence of Ph.D.Share, professional concentration and supervisory power on bank-risk changes in consideration of the implementation of FinVAG. Therefore, the study is based on a sample of 246 German cooperative banks from 2006-2011 while applying four different measures of bank risk, namely credit-, equity-, liquidity-risk, and Z-Score, with the former three also being addressed in FinVAG. Results indicate that the implementation of FinVAG results in (most likely unintentional) structural changes, especially at the expense of farmers, and affects all risk measures and relations between risk measures and supervisory board characteristics in a risk-reducing and therefore intended way. To disentangle the complex relationship between board characteristics and risk measures, the study utilizes two-step system GMM estimator to account for unobserved heterogeneity and simultaneity in order to reduce endogeneity problems. The findings may be especially relevant for stakeholders, regulators, supervisors and managers.Keywords: bank governance, bank risk-taking, board of directors, regulation
Procedia PDF Downloads 4267644 Risk of Type 2 Diabetes among Female College Students in Saudi Arabia
Authors: Noor A. Hakim
Abstract:
Several studies in the developed countries investigated the prevalence of diabetes and obesity among individuals from different socioeconomic levels and suggested lower rates among the higher socioeconomic groups. However, studies evaluating diabetes risk and prevalence of obesity among the population of middle- to high-income status in developing countries are limited. The aim of this study is to evaluate the risk of developing type-2 diabetes mellitus (T2DM) and the weight status of female students in private universities in Jeddah City, Saudi Arabia. This is a cross-sectional study of 121 female students aged ≤ 25 years old was conducted; participants were recruited from two private universities. Diabetes risk was evaluated using the Finnish Diabetes Risk Score. Anthropometric measurements were assessed, and body-mass-index (BMI) was calculated. Diabetes risk scores indicated that 35.5% of the female students had a slightly elevated risk, and 10.8% had a moderate to high risk to develop T2DM. One-third of the females (29.7%) were overweight or obese. The majority of the normal weight and underweight groups were classified to have a low risk of diabetes, 22.2% of the overweight participants were classified to have moderate to high risk, and over half of the obese participants (55.5%) were classified to be at the moderate to high-risk category. Conclusions: Given that diabetes risk is alarming among the population in Saudi Arabia, healthcare providers should utilize a simple screening tool to identify high-risk individuals and initiate diabetes preventive strategies to prevent, or delay, the onset of T2DM and improve the quality of life.Keywords: risk of type 2 diabetes, weight status, college students, socioeconomic status
Procedia PDF Downloads 1797643 Model of MSD Risk Assessment at Workplace
Authors: K. Sekulová, M. Šimon
Abstract:
This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors
Procedia PDF Downloads 5487642 Awareness and Recognition: A Legitimate-Geographic Model for Analyzing the Determinants of Corporate Perceptions of Climate Change Risk
Authors: Seyedmohammad Mousavian, Hanlu Fan, Quingliang Tang
Abstract:
Climate change is emerging as a severe threat to our society, so businesses are expected to take actions to mitigate carbon emissions. However, the actions to be taken depend on managers’ perceptions of climate change risks. Yet, there is scant research on this issue, and understanding of the determinants of corporate perceptions of climate change is extremely limited. The purpose of this study is to close this gap by examining the relationship between perceptions of climate risk and firm-level and country-level factors. In this study, climate change risk captures physical, regulatory, and other risks, and we use data from European companies that participated in CDP from 2010 to 2017. This study reveals those perceptions of climate change risk are significantly positively associated with the environmental, social, and governance score, firm size, and membership in a carbon-intensive sector. In addition, we find that managers in firms operating in a geographic area that is sensitive to the consequences of global warming are more likely to perceive and formally recognize carbon-related risks in their CDP reports.Keywords: carbon actions, CDP, climate change risk, risk perception
Procedia PDF Downloads 2897641 Assessment of Risk Factors in Residential Areas of Bosso in Minna, Nigeria
Authors: Junaid Asimiyu Mohammed, Olakunle Docas Tosin
Abstract:
The housing environment in many developing countries is fraught with risks that have potential negative impacts on the lives of the residents. The study examined the risk factors in residential areas of two neighborhoods in Bosso Local Government Areas of Minna in Nigeria with a view to determining the level of their potential impacts. A sample of 378 households was drawn from the estimated population of 22,751 household heads. The questionnaire and direct observation were used as instruments for data collection. The data collected were analyzed using the Relative Importance Index (RII) rule to determine the level of the potential impact of the risk factors while ArcGIS was used for mapping the spatial distribution of the risks. The study established that the housing environment of Angwan Biri and El-Waziri areas of Bosso is poor and vulnerable as 26% of the houses were not habitable and 57% were only fairly habitable. The risks of epidemics, building collapse and rainstorms were evident in the area as 53% of the houses had poor ventilation; 20% of residents had no access to toilets; 47% practiced open waste dumping; 46% of the houses had cracked walls while 52% of the roofs were weak and sagging. The results of the analysis of the potential impact of the risk factors indicate a RII score of 0.528 for building collapse, 0.758 for rainstorms and 0.830 for epidemics, indicating a moderate to very high level of potential impacts. The mean RII score of 0.639 shows a significant potential impact of the risk factors. The study recommends the implementation of sanitation measures, provision of basic urban facilities and neighborhood revitalization through housing infrastructure retrofitting as measures to mitigate the risks of disasters and improve the living conditions of the residents of the study area.Keywords: assessment, risk, residential, Nigeria
Procedia PDF Downloads 567640 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 357639 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy
Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay
Abstract:
Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.Keywords: trauma, coagulopathy, prediction, model
Procedia PDF Downloads 1747638 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department
Authors: Chaiyaporn Yuksen
Abstract:
Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.Keywords: clinical prediction score, SVT, recurrence, emergency department
Procedia PDF Downloads 1547637 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier
Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur
Abstract:
In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing
Procedia PDF Downloads 897636 Evaluation of a Personalized Online Decision Aid for Colorectal Cancer Screening: A Randomized Controlled Trial
Authors: Linda P. M. Pluymen, Mariska M. G. Leeflang, I. Stegeman, Henock G. Yebyo, Anne E. M. Brabers, Patrick M. Bossuyt, E. Dekker, Anke J. Woudstra, Mirjam P. Fransen
Abstract:
Weighing the benefits and harms of colorectal cancer screening can be difficult for individuals. An existing online decision aid was expanded with a benefit-harm analysis to help people make an informed decision about participating in colorectal cancer screening. In a randomized controlled trial, we investigated whether those in the intervention group who used the decision aid with benefit-harm analysis were more certain about their decision than those in the control group who used the decision aid without benefit-harm analysis. Participants were 623 (39% of those invited) men and women aged 45 until 75 years old. Analyses were performed in those 386 participants (62%) who reported to have completed the entire decision aid. No statistically significant differences were observed between intervention and control group in decisional conflict score (mean difference 2.4, 95% CI -0.9, 5.6), clarity of values (mean difference 1.0, 95% CI -4.4, 6.6), deliberation score (mean difference 0.5, 95% CI -0.6, 1.7), anxiety score (mean difference 0.0, 95% CI -0.3, 0.3) and risk perception score (mean difference 0.1, -0.1, 0.3). Adding a benefit-harm analysis to an online decision aid did not improve informed decision making about participating in colorectal cancer screening.Keywords: benefit-harm analysis, decision aid, informed decision making, personalized decision making
Procedia PDF Downloads 1687635 Predictive Value Modified Sick Neonatal Score (MSNS) On Critically Ill Neonates Outcome Treated in Neonatal Intensive Care Unit (NICU)
Authors: Oktavian Prasetia Wardana, Martono Tri Utomo, Risa Etika, Kartika Darma Handayani, Dina Angelika, Wurry Ayuningtyas
Abstract:
Background: Critically ill neonates are newborn babies with high-risk factors that potentially cause disability and/or death. Scoring systems for determining the severity of the disease have been widely developed as well as some designs for use in neonates. The SNAPPE-II method, which has been used as a mortality predictor scoring system in several referral centers, was found to be slow in assessing the outcome of critically ill neonates in the Neonatal Intensive Care Unit (NICU). Objective: To analyze the predictive value of MSNS on the outcome of critically ill neonates at the time of arrival up to 24 hours after being admitted to the NICU. Methods: A longitudinal observational analytic study based on medical record data was conducted from January to August 2022. Each sample was recorded from medical record data, including data on gestational age, mode of delivery, APGAR score at birth, resuscitation measures at birth, duration of resuscitation, post-resuscitation ventilation, physical examination at birth (including vital signs and any congenital abnormalities), the results of routine laboratory examinations, as well as the neonatal outcomes. Results: This study involved 105 critically ill neonates who were admitted to the NICU. The outcome of critically ill neonates was 50 (47.6%) neonates died, and 55 (52.4%) neonates lived. There were more males than females (61% vs. 39%). The mean gestational age of the subjects in this study was 33.8 ± 4.28 weeks, with the mean birth weight of the subjects being 1820.31 ± 33.18 g. The mean MSNS score of neonates with a deadly outcome was lower than that of the lived outcome. ROC curve with a cut point MSNS score <10.5 obtained an AUC of 93.5% (95% CI: 88.3-98.6) with a sensitivity value of 84% (95% CI: 80.5-94.9), specificity 80 % (CI 95%: 88.3-98.6), Positive Predictive Value (PPV) 79.2%, Negative Predictive Value (NPV) 84.6%, Risk Ratio (RR) 5.14 with Hosmer & Lemeshow test results p>0.05. Conclusion: The MSNS score has a good predictive value and good calibration of the outcomes of critically ill neonates admitted to the NICU.Keywords: critically ill neonate, outcome, MSNS, NICU, predictive value
Procedia PDF Downloads 697634 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment
Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha
Abstract:
When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.Keywords: contract risk assessment, NLP, transfer learning, question answering
Procedia PDF Downloads 1287633 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients
Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu
Abstract:
Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.Keywords: chest radiography, coronavirus, COVID-19, RALE score
Procedia PDF Downloads 1777632 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province
Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim
Abstract:
Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR
Procedia PDF Downloads 1987631 Prediction of the Factors Influencing the Utilization of HIV Testing among Young People Aged between 17-25 Years in Saudi Arabia
Authors: Abdullah Almilaibary, Jeremy Jolley, Mark Hayter
Abstract:
Background: Despite recent progress in enhancing the accessibility of HIV-related health services worldwide, opportunities to diagnose patients are often missed due to genuine barriers at different levels. The aim of the study is to explore the factors that affect the utilization of HIV testing services by young people aged 17-25 in Saudi Arabia. Methods: A non-experimental descriptive cross-sectional design was used to predict factors that influenced HIV testing among Umm- Al Qura University students aged 17-25 years. A newly developed self-completed online questionnaire was used and the study sample was drawn using a convenience sampling technique. The questionnaire consisted of 52 items divided into three scales: 12 items for HIV/AIDS-related knowledge, 3 items for risk perception, and 37 items for attitudes toward HIV testing. Five experts in the field of HIV/AIDS validated the contents of the questionnaire and agreed that the items included were related to the construct being measured. The reliability of the questionnaire was also assessed using a test/re-test strategy with 27 participants recruited from the population under study. The reliability assessment revealed that the questionnaire was consistent as Cronbach’s Alpha was 0.80 for HIV/ADS knowledge, 0.88 for risk perception and 0.78 for attitudes towards HIV testing. The data were collected between 14th of July and 14th of October 2014. Results: 394 participants completed the questionnaires: 116 (29.4%) male and 278 (70%) female. 50.5% of the participants were aged 20 to 22 years, 34.8% were 17-19 years and 14.7% were aged between 23-25 years; about 93% of the participants were single. Only 20 (6%) participants had previously been tested for HIV. The main reasons for not being tested for HIV were: exposure to HIV was considered unlikely (48%), HIV test was not offered (36%) and unawareness of HIV testing centres (16%). On HIV/AIDS-related knowledge, the male participants scored higher than the females as the mean score for males was (M = 6.4, SD = 2.4) while for females it was (M 5.7, SD 2.5). In terms of risk perception, female participants appeared to have lower levels of risk perception than male participants, with the mean score for males being (M 11.7, SD 2.5) and (M 10.5, SD 2.4) for females. The female participants showed slightly more positive attitudes towards HIV testing than male participants: the mean score for males was (M = 108.14, SD = 17.9) and was (M = 111.32, SD = 17.3) for females. Conclusions: The data reveal that misconceptions about HIV/AIDS in Saudi Arabia are still a challenge. Although the attitudes towards HIV testing were reasonably positive, the utilization of the HIV test was low. Thus, tailoring HIV/AIDS preventive strategies in Saudi Arabia should focus on the needs of young people and other high risk groups in the country.Keywords: attitude toward hiv testing, hiv testing, hiv/aids related knowledge, risk perception
Procedia PDF Downloads 3277630 Automated Manual Handling Risk Assessments: Practitioner Experienced Determinants of Automated Risk Analysis and Reporting Being a Benefit or Distraction
Authors: S. Cowley, M. Lawrance, D. Bick, R. McCord
Abstract:
Technology that automates manual handling (musculoskeletal disorder or MSD) risk assessments is increasingly available to ergonomists, engineers, generalist health and safety practitioners alike. The risk assessment process is generally based on the use of wearable motion sensors that capture information about worker movements for real-time or for posthoc analysis. Traditionally, MSD risk assessment is undertaken with the assistance of a checklist such as that from the SafeWork Australia code of practice, the expert assessor observing the task and ideally engaging with the worker in a discussion about the detail. Automation enables the non-expert to complete assessments and does not always require the assessor to be there. This clearly has cost and time benefits for the practitioner but is it an improvement on the assessment by the human. Human risk assessments draw on the knowledge and expertise of the assessor but, like all risk assessments, are highly subjective. The complexity of the checklists and models used in the process can be off-putting and sometimes will lead to the assessment becoming the focus and the end rather than a means to an end; the focus on risk control is lost. Automated risk assessment handles the complexity of the assessment for the assessor and delivers a simple risk score that enables decision-making regarding risk control. Being machine-based, they are objective and will deliver the same each time they assess an identical task. However, the WHS professional needs to know that this emergent technology asks the right questions and delivers the right answers. Whether it improves the risk assessment process and results or simply distances the professional from the task and the worker. They need clarity as to whether automation of manual task risk analysis and reporting leads to risk control or to a focus on the worker. Critically, they need evidence as to whether automation in this area of hazard management leads to better risk control or just a bigger collection of assessments. Practitioner experienced determinants of this automated manual task risk analysis and reporting being a benefit or distraction will address an understanding of emergent risk assessment technology, its use and things to consider when making decisions about adopting and applying these technologies.Keywords: automated, manual-handling, risk-assessment, machine-based
Procedia PDF Downloads 1187629 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 737628 UEMSD Risk Identification: Case Study
Authors: K. Sekulová, M. Šimon
Abstract:
The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification
Procedia PDF Downloads 4967627 Correlation between Overweightness and the Extent of Coronary Atherosclerosis among the South Caspian Population
Authors: Maryam Nabati, Mahmood Moosazadeh, Ehsan Soroosh, Hanieh Shiraj, Mahnaneh Gholami, Ali Ghaemian
Abstract:
Background: Reported effects of obesity on the extent of angiographic coronary artery disease(CAD) have beeninconsistent. The present study aimed to investigate the relationships between the indices of obesity and otheranthropometric markers with the extent of CAD. Methods: This study was conducted on 1008 consecutive patients who underwent coronary angiography. Bodymass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) wereseparately calculated for each patient. Extent, severity, and complexity of CAD were determined by the Gensini andSYNTAX scores. Results: According to the results, there was a significant inverse correlation between the SYNTAX score with BMI(r = − 0.110; P < 0.001), WC (r = − 0.074; P = 0.018), and WHtR (r = − 0.089; P = 0.005). Furthermore, a significant inversecorrelation was observed between the Gensini score with BMI (r = − 0.090; P = 0.004) and WHtR (r = − 0.065; P =0.041). However, the results of multivariate linear regression analysis did not show any association between theSYNTAX and Gensini scores with the indices of obesity and overweight. On the other hand, the patients with anunhealthy WC had a higher prevalence of diabetes mellitus (DM) (P = 0.004) and hypertension (HTN) (P < 0.001) compared to the patients with healthy values. Coexistence of HTN and DM was more prevalent in subjects with anunhealthy WC and WHR compared to that in those with healthy values (P = 0.002 and P = 0.032, respectively). Conclusion: It seems that the anthropometric indices of obesity are not the predictors of the angiographic severityof CAD. However, they are associated with an increased risk of cardiovascular risk factors and higher risk profile.Keywords: body mass index, BMI, coronary artery disease, waist circumference
Procedia PDF Downloads 1387626 The Keys to Innovation: Defining and Evaluating Attributes that Measure Innovation Capabilities
Authors: Mohammad Samarah, Benjamin Stark, Jennifer Kindle, Langley Payton
Abstract:
Innovation is a key driver for companies, society, and economic growth. However, assessing and measuring innovation for individuals as well as organizations remains difficult. Our i5-Score presented in this study will help to overcome this difficulty and facilitate measuring the innovation potential. The score is based on a framework we call the 5Gs of innovation which defines specific innovation attributes. Those are 1) the drive for long-term goals 2) the audacity to generate new ideas, 3) the openness to share ideas with others, 4) the ability to grow, and 5) the ability to maintain high levels of optimism. To validate the i5-Score, we conducted a study at Florida Polytechnic University. The results show that the i5-Score is a good measure reflecting the innovative mindset of an individual or a group. Thus, the score can be utilized for evaluating, refining and enhancing innovation capabilities.Keywords: Change Management, Innovation Attributes, Organizational Development, STEM and Venture Creation
Procedia PDF Downloads 166