Search results for: nitrogen rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8929

Search results for: nitrogen rate

8899 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Keywords: anammox, filter media, kinetics, nitrogen removal

Procedia PDF Downloads 382
8898 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704

Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi

Abstract:

In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.

Keywords: corn, nitrogen, comparison, biological yield

Procedia PDF Downloads 358
8897 Gas-Solid Nitrocarburizing of Steels: Kinetic Modelling and Experimental Validation

Authors: L. Torchane

Abstract:

This study is devoted to defining the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3-Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.

Keywords: gaseous nitrocarburizing, kinetic model, diffusion, layer growth kinetic

Procedia PDF Downloads 534
8896 Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition

Authors: Abdelrahman Zkria, Tsuyoshi Yoshitake

Abstract:

Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature.

Keywords: heterojunction diodes, hopping conduction mechanism, nitrogen-doping, ultra-nanocrystalline diamond

Procedia PDF Downloads 304
8895 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh

Abstract:

Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 204
8894 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time

Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi

Abstract:

This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.

Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 363
8893 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 406
8892 Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications

Authors: Abdel Khalek Selim, Safaa Mahmoud

Abstract:

Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants.

Keywords: alluvial soil, calcareous soil, elemental sulfur, nitrate leaching

Procedia PDF Downloads 318
8891 Effect of Chemical, Organic and Biological Nitrogen on Yield and Yield Components of Soybean Cultivars

Authors: Hamid Hatami

Abstract:

This experiment was included two cultivars i.e. Habbit and L17 (Main factor) with six fertilizer treatments i.e. control, seed inoculated with rhyzobium, base nitrogen + top-dress urea at R2 stage, base nitrogen + seed inoculated with rhyzobium + top-dress nitrogen at R2 stage, seed treated with humax + top-dress humax at R2 stage, base nitrogen + seed treated with humax + top-dress humax at R2 stage (sub factors ), as split-plot on the basis of RCBD with 3 replications at 2014. Treatment fertilizer of base nitrogen + seed treated with humax + top- dress humax at R2 stage and base nitrogen + top-dress urea in R2 stage had a significant superiority than the other fertilizer treatment in biological yield. L17 and Habbit with base nitrogen + seed treated with humax + top-dress humax in R2 stage and yield economical 5600 and 5767 kg/ha respectively, showed the most economical yield and Habbit cultivar with control and economical yield 3085 kg/ha showed the least economical yield among all the treatments. Results showed that fertilizer treatment of base nitrogen + seed treated with humax + top-dress humax in R2 stage and Habbit variety were suitable in this study.

Keywords: soybean, humax, rhyzobium, habbit

Procedia PDF Downloads 456
8890 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils

Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen

Abstract:

The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.

Keywords: biological nitrogen fixation, inoculation, rhizobium, soybean

Procedia PDF Downloads 173
8889 Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)

Authors: Mostafa Heidari

Abstract:

Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid.

Keywords: arsenic, physiological parameters, oxidative enzymes, nitrogen

Procedia PDF Downloads 441
8888 A Study of Anoxic - Oxic Microbiological Technology for Treatment of Heavy Oily Refinery Wastewater

Authors: Di Wang, Li Fang, Shengyu Fang, Jianhua Li, Honghong Dong, Zhongzhi Zhang

Abstract:

Heavy oily refinery wastewater with the characteristics of high concentration of toxic organic pollutant, poor biodegradability and complicated dissolved recalcitrant compounds is intractable to be degraded. In order to reduce the concentrations of COD and total nitrogen pollutants which are the major pollutants in heavy oily refinery wastewater, the Anoxic - Oxic microbiological technology relies mainly on anaerobic microbial reactor which works with methanogenic archaea mainly that can convert organic pollutants to methane gas, and supplemented by aerobic treatment. The results of continuous operation for 2 months with a hydraulic retention time (HRT) of 60h showed that, the COD concentration from influent water of anaerobic reactor and effluent water from aerobic reactor were 547.8mg/L and 93.85mg/L, respectively. The total removal rate of COD was up to 84.9%. Compared with the 46.71mg/L of total nitrogen pollutants in influent water of anaerobic reactor, the concentration of effluent water of aerobic reactor decreased to 14.11mg/L. In addition, the average removal rate of total nitrogen pollutants reached as high as 69.8%. Based on the data displayed, Anoxic - Oxic microbial technology shows a great potential to dispose heavy oil sewage in energy saving and high-efficiency of biodegradation.

Keywords: anoxic - oxic microbiological technology, COD, heavy oily refinery wastewater, total nitrogen pollutant

Procedia PDF Downloads 494
8887 Efficacy of Three Different Herbicides to the Control of Wild Barley (Hordeum spontaneum C. Koch) in Relation to Plant Growth Stage and Nitrogen Fertilizer Additive

Authors: Sh. Edrisi, M. Moeeni, A. Farahbakhsh

Abstract:

To study the effect of nitrogenous additive spray solution on the efficacy of three herbicides i.e. pinoxaden (Trade name: Axial), sulfosulfuron+metsulfuron-methyl (Trade name: Total) and sulfosulfuron (Trade name: Apirus) in controlling wild barley (Hordeum spontaneum C. Koch), in different growth stages, a greenhouse experiment as a split plot in a completely randomized design in three replications was conducted. One month after treatments, all plants were harvested and growth parameters were determined. The data were analyzed with computer. The results showed that the herbicide applications with and without nitrogen additive caused significant reductions in growth parameters of wild barley at 2-4 leaf stage. However, the plants were not killed by this herbicide. Plants were killed completely due to applications of the two other herbicides i.e. Apirus and Total at 2-4 leaf. There was no significant difference between the effect of these two herbicides. There was no significant difference between the highest rate of each herbicide used alone and that of the lowest rate with nitrogenous additive.

Keywords: growth stage, herbicide, nitrogen, wild barley

Procedia PDF Downloads 260
8886 An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination

Authors: Brian H. Marsh

Abstract:

Nitrogen fertility is an important component for optimum potato yield and quality. Best management practices are necessary in regards to N applications to achieve these goals without applying excess N with may contribute to ground water contamination. Eight potato fields in the Southern San Joaquin Valley were sampled for nitrogen inputs and uptake, tuber and vine dry matter and residual soil nitrate-N. The fields had substantial soil nitrate-N prior to the potato crop. Nitrogen fertilizer was applied prior to planting and in irrigation water as needed based on in-season petiole sampling in accordance with published recommendations. Average total nitrogen uptake was 237 kg ha-1 on 63.5 Mg ha-1 tuber yield and nitrogen use efficiency was very good at 81 percent. Sixty-nine percent of the plant nitrogen was removed in tubers. Soil nitrate-N increased 14 percent from pre-plant to post-harvest averaged across all fields and was generally situated in the upper soil profile. Irrigation timing and amount applied did not move water into the lower profile except for a single location where nitrate also moved into the lower soil profile. Pre-plant soil analysis is important information to be used. Rotation crops having deeper rooting growth would be able to utilize nitrogen that remained in the soil profile.

Keywords: potato, nitrogen fertilization, irrigation management, leaching potential

Procedia PDF Downloads 459
8885 Effects of Seed Culture and Attached Growth System on the Performance of Anammox Hybrid Reactor (AHR) Treating Nitrogenous Wastewater

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

The start-up of anammox (anaerobic ammonium oxidation) process in hybrid reactor delineated four distinct phases i.e. cell lysis, lag phase, activity elevation and stationary phase. Cell lysis phase was marked by death and decay of heterotrophic denitrifiers resulting in breakdown of organic nitrogen into ammonium. Lag phase showed initiation of anammox activity with turnover of heterotrophic denitrifiers, which is evident from appearance of NO3-N in the effluent. In activity elevation phase, anammox became the dominant reaction, which can be attributed to consequent reduction of NH4-N into N2 with increased NO3-N in the effluent. Proper selection of mixed seed culture at influent NO2-/NH4+ ratio (1:1) and hydraulic retention time (HRT) of 1 day led to early startup of anammox within 70 days. Pseudo steady state removal efficiencies of NH4+ and NO2- were found as 94.3% and 96.4% respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m3d at an HRT of 1 day. Analysis of the data indicated that attached growth system contributes an additional 11% increase in the ammonium removal and results in an average of 29% reduction in sludge washout rate. Mass balance study of nitrogen indicated that 74.1% of total input nitrogen is converted into N2 gas followed by 11.2% being utilized in biomass development. Scanning electron microscope (SEM) observation of the granular sludge clearly showed the presence of cocci and rod shaped microorganisms intermingled on the external surface of the granules. The average size of anammox granules (1.2-1.5 mm) with an average settling velocity of 45.6 m/h indicated a high degree of granulation resulting into formation of well compacted granules in the anammox process.

Keywords: anammox, hybrid reactor, startup, granulation, nitrogen removal, mixed seed culture

Procedia PDF Downloads 185
8884 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure

Procedia PDF Downloads 343
8883 Influence of Nitrogen Fertilization on the Yields and Grain Quality of Winter Wheat under Different Environmental Conditions

Authors: Alicja Sułek, Grażyna Cacak-Pietrzak, Marta Wyzińska, Anna Nieróbca

Abstract:

In 2013/2014 and 2014/2015, a field experiment was conducted in two locations: Osiny and Wielichowo (Poland). The two-factor experiment was based on the method of randomized subblocks, in three replications. The first factor (A) was dose of nitrogen fertilization (two levels). The second factor (B) was nine winter wheat cultivars. It was found that winter wheat cultivars exhibited different reactions to higher nitrogen fertilization depending on the years and localities. Only KWS Dacanto cultivar under all growing conditions showed a significant increase in grain yield after the application of a higher level of nitrogen fertilization. The increase in nitrogen fertilization influenced the increase in gluten proteins content in wheat grain, but these changes were statistically significant only in the first year of the study. The quality of gluten does not depend on nitrogen fertilization. The quality of wheat grain depends on cultivars.

Keywords: fertilization, grain quality, winter wheat, yield

Procedia PDF Downloads 205
8882 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure

Authors: Xiaoling Ren, Guidong Yang

Abstract:

Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.

Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃

Procedia PDF Downloads 171
8881 Evaluation of Calendula officinalis L. Flower Dry Weight, Flower Diameter, and Number of Flower in Plant Variabilities under Effect of Compost and Nitrogen Different Levels in Four Harvest

Authors: Amin Rezazadeh, Parisa Farahpour, Arezoo Rezazadeh, Morteza Sam Deliri

Abstract:

In order to investigate the effects of nitrogen and compost different levels on qualitative and quantitative performance of Calendula officinalis L. herb, an experiment was carried out in the research field of Chalous Azad University in 2011-2012. The experiment was done in factorial form as a randomized complete block design, in three replicates. Treatments consisted of nitrogen and compost. Considered nitrogen levels consisted of N0=0, N1=50, N2=100 kg/ha and compost levels were including C0=0, C1=6, C2=12 ton/ha. Investigated characteristics consisted of flower dry weight, number of flowers in plant, flower diameter. The results showed, nitrogen and compost treatments had statistically significant influence (p ≤ 0.01) on studied characteristics. Flower dry weight, flower diameter and number of flower in plant characteristics has been studied in four harvest; as, the performance of these characteristics had increasing procedure from the first harvest up to the forth harvest; and, in the fourth harvest, it has reached to its` maximum level. As, up to the forth harvest, the maximum flower dry weight, flower diameter and number of flower in plant obtained by C1× N2 (C1=6 ton/ha compost and N2=100 kg/ha nitrogen) treatment.

Keywords: calendula, compost, nitrogen, flavonoid

Procedia PDF Downloads 387
8880 Urea Treatment of Low Dry Matter Oat Silage

Authors: Noor-ul-Ain, Muhammad Tahir Khan, Kashif Khan, Adeela Ajmal, Hamid Mustafa

Abstract:

The objective of this study was to evaluate the preservative and upgrading potential of urea (70g/kg DM) added to high moisture oat silage at laboratory scale trial and urea was hydrolysed 95%. Microbial activity measured by pH and volatile fatty acids (VFA) and lactate production was reduced (p<0.001) by the urea addition. The pH of oat silage (without treated) was measured 5.7 and increased up to 8.00 on average while; volatile fatty acids (VFA) concentration was decreased. Relative proportions of fermentation acids changed after urea addition, increasing the acetate and butyrate and decreasing the propionate and lactate proportions. The addition of urea to oat silages increased (P<0.001) water soluble and ammonium nitrogen of the forage. These nitrogen fractions represented more than 40% of total nitrogen. After urea addition, total nitrogen content of oat silages increased from 21.0 g/kg DM to 28 g/kg DM. Application of urea at a rate of 70 g/kg DM significantly increased (P<0.001) the in situ degradation of neutral-detergent fibre after 48h of rumen incubation (NDF-situ). The NDF-situ was 200 g/kg NDF higher on oat forages ensiled with urea than on oat forages ensiled without urea. Oat silages can be effectively preserved and upgraded by ensiling with 70 g urea/kg dry matter. Further studies are required to evaluate voluntary intake of this forage.

Keywords: oat, silage, urea, pH, forage

Procedia PDF Downloads 470
8879 Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities

Authors: Zhichao Li

Abstract:

This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently.

Keywords: phenol, nitrogen heterocyclic aromatic hydrocarbons, phenol-degrading bacteria, microbial communities, biological treatment technology

Procedia PDF Downloads 209
8878 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.

Keywords: forest soil, mineralization rate, heterotroph, soil respiration rate

Procedia PDF Downloads 336
8877 Nitrification and Denitrification Kinetic Parameters of a Mature Sanitary Landfill Leachate

Authors: Tânia F. C. V. Silva, Eloísa S. S. Vieira, João Pinto da Costa, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

Sanitary landfill leachates are characterized as a complex mixture of diverse organic and inorganic contaminants, which are usually removed by combining different treatment processes. Due to its simplicity, reliability, high cost-effectiveness and high nitrogen content (mostly under the ammonium form) inherent in this type of effluent, the activated sludge biological process is almost always applied in leachate treatment plants (LTPs). The purpose of this work is to assess the effect of the main nitrification and denitrification variables on the nitrogen's biological removal, from mature leachates. The leachate samples were collected after an aerated lagoon, at a LTP nearby Porto, presenting a high amount of dissolved organic carbon (1.0-1.3 g DOC/L) and ammonium nitrogen (1.1-1.7 g NH4+-N/L). The experiments were carried out in a 1-L lab-scale batch reactor, equipped with a pH, temperature and dissolved oxygen (DO) control system, in order to determine the reaction kinetic constants at unchanging conditions. The nitrification reaction rate was evaluated while varying the (i) operating temperature (15, 20, 25 and 30ºC), (ii) DO concentration interval (0.5-1.0, 1.0-2.0 and 2.0-4.0 mg/L) and (iii) solution pH (not controlled, 7.5-8.5 and 6.5-7.5). At the beginning of most assays, it was verified that the ammonium stripping occurred simultaneously to the nitrification, reaching up to 37% removal of total dissolved nitrogen. The denitrification kinetic constants and the methanol consumptions were calculated for different values of (i) volatile suspended solids (VSS) content (25, 50 and 100 mL of centrifuged sludge in 1 L solution), (ii) pH interval (6.5-7.0, 7.5-8.0 and 8.5-9.0) and (iii) temperature (15, 20, 25 and 30ºC), using effluent previously nitrified. The maximum nitrification rate obtained was 38±2 mg NH4+-N/h/g VSS (25ºC, 0.5-1.0 mg O2/L, pH not controlled), consuming 4.4±0.3 mg CaCO3/mg NH4+-N. The highest denitrification rate achieved was 19±1 mg (NO2--N+NO3--N)/h/g VSS (30ºC, 50 mL of sludge and pH between 7.5 and 8.0), with a C/N consumption ratio of 1.1±0.1 mg CH3OH/mg (NO2--N+NO3--N) and an overall alkalinity production of 3.7±0.3 mg CaCO3/mg (NO2--N+NO3--N). The denitrification process showed to be sensitive to all studied parameters, while the nitrification reaction did not suffered significant change when DO content was changed.

Keywords: mature sanitary landfill leachate, nitrogen removal, nitrification and denitrification parameters, lab-scale activated sludge biological reactor

Procedia PDF Downloads 277
8876 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition

Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh

Abstract:

The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.

Keywords: biofuel, gene, lipid, microalgae

Procedia PDF Downloads 307
8875 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage

Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán

Abstract:

High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.

Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance

Procedia PDF Downloads 72
8874 Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate

Authors: R. Begum, M. M. R. Jahangir, M. Jahiruddin, M. R. Islam, M. M. Rahman, M. B. Hossain, P. Hossain

Abstract:

Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission.

Keywords: carbon dioxide emissions, methane emission, nitrogen rate, tillage

Procedia PDF Downloads 116
8873 Numerical Validation of Liquid Nitrogen Phase Change in a Star-Shaped Ambient Vaporizer

Authors: Yusuf Yilmaz, Gamze Gediz Ilis

Abstract:

Gas Nitrogen where has a boiling point of -189.52oC at atmospheric pressure widely used in the industry. Nitrogen that used in the industry should be transported in liquid form to the plant area. Ambient air vaporizer (AAV) generally used for vaporization of cryogenic gases such as liquid nitrogen (LN2), liquid oxygen (LOX), liquid natural gas (LNG), and liquid argon (LAR) etc. AAV is a group of star-shaped fin vaporizer. The design and the effect of the shape of fins of the vaporizer is one of the most important criteria for the performance of the vaporizer. In this study, the performance of AAV working with liquid nitrogen was analyzed numerically in a star-shaped aluminum finned pipe. The numerical analysis is performed in order to investigate the heat capacity of the vaporizer per meter pipe length. By this way, the vaporizer capacity can be predicted for the industrial applications. In order to achieve the validation of the numerical solution, the experimental setup is constructed. The setup includes a liquid nitrogen tank with a pressure of 9 bar. The star-shaped aluminum finned tube vaporizer is connected to the LN2 tank. The inlet and the outlet pressure and temperatures of the LN2 of the vaporizer are measured. The mass flow rate of the LN2 is also measured and collected. The comparison of the numerical solution is performed by these measured data. The ambient conditions of the experiment are given as boundary conditions to the numerical model. The surface tension and contact angle have a significant effect on the boiling of liquid nitrogen. Average heat transfer coefficient including convective and nucleated boiling components should be obtained for liquid nitrogen saturated flow boiling in the finned tube. Fluent CFD module is used to simulate the numerical solution. The turbulent k-ε model is taken to simulate the liquid nitrogen flow. The phase change is simulated by using the evaporation-condensation approach used with user-defined functions (UDF). The comparison of the numerical and experimental results will be shared in this study. Besides, the performance capacity of the star-shaped finned pipe vaporizer will be calculated in this study. Based on this numerical analysis, the performance of the vaporizer per unit length can be predicted for the industrial applications and the suitable pipe length of the vaporizer can be found for the special cases.

Keywords: liquid nitrogen, numerical modeling, two-phase flow, cryogenics

Procedia PDF Downloads 119
8872 Comparison of Nitrogen Dioxide Pollution for Different Commuting Modes in Kaunas

Authors: A. Dėdelė, A. Miškinytė

Abstract:

The assessment of air pollution exposure in different microenvironments is important for better understanding the relationship between health effects caused by air pollution. The recent researches revealed that the level of air pollution in transport microenvironment contributes considerably to the total exposure of air pollution. The aim of the study was to determine air pollution of nitrogen dioxide and to assess the exposure of NO2 dependence on the chosen commuting mode using a global positioning system (GPS). The same travel destination was chosen and 30 rides in three different commuting modes: cycling, walking, and public transport were made. Every different mean of transport is associated with different route. GPS device and travel diary data were used to track all routes of different commuting modes. Air pollution of nitrogen dioxide was determined using the ADMS-Urban dispersion model. The average annual concentration of nitrogen dioxide was modeled for 2011 year in Kaunas city. The geographical information systems were used to visualize the travel routes, to create maps indicating the route of different commuting modes and to combine modelled nitrogen dioxide data. The results showed that there is a significant difference between the selected commuting mode and the exposure of nitrogen dioxide. The concentrations in the microenvironments were 22.4 μg/m3, 21.4 μg/m3, and 25.9 μg/m3 for cycling, walking and public transport respectively. Of all the modes of commuting, the highest average exposure of nitrogen dioxide was found travelling by public transport, while the lowest average concentration of NO2 was determined by walking.

Keywords: nitrogen dioxide, dispersion model, commuting mode, GPS

Procedia PDF Downloads 432
8871 The Agri-Environmental Instruments in Agricultural Policy to Reduce Nitrogen Pollution

Authors: Flavio Gazzani

Abstract:

Nitrogen is an important agricultural input that is critical for the production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts such as: the loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks. It is a challenge to sustain or increase food production and at the same time reduce losses of reactive nitrogen to the environment, but there are many potential benefits associated with improving nitrogen use efficiency. Reducing nutrient losses from agriculture is crucial to the successful implementation of agricultural policy. Traditional regulatory instruments applied to implement environmental policies to reduce environmental impacts from nitrogen fertilizers, despite some successes, failed to address many environmental challenges and imposed high costs on the society to achieve environmental quality objectives. As a result, economic instruments started to be recognized for their flexibility and cost-effectiveness. The objective of the research project is to analyze the potential for increased use of market-based instruments in nitrogen control policy. The report reviews existing knowledge, bringing different studies together to assess the global nitrogen situation and the most relevant environmental management policy that aims to reduce pollution in a sustainable way without affect negatively agriculture production and food price. This analysis provides some guidance on how different market based instruments might be orchestrated in an overall policy framework to the development and assessment of sustainable nitrogen management from the economics, environmental and food security point of view.

Keywords: nitrogen emissions, chemical fertilizers, eutrophication, non-point of source pollution, dairy farm

Procedia PDF Downloads 329
8870 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor

Authors: Junior B. N. Adohinzin, Ling Xu

Abstract:

Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.

Keywords: membrane bioreactor (MBR), moving bed biofilm reactor (MBBR), nutrients removal, simultaneous nitrification and denitrification

Procedia PDF Downloads 347