Search results for: matrix swelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2452

Search results for: matrix swelling

2422 A Review on Aluminium Metal Matric Composites

Authors: V. Singh, S. Singh, S. S. Garewal

Abstract:

Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced engineering materials. Aluminum metal matrix composites (AMMC) refer to the class of light weight high performance material systems. Properties of AMMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. AMMC finds its application in automotive, aerospace, defense, sports and structural areas. This paper presents an overview of AMMC material systems on aspects relating to processing, types and applications with case studies.

Keywords: aluminum metal matrix composites, applications of aluminum metal matrix composites, lighting material processing of aluminum metal matrix composites

Procedia PDF Downloads 421
2421 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho

Abstract:

The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.

Keywords: matrix cooling, rib, heat transfer, gas turbine

Procedia PDF Downloads 431
2420 Fabrication of Chitosan/Polyacrylonitrile Blend and SEMI-IPN Hydrogel with Epichlorohydrin

Authors: Muhammad Omer Aijaz, Sajjad Haider, Fahad S. Al Mubddal, Yousef Al-Zeghayer, Waheed A. Al Masry

Abstract:

The present study is focused on the preparation of chitosan-based blend and Semi-Interpenetrating Polymer Network (SEMI-IPN) with polyacrylonitrile (PAN). Blend Chitosan/Polyacrylonitrile (PAN) hydrogel films were prepared by solution blending and casting technique. Chitosan in the blend was cross-linked with epichlorohydrin (ECH) to prepare SEMI-IPN. The developed Chitosan/PAN blend and SEMI-IPN hydrogels were characterized with SEM, FTIR, TGA, and DSC. The result showed good miscibility between chitosan and PAN, crosslinking of chitosan in the blend, and improved thermal properties for SEMI-IPN. The swelling of the different blended and SEMI-IPN hydrogels samples were examined at room temperature. Blend (C80/P20) sample showed highest swelling (2400%) and fair degree of stability (28%) whereas SEMI-IPN hydrogel exhibited relatively low degree of swelling (244%) and high degree of aqueous stability (85.5%).

Keywords: polymer hydrogels, chitosan, SEMI-IPN, polyacrylonitrile, epichlorohydrin

Procedia PDF Downloads 340
2419 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage

Authors: N. Valderrama, W. Albarracín, N. Algecira

Abstract:

It was studied the effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, ΔE increased whereas water resistance, swelling index, L*, and hue angle decreased.

Keywords: chitosan, food additives, modified films, polymers

Procedia PDF Downloads 342
2418 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 286
2417 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils

Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan

Abstract:

Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.

Keywords: differential free swell index, expansive soils, matric suction, swelling pressure

Procedia PDF Downloads 135
2416 Texture Analysis of Grayscale Co-Occurrence Matrix on Mammographic Indexed Image

Authors: S. Sushma, S. Balasubramanian, K. C. Latha

Abstract:

The mammographic image of breast cancer compressed and synthesized to get co-efficient values which will be converted (5x5) matrix to get ROI image where we get the highest value of effected region and with the same ideology the technique has been extended to differentiate between Calcification and normal cell image using mean value derived from 5x5 matrix values

Keywords: texture analysis, mammographic image, partitioned gray scale co-oocurance matrix, co-efficient

Procedia PDF Downloads 502
2415 Redundancy Component Matrix and Structural Robustness

Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song

Abstract:

We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.

Keywords: Structural Robustness, Structural Reliability, Redundancy Component, Redundancy Matrix

Procedia PDF Downloads 245
2414 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 290
2413 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems

Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta

Abstract:

The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.

Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.

Procedia PDF Downloads 123
2412 Matrix Method Posting

Authors: Varong Pongsai

Abstract:

The objective of this paper is introducing a new method of accounting posting which is called Matrix Method Posting. This method is based on the Matrix operation of pure Mathematics. Although, accounting field is classified as one of the social-science knowledge, many of accounting operations are placed by Mathematics sign and operation. Through the operation applying, it seems to be that the operations of Mathematics should be applied to accounting possibly. So, this paper tries to over-lap Mathematics logic to accounting logic smoothly. According to the context of discovery, deductive approach is employed to prove a simultaneously logical concept of both Mathematics and Accounting. The result proves that the Matrix can be placed to operate accounting perfectly, because Matrix and accounting logic also have a similarity concept which is balancing 2 sides during operations. Moreover, the Matrix posting also has a lot of benefit. It can help financial analyst calculating financial ratios comfortably. Furthermore, the matrix determinant which is a signature operation itself also helps auditors checking out the correction of clients’ recording. If the determinant is not equaled to 0, it will point out that the recording process of clients getting into the problem. Finally, the Matrix should be easily determining a concept of merger and consolidation far beyond the present day concept.

Keywords: matrix method posting, deductive approach, determinant, accounting application

Procedia PDF Downloads 341
2411 Preparation and Characterisation of Electrospun Extracted β-Chitosan/Poly(Vinyl Alcohol) Blend Nanofibers for Tissue Engineering

Authors: E. Roshan Ara Begum, K. Bhavani, K. Subachitra, C. Kirthika, R. Shenbagarathai

Abstract:

In recent years, there has been a growing concern for the production of chitosan blend nanofibrous scaffold for its favorable physicochemical properties which mimic the native extracellular matrix (ECM) both morphologically and chemically. Therefore, this study focused on production of β-chitosan(β-Cts) and Poly(vinyl alcohol)(PVA) blend nanofibrous scaffold by electrospinning. β-Cts was extracted from the squid pen waste of locally available squid variety Loligo duvauceli (Indian Squid). To the best of our knowledge, there are no reports on nanofibers preparation from the extracted β-Cts. Both the β-Cts and PVA polymers were mixed in two different proportions (30:70 and 40:60 respectively. The electrospun nanofibrous scaffolds were characterized by SEM, swelling property, in vitro enzymatic degradation, and hemo, biocompatibility properties. β-Cts/PVA nanofibers scaffolds had an average fiber diameter of 120 to 550nm.Among the two different β-Cts/PVA blends nanofibers the β-Cts/PVA (40:60) blend fibers demonstrated favourable tissue engineering properties. The β-Cts/PVA (40:60) blend nanofibers exhibited a swelling ratio of 36 ± 2.5% with mass loss percentage of 20 ± 2.71% after 4 weeks of degradation. It has exhibited good hemocompatible properties. HEK-293(Human Embryonic Kidney) cells lines were able to adhere and proliferate well in the β-Cts/PVA blends nanofibers. All these results indicated that electrospun β-Cts/PVA blends nanofibers are a suitable scaffold to be used for tissue engineering purposes.

Keywords: β-chitosan, electrospinning, nanofibers, poly(vinyl alcohol) (PVA)

Procedia PDF Downloads 212
2410 Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames

Authors: Alfredo Reyes-Salazar, Mario D. Llanes-Tizoc, Eden Bojorquez, Federico Valenzuela-Beltran, Juan Bojorquez, Jose R. Gaxiola-Camacho, Achintya Haldar

Abstract:

Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.

Keywords: moment-resisting steel frames, consistent and concentrated mass matrices, non-linear seismic response, Rayleigh damping

Procedia PDF Downloads 117
2409 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 91
2408 Corrosion Characterization of Al6061, Quartz Metal Matrix Composites in Alkali Medium

Authors: Radha H. R., Krupakara P. V.

Abstract:

Metal matrix composites are attracting today's manufacturers of many automobile parts so that they lost longer and their properties can be tailored according to the requirement. In this paper an attempt has been made to study the corrosion characteristics of Aluminium 6061 / quartz metal matrix composites in alkali medium like sodium hydroxide solutions. Metal matrix composites are heterogeneous mixtures of a matrix and reinforcement. In this work the matrix selected is Aluminium 6061 alloy which is commercially available and the reinforcement selected is quartz particulates of 50-80 micron size which is available in plenty in and around Bangalore district, India. Composites containing Aluminium 6061 with 2, 4 and 6 weight percent of quartz are manufactured by liquid melt metallurgy technique using vortex method. Corrosion tests like static weight loss and open circuit potential tests are conducted in different concentrated solutions of sodium hydroxide. To compare the results the matrix Aluminium 6061 is also casted in the same way. Specimens for the test are prepared according to ASTM standards. In all the tests the metal matrix composites showed better corrosion resistance than matrix alloy.

Keywords: aluminium 6061, corrosion, quartz, vortex

Procedia PDF Downloads 383
2407 Membership Surface and Arithmetic Operations of Imprecise Matrix

Authors: Dhruba Das

Abstract:

In this paper, a method has been developed to construct the membership surfaces of row and column vectors and arithmetic operations of imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. The membership surface of imprecise vector has been already shown based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. In this paper, the author has shown row and column membership surfaces and arithmetic operations of imprecise matrix and demonstrated with the help of numerical example.

Keywords: imprecise number, imprecise vector, membership surface, imprecise matrix

Procedia PDF Downloads 366
2406 Chemical Amelioration of Expansive Soils

Authors: B. R. Phanikumar, Sana Suri

Abstract:

Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour.

Keywords: expansive soils, swelling, shrinkage, amelioration, lime, calcium chloride

Procedia PDF Downloads 285
2405 Durability of Wood Shavel Composites with Environmental Friendly Based Binder

Authors: Jul Endawati

Abstract:

The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.

Keywords: durability, fly ash, natural fibre, silica fume

Procedia PDF Downloads 241
2404 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas

Authors: Mouhamadou Dosso

Abstract:

This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.

Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue

Procedia PDF Downloads 65
2403 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties

Authors: Suzanne Giasson, Alberto Guerron

Abstract:

Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.

Keywords: responsive materials, polymers, surfaces, cell culture

Procedia PDF Downloads 50
2402 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 509
2401 Effects of Hydraulic Loading Rates and Porous Matrix in Constructed Wetlands for Wastewater Treatment

Authors: Li-Jun Ren, Wei Pan, Li-Li Xu, Shu-Qing An

Abstract:

This study evaluated whether different matrix composition volume ratio can improve water quality in the experiment. The mechanism and adsorption capability of wetland matrixes (oyster shell, coarse slag, and volcanic rock) and their different volume ratio in group configuration during pollutants removal processes were tested. When conditions unchanged, the residence time affects the reaction effect. The average removal efficiencies of four kinds of matrix volume ratio on the TN were 62.76%, 61.54%, 64.13%, and 55.89%, respectively.

Keywords: hydraulic residence time, matrix composition, removal efficiency, volume ratio

Procedia PDF Downloads 299
2400 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology

Authors: Ahmed Abdel Sattar Khalil, Hazem Omar

Abstract:

Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.

Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy

Procedia PDF Downloads 56
2399 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 62
2398 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 635
2397 Surprising Behaviour of Kaolinitic Soils under Alkaline Environment

Authors: P. Hari Prasad Reddy, Shimna Paulose, V. Sai Kumar, C. H. Rama Vara Prasad

Abstract:

Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies.

Keywords: alkali, kaolinite, swell potential, XRD, SEM

Procedia PDF Downloads 465
2396 Hydrothermal Synthesis of ZIF-7 Crystals and Their Composite ZIF-7/CS Membranes for Water/Ethanol Separation

Authors: Kai-Sheng Ji, Yi-Feng Lin

Abstract:

The pervaporation process for solvent and water separation has attracted research attention due to its lower energy consumption compared with conventional distillation processes. The membranes used for the pervaporation approach should exhibit high flux and separation factors. In this study, the ZIF-7 crystal particles were successfully incorporated into chitosan (CS) membranes to form ZIF-7/CS mixed-matrix membranes. The as-prepared ZIF-7/CS mixed-matrix membranes were used to separate mixtures of water/ethanol at 25℃ in the pervaporation process. The mixed-matrix membranes with different ZIF-7 wt% incorporation showed better separation efficiency than the pristine CS membranes because of the smaller pore size of the mixed-matrix membranes. The separation factor and the flux of the ZIF-7/CS membranes clearly exceed the upper limit of the previously reported CS-based and mixed-matrix membranes.

Keywords: pervaporation, chitosan, ZIF-7, memberane separation

Procedia PDF Downloads 402
2395 Dye Retention by a Photochemicaly Crosslinked Poly(2-Hydroxy-Ethyl-Meth-Acrylic) Network in Water

Authors: Yasmina Houda Bendahma, Tewfik Bouchaour, Meriem Merad, Ulrich Maschke

Abstract:

The purpose of this work is to study retention of dye dissolved in distilled water, by an hydrophilic acrylic polymer network. The polymer network considered is Poly (2-hydroxyethyl methacrylate) (PHEMA): it is prepared by photo-polymerization under UV irradiation in the presence of a monomer (HEMA), initiator and an agent cross-linker. PHEMA polymer network obtained can be used in the retention of dye molecules present in the wastewater. The results obtained are interesting in the study of the kinetics of swelling and de-swelling of cross linked polymer networks PHEMA in colored aqueous solutions. The dyes used for retention by the PHEMA networks are eosin Y and Malachite Green, dissolved in distilled water. Theoretical conformational study by a simplified molecular model of system cross linked PHEMA / dye (eosin Y and Malachite Green), is used to simulate the retention phenomenon (or Docking) dye molecules in cavities in nano-domains included in the PHEMA polymer network.

Keywords: dye retention, molecular modeling, photochemically crosslinked polymer network, swelling deswelling, PHEMA, HEMA

Procedia PDF Downloads 341
2394 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 324
2393 Corrosion Characterization of ZA-27 Metal Matrix Composites

Authors: H. V. Jayaprakash, P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy by open circuit potential test. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are casted. Matrix was also casted in the same way for comparison. Specimen are fabricated according to ASTM standards. The corrodents used for the tests were 0.025, 0.05 and 0.1 molar sodium hydroxide solutions. They are subjected to Open Circuit Potential studies and weight loss corrosion tests. Corrosion rate was found to be decreased with increase in exposure time in both experiments. Effect of exposure time and presence of increased percentage of reinforcement red mud is discussed in detail.

Keywords: composites, vortex, particulates, red mud

Procedia PDF Downloads 411