Search results for: water resources sustainable usage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17561

Search results for: water resources sustainable usage

11651 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems

Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour

Abstract:

The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.

Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output

Procedia PDF Downloads 324
11650 Health Advocacy in Medical School: An American Survey on Attitudes and Engagement in Clerkships

Authors: Rachel S. Chang, Samuel P. Massion, Alan Z. Grusky, Heather A. Ridinger

Abstract:

Introduction Health advocacy is defined as activities that improve access to care, utilize resources, address health disparities, and influence health policy. Advocacy is increasingly being recognized as a critical component of a physician’s role, as understanding social determinants of health and improving patient care are important aspects within the American Medical Association’s Health Systems Science framework. However, despite this growing prominence, educational interventions that address advocacy topics are limited and variable across medical school curricula. Furthermore, few recent studies have evaluated attitudes toward health advocacy among physicians-in-training in the United States. This study examines medical student attitudes towards health advocacy, along with perceived knowledge, ability, and current level of engagement with health advocacy during their clerkships. Methods This study employed a cross-sectional survey design using a single anonymous, self-report questionnaire to all second-year medical students at Vanderbilt University School of Medicine (n=96) in December 2020 during clerkship rotations. The survey had 27 items with 5-point Likert scale (15), multiple choice (11), and free response questions (1). Descriptive statistics and thematic analysis were utilized to analyze responses. The study was approved by the Vanderbilt University Institutional Review Board. Results There was an 88% response rate among second-year clerkship medical students. A majority (83%) agreed that formal training in health advocacy should be a mandatory part of the medical student curriculum Likewise, 83% of respondents felt that acting as a health advocate or patients should be part of their role as a clerkship student. However, a minority (25%) felt adequately prepared. While 72% of respondents felt able to identify a psychosocial need, 18% felt confident navigating the healthcare system and only 9% felt able to connect a patient to a psychosocial resource to fill that gap. 44% of respondents regularly contributed to conversations with their medical teams when discussing patients’ social needs, such as housing insecurity, financial insecurity, or legal needs. On average, respondents reported successfully connecting patients to psychosocial resources 1-2 times per 8-week clerkship block. Barriers to participating in health advocacy included perceived time constraints, lack of awareness of resources, lower emphasis among medical teams, and scarce involvement with social work teams. Conclusions In this single-institutional study, second-year medical students on clerkships recognize the importance of advocating for patients and support advocacy training within their medical school curriculum. However, their perceived lack of ability to navigate the healthcare system and connect patients to psychosocial resources, result in students feeling unprepared to advocate as effectively as they hoped during their clerkship rotations. Our results support the ongoing need to equip medical students with training and resources necessary for them to effectively act as advocates for patients.

Keywords: clerkships, medical students, patient advocacy, social medicine

Procedia PDF Downloads 131
11649 A Critical Discourse Analysis of ‘Youth Radicalisation’: A Case of the Daily Nation Kenya Online Newspaper

Authors: Miraji H. Mohamed

Abstract:

The purpose of this study is to critique ‘radicalisation’ and more particularly ‘youth radicalisation’ by exploring its usage in online newspapers. ‘Radicalisation’ and ‘extremism’ have become the most common terms in terrorism studies since the 9/11 attacks. Regardless of the geographic location, when the word terrorism is used the terms ‘radicalisation’ and ‘extremism’ always follow to attempt to explore the journey of the perpetrators towards violence. These terms have come to represent a discourse of dominantly pejorative traits often used to describe spaces, groups, and processes identified as problematic. Even though ambiguously defined they feature widely in government documents, political statements, news articles, academic research, social media platforms, religious gatherings, and public discussions. Notably, ‘radicalisation’ and ‘extremism’ have been closely conflated with the term youth to form ‘youth radicalisation’ to refer to a discourse of ‘youth at risk’. The three terms largely continue to be used unquestioningly and interchangeably hence the reason why they are placed in single quotation marks to deliberately question their conventional usage. Albeit this comes timely in the Kenyan context where there has been a proliferation of academic and expert research on ‘youth radicalisation’ (used as a neutral label) without considering the political, cultural and socio-historical contexts that inform this label. This study seeks to draw these nuances by employing a genealogical approach that historicises and deconstructs ‘youth radicalisation’; and by applying a Discourse-Historical Approach (DHA) of Critical Discourse Analysis to analyse Kenyan online newspaper - The Daily Nation between 2015 and 2018. By applying the concept of representation to analyse written texts, the study reveals that the use of ‘youth radicalisation’ as a discursive strategy disproportionately affects young people especially those from cultural/ethnic/religious minority groups. Also, the ambiguous use of ‘radicalisation’ and ‘youth radicalisation’ by the media reinforces the discourse of ‘youth at risk’ which has become the major framework underpinning Countering Violent Extremism (CVE) interventions. Similarly, the findings indicate that the uncritical use of ‘youth radicalisation’ has been used to serve political interests; and has become an instrument of policing young people, thus contributing to their cultural shaping. From this, it is evident that the media could thwart rather than assist CVE efforts. By exposing the political nature of the three terms through evidence-based research, this study offers recommendations on how critical reflective reporting by the media could help to make CVE more nuanced.

Keywords: discourse, extremism, radicalisation, terrorism, youth

Procedia PDF Downloads 133
11648 Teaching and Learning with Picturebooks: Developing Multimodal Literacy with a Community of Primary School Teachers in China

Authors: Fuling Deng

Abstract:

Today’s children are frequently exposed to multimodal texts that adopt diverse modes to communicate myriad meanings within different cultural contexts. To respond to the new textual landscape, scholars have considered new literacy theories which propose picturebooks as important educational resources. Picturebooks are multimodal, with their meaning conveyed through the synchronisation of multiple modes, including linguistic, visual, spatial, and gestural acting as access to multimodal literacy. Picturebooks have been popular reading materials in primary educational settings in China. However, often viewed as “easy” texts directed at the youngest readers, picturebooks remain on the margins of Chinese upper primary classrooms, where they are predominantly used for linguistic tasks, with little value placed on their multimodal affordances. Practices with picturebooks in the upper grades in Chinese primary schools also encounter many challenges associated with the curation of texts for use, designing curriculum, and assessment. To respond to these issues, a qualitative study was conducted with a community of Chinese primary teachers using multi-methods such as interviews, focus groups, and documents. The findings showed the impact of the teachers’ increased awareness of picturebooks' multimodal affordances on their pedagogical decisions in using picturebooks as educational resources in upper primary classrooms.

Keywords: picturebook education, multimodal literacy, teachers' response to contemporary picturebooks, community of practice

Procedia PDF Downloads 139
11647 Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR

Authors: E. M. Condori-Peñaloza, S. S. Costa

Abstract:

Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated.

Keywords: flavonoids, HPLC, NMR, phenolic compounds

Procedia PDF Downloads 321
11646 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 105
11645 Application of Unstructured Mesh Modeling in Evolving SGE of an Airport at the Confluence of Multiple Rivers in a Macro Tidal Region

Authors: A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Among the various developing countries in the world like China, Malaysia, Korea etc., India is also developing its infrastructures in the form of Road/Rail/Airports and Waterborne facilities at an exponential rate. Mumbai, the financial epicenter of India is overcrowded and to relieve the pressure of congestion, Navi Mumbai suburb is being developed on the east bank of Thane creek near Mumbai. The government due to limited space at existing Mumbai Airports (domestic and international) to cater for the future demand of airborne traffic, proposes to build a new international airport near Panvel at Navi Mumbai. Considering the precedence of extreme rainfall on 26th July 2005 and nearby townships being in a low-lying area, wherein new airport is proposed, it is inevitable to study this complex confluence area from a hydrodynamic consideration under both tidal and extreme events (predicted discharge hydrographs), to avoid inundation of the surrounding due to the proposed airport reclamation (1160 hectares) and to determine the safe grade elevation (SGE). The model studies conducted using the application of unstructured mesh to simulate the Panvel estuarine area (93 km2), calibration, validation of a model for hydraulic field measurements and determine the maxima water levels around the airport for various extreme hydrodynamic events, namely the simultaneous occurrence of highest tide from the Arabian Sea and peak flood discharges (Probable Maximum Precipitation and 26th July 2005) from five rivers, the Gadhi, Kalundri, Taloja, Kasadi and Ulwe, meeting at the proposed airport area revealed that: (a) The Ulwe River flowing beneath the proposed airport needs to be diverted. The 120m wide proposed Ulwe diversion channel having a wider base width of 200 m at SH-54 Bridge on the Ulwe River along with the removal of the existing bund in Moha Creek is inevitable to keep the SGE of the airport to a minimum. (b) The clear waterway of 80 m at SH-54 Bridge (Ulwe River) and 120 m at Amra Marg Bridge near Moha Creek is also essential for the Ulwe diversion and (c) The river bank protection works on the right bank of Gadhi River between the NH-4B and SH-54 bridges as well as upstream of the Ulwe River diversion channel are essential to avoid inundation of low lying areas. The maxima water levels predicted around the airport keeps SGE to a minimum of 11m with respect to Chart datum of Ulwe Bundar and thus development is not only technologically-economically feasible but also sustainable. The unstructured mesh modeling is a promising tool to simulate complex extreme hydrodynamic events and provides a reliable solution to evolve optimal SGE of airport.

Keywords: airport, hydrodynamics, safe grade elevation, tides

Procedia PDF Downloads 262
11644 Gendered Vulnerabilities in the Face of Climate Change: A Socioeconomic Study of Rural Women in Barmer District, Rajasthan, India: A Research Paper in the Discipline of Sociology

Authors: Kushagra Garg

Abstract:

This study delves into the profound socioeconomic challenges posed by climate change for rural women in Barmer District, Rajasthan. Drawing insights from field research involving 100 women, it paints a vivid picture of how the changing climate deepens existing gender disparities. Employing a mixed-methods approach, the research captures the lived experiences of women whose daily lives are inextricably tied to agriculture, water collection, and household responsibilities. As rising temperatures and erratic rainfall disrupt traditional livelihoods, women bear the brunt of dwindling resources, deteriorating health conditions, and intensified domestic burdens, often with little support or recognition. Beyond economic hardships, the findings reveal a ripple effect on sociocultural dynamics, where entrenched gender roles further limit women’s ability to adapt to climate stressors. This paper underscores the urgent need for policies that not only acknowledge these unique vulnerabilities but actively involve women in crafting solutions. It advocates for gender-responsive, community-driven adaptation strategies that empower women to build resilience within their communities. By centering the voices of those most affected, this study highlights the critical intersection of climate action and gender equity, urging a shift from reactive measures to proactive, inclusive solutions tailored to the realities of rural women.

Keywords: climate change, gender inequality, rural women, socioeconomic impacts, resilience strategies, community adaptation

Procedia PDF Downloads 9
11643 Translingual Discrimination and Migrants

Authors: Sender Dovchin

Abstract:

Moving beyond two main frameworks of interlingual and intralingual discrimination, this paper will address the understanding of translingual discrimination. This concept refers to discrimination based on how one uses certain languages, linguistic and communicative repertoires, which are (il)legitimised by the interactants. Translingual discrimination contributes intensity to transnational migrations processes, where migrants with transitional backgrounds seem to illustrate two main characteristics of marginalizations – “name discrimination” and “accentism”. The lifelong accumulation of these characteristics of translingual discrimination may cause negative emotionality, such as translingual inferiority complexes, to its victims. As a result, these transnational migrants seem to adopt varied coping strategies such as CV-whitening and accent purifications while probing for translingual safe spaces. The presentation concludes with the socio-cultural and pedagogical implications of translingual discrimination in relation to the language usage of transnational migrants.

Keywords: accentism, discrimination, migrants, translingualism

Procedia PDF Downloads 80
11642 Community Level Vulnerabilities to Climate Change in Cox’s Bazar-Teknaf Coastal Area of Bangladesh

Authors: Pronob Kumar Mozumder, M. Abdur Rob Mollah

Abstract:

This research was conducted in two coastal locations of Bangladesh from February, 2013 to January, 2014.The objective of this research was to assess the potential vulnerabilities of climate change on local ecosystem and people and to identify and recommend local level adaptation strategies to climate change. Focus group discussions, participatory rural appraisal, interviewing local elderly people were conducted. Perceptions about climate change indicate that local people are experiencing impacts of climate change. According to local people, temperature, cyclone, rain, water-logging, siltation, salinity, erosion, and flash flood are increasing. Vulnerability assessment revealed that local people are variously affected by abnormal climate related disasters. This is jeopardizing their livelihoods, risking their lives, health, and their assets. This prevailing climatic situation in the area is also impacting their environmental conditions, biodiversity and natural resources, and their economic activities. The existing adaptation includes using traditional boat and mobile phone while fishing and making house on high land and lower height. Proposed adaptation for fishing boat are using more than 60 feet length with good timber, putting at least 3 longitudinal bar along upper side, using enough vertical side bars. The homestead measures include use of cross bracing of wall frame, roof tying with extra-post by ropes and plantation of timber tree against wind.

Keywords: community level vulnerabilities, climate change, Cox’s Bazar-Teknaf Coastal Area, Bangladesh

Procedia PDF Downloads 541
11641 Effect of Thermal Energy on Inorganic Coagulation for the Treatment of Industrial Wastewater

Authors: Abhishek Singh, Rajlakshmi Barman, Tanmay Shah

Abstract:

Coagulation is considered to be one of the predominant water treatment processes which improve the cost effectiveness of wastewater. The sole purpose of this experiment on thermal coagulation is to increase the efficiency and the rate of reaction. The process uses renewable sources of energy which comprises of improved and minimized time method in order to eradicate the water scarcity of the regions which are on the brink of depletion. This paper includes the various effects of temperature on the standard coagulation treatment of wastewater and their effect on water quality. In addition, the coagulation is done with the mix of bottom/fly-ash that will act as an adsorbent and removes most of the minor and macro particles by means of adsorption which not only helps to reduce the environmental burden of fly ash but also enhance economic benefit. Also, the method of sand filtration is amalgamated in the process. The sand filter is an environmentally-friendly wastewater treatment method, which is relatively simple and inexpensive. The existing parameters were satisfied with the experimental results obtained in this study and were found satisfactory. The initial turbidity of the wastewater is 162 NTU. The initial temperature of the wastewater is 27 C. The temperature variation of the entire process is 50 C-80 C. The concentration of alum in wastewater is 60mg/L-320mg/L. The turbidity range is 8.31-28.1 NTU after treatment. pH variation is 7.73-8.29. The effective time taken is 10 minutes for thermal mixing and sedimentation. The results indicate that the presence of thermal energy affects the coagulation treatment process. The influence of thermal energy on turbidity is assessed along with renewable energy sources and increase of the rate of reaction of the treatment process.

Keywords: adsorbent, sand filter, temperature, thermal coagulation

Procedia PDF Downloads 325
11640 Sustainable Improvement in Soil Properties and Maize Performance by Organic Fertilizers at Different Levels

Authors: Shahid Iqbal, Haroon Z. Khan, Muhammad Arif

Abstract:

A sustainable agricultural system involving the improvement in soil properties and crop performance cannot be developed without organic fertilizer use. The effects of poultry manure compost (PMC) and pressmud compost (PrMC) at different levels on improving the soil properties and maize performance has not been yet described by any study comprehensively. Thus, field experiments (2011 and 2012) were conducted at Agronomy Research Area, University of Agriculture Faisalabad (31°26'5" N and 73°4'6" E) in sandy loam soil to determine the improvement in soil properties and maize performance due to application of PMC and PrMC each at five different levels (2, 4, 6, 8 and 10 t ha-1). A control (unamended) treatment was also included for comparison. The results indicated that performance of PMC levels was superior to PrMC levels. Increasing both composts levels improved soil properties, maize growth, and stover yield. Results showed that during both years’ highest rates of PMC i.e. 10 and 8 t ha-1 improved the soil properties: ECe, pH, inorganic N, OM, and WHC higher than other treatments. While, 10 and 8 t PMC ha-1 also significantly increased leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR), and stover yield. Similarly, 10 and 8 t PMC ha-1 also improved the grain protein content, but contrarily, grain oil was lowest for 10 and 8 t ha-1 PMC during both years. Moreover, in both years highest gross and net income, and benefit cost ratio was also achieved by 10 and 8 t ha-1 PMC. It is concluded that PMC at rate of 10 and 8 t ha-1 sustainably improved soil properties and maize performance.

Keywords: compost, soil, maize, growth, yield

Procedia PDF Downloads 368
11639 Seawater Changes' Estimation at Tidal Flat in Korean Peninsula Using Drone Stereo Images

Authors: Hyoseong Lee, Duk-jin Kim, Jaehong Oh, Jungil Shin

Abstract:

Tidal flat in Korean peninsula is one of the largest biodiversity tidal flats in the world. Therefore, digital elevation models (DEM) is continuously demanded to monitor of the tidal flat. In this study, DEM of tidal flat, according to different times, was produced by means of the Drone and commercial software in order to measure seawater change during high tide at water-channel in tidal flat. To correct the produced DEMs of the tidal flat where is inaccessible to collect control points, the DEM matching method was applied by using the reference DEM instead of the survey. After the ortho-image was made from the corrected DEM, the land cover classified image was produced. The changes of seawater amount according to the times were analyzed by using the classified images and DEMs. As a result, it was confirmed that the amount of water rapidly increased as the time passed during high tide.

Keywords: tidal flat, drone, DEM, seawater change

Procedia PDF Downloads 205
11638 Evaluation of the Effects of Some Medicinal Plants Extracts on Seed

Authors: Areej Ali Baeshen, Hanaa Kamal Galal, Batoul Mohamed Abdullatif

Abstract:

In the present study, the allelopathic effects of Eruca sativa, Mentha peprinta, and Coriandrum sativum aqueous extracts, prepared by 25 gm and 50 gm of fresh leaves dissolved in 100 ml of double distilled water in addition to the crude extract (100%). The final concentrations were 100 %, 50%, 25% and 0% as control. The extracts were tested for their allelopathic effects on seed germination and other growth parameters of Phaseolous vulgaris. Laboratory experiments were conducted in sterilizes Petri dishes with 5 and 10 day time interval for seed germination and 24 h, 48 h and 72 h for radicle length on an average of 25°C. The effects of different concentrations of aqueous extract were compared to distilled water (0%). 25% and 50% aqueous extracts of Eruca sativa and Coriandrum sativum caused a pronounced inhibitory effect on seed germination and the tested growth parameters of the receptor plant. The inhibitory effect was proportional to the concentration of the extract. Mentha peprinta extracts, on the other hand, caused an increase in germination percentage and other growth parameters in Phaseolous vulgaris. Hence, it could be concluded that the aqueous extracts of Eruca sativa and Coriandrum sativum might contain water-soluble allelochemicals, which could inhibit the seed germination and reduce radicle length of Phaseolous vulgaris. Mentha peprinta has beneficial allelopathic effects on the receptor plant.

Keywords: Phaseolus vulgaris, Eruca sativa, Mentha peperinta, Coriandrum sativum, medicinal plants, seed germination

Procedia PDF Downloads 409
11637 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 134
11636 Composite Panels from Under-Utilized Wood and Agricultural Fiber Resources

Authors: Salim Hiziroglu

Abstract:

Rice straw, jute, coconut fiber, oil palm, bagasse and bamboo are some of agricultural resources that can be used to produce different types of value-added composite panels including particleboard and medium density fiberboard (MDF). Invasive species such as Eastern red cedar in South Western states in the USA would also be considered as viable raw material to manufacture above products. The main objective of this study was to investigate both physical and mechanical properties of both structural and non-structural panels manufactured from underutilized and agricultural species. Eastern red cedar, bamboo and rice straw were used to manufacture experimental panels. Properties of such samples including bending, internal bond strength, thickness swelling, density profiles and surface roughness were evaluated. Panels made 100% bamboo had the best properties among the other samples. Having rice straw in particleboard and medium density fiberboard panels reduced overall properties of the samples. Manufacturing interior sandwich type of panels having fibers on the face layers while particle of the same type of materials in the core improved their surface quality. Based on the findings of this work such species could have potential to be used as raw material to manufacture value-added panels with accepted properties.

Keywords: composite panels, wood and non-wood fibers, mechanical properties, bamboo

Procedia PDF Downloads 435
11635 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 264
11634 Photovoltaic Water Pumping System Application

Authors: Sarah Abdourraziq

Abstract:

Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.

Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system

Procedia PDF Downloads 400
11633 The Increasing of Perception of Consumers’ Awareness about Sustainability Brands during Pandemic: A Multi Mediation Model

Authors: Silvia Platania, Martina Morando, Giuseppe Santisi

Abstract:

Introduction: In the last thirty years, there is constant talk of sustainable consumption and a "transition" of consumer lifestyles towards greater awareness of consumer choices (United Nation, 1992). The 2019 coronavirus (COVID-19) epidemic that has hit the world population since 2020 has had significant consequences in all areas of people's lives; individuals have been forced to change their behaviors, to redefine their owngoals, priorities, practices, and lifestyles, to rebuild themselves in the new situation dictated by the pandemic. Method(Participants and procedure ): The data were collected through an online survey; moreover, we used convenience sampling from the general population. The participants were 669 Italians consumers (Female= 514, 76.8%; Male=155, 23.2%) that choice sustainability brands, aged between 18 and 65 years (Mₐ𝓰ₑ = 35.45; Standard Deviation, SD = 9.51).(Measure ): The following measures were used: The Muncy–Vitell Consumer Ethics Scale; Attitude Toward Business Scale; Perceived Consumer Effectiveness Scale; Consumers Perception on Sustainable Brand Attitudes. Results: Preliminary analyses were conducted to test our model. Pearson's bivariate correlation between variables shows that all variables of our model correlate significantly and positively, PCE with CPSBA (r = .56, p <.001). Furthermore, a CFA, according to Harman's single-factor test, was used to diagnose the extent to which common-method variance was a problem. A comparison between the hypothesised model and a model with one factor (with all items loading on a unique factor) revealed that the former provided a better fit for the data in all the CFA fit measures [χ² [6, n = 669] = 7.228, p = 0.024, χ² / df = 1.20, RMSEA = 0.07 (CI = 0.051-0.067), CFI = 0.95, GFI = 0.95, SRMR = 0.04, AIC = 66.501; BIC = 132,150). Next, amulti mediation was conducted to test our hypotheses. The results show that there is a direct effect of PCE on ethical consumption behavior (β = .38) and on ATB (β = .23); furthermore, there is a direct effect on the CPSBA outcome (β = .34). In addition, there is a mediating effect by ATB (C.I. =. 022-.119, 95% interval confidence) and by CES (C.I. =. 136-.328, 95% interval confidence). Conclusion: The spread of the COVID-19 pandemic has affected consumer consumption styles and has led to an increase in online shopping and purchases of sustainable products. Several theoretical and practical considerations emerge from the results of the study.

Keywords: decision making, sustainability, pandemic, multimediation model

Procedia PDF Downloads 112
11632 Form of Social Quality Moving Process of Suburb Communities in a Changing World

Authors: Supannee Chaiumporn

Abstract:

This article is to introduce the meaning and form of social quality moving process as indicated by members of two suburb communities with different social and cultural contexts. The form of social quality moving process is very significant for the community and social development, because it will make the people living together with sustainable happiness. This is a qualitative study involving 30 key-informants from two suburb communities. Data were collected though key-informant interviews, and analyzed using logical content description and descriptive statistics. This research found that on the social quality component, the people in both communities stressed the procedure for social quality-making. This includes the generousness, sharing and assisting among people in the communities. These practices helped making people to live together with sustainable happiness. Living as a family or appear to be a family is the major social characteristic of these two communities. This research also found that form of social quality’s moving process of both communities stress relation of human and nature; “nature overpower humans” paradigm and influence of religious doctrine that emphasizes relations among humans. Both criteria make the form of social’s moving process simple, adaptive to nature and caring for opinion sharing and understanding among each other before action. This form of social quality’s moving process is composed of 4 steps; (1) awareness building, (2) motivation to change, (3) participation from every party concerned (4) self-reliance.

Keywords: social quality, form of social quality moving process, happiness, different social and cultural context

Procedia PDF Downloads 388
11631 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.

Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan

Procedia PDF Downloads 411
11630 Effect of Non-Legume Primary Ecological Successor on Nitrogen Content of Soil

Authors: Vikas Baliram Kalyankar

Abstract:

Study of ecology is important as it plays role in development of environment engineering. With the advent of technologies the study of ecosystem structure and changes in it are remaining unnoticed. The ecological succession is the sequential replacement of plant species following changes in the environment. The present study depicts the primary ecological succession in an area leveled up to the height of five feet with no signs of plant life on it. The five quadrates of 1 meter square size were observed during the study period of six months. Rain water being the only source of water in the area increased its ecological importance. The primary successor was non- leguminous plant Balonites roxburgii during the peak drought periods in the region of the summer 2013-14. The increased nitrogen content of soil after the plant implied its role in atmospheric nitrogen fixation.

Keywords: succession, Balonites roxburgii, non-leguminous plant, ecology

Procedia PDF Downloads 492
11629 Sintered Phosphate Cement for HLW Encapsulation

Authors: S. M. M. Nelwamondo, W. C. M. H. Meyer, H. Krieg

Abstract:

The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form.

Keywords: chemically bonded phosphate cements, HLW encapsulation, thermal stability, radiation stability

Procedia PDF Downloads 641
11628 Harmful Algal Blooms in Omani and Arabian Sea and Their Effect on Marine Environment

Authors: Hamed Mohammed Al Gheilani

Abstract:

Red tide, one of the harmful algal blooms (HABs) is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September), recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March). HABs may have contributed to hypoxia and/or other negative ecological impacts. The effects of HABs on desalination plan were increased in last three years, by blooms of Cochlodinium, noctiluca species, and blooms of jellyfish. Most of these blooms were affected Al Batinah and Muscat coast. These effects include millions of Omani Rials and several shutdowns of desalination plans during these years.

Keywords: red tide, environment, hypoxia, noctiluca

Procedia PDF Downloads 435
11627 Studying the Beginnings of Strategic Behavior

Authors: Taher Abofol, Yaakov Kareev, Judith Avrahami, Peter M. Todd

Abstract:

Are children sensitive to their relative strength in competitions against others? Performance on tasks that require cooperation or coordination (e.g. the Ultimatum Game) indicates that early precursors of adult-like notions of fairness and reciprocity, as well as altruistic behavior, are evident at an early age. However, not much is known regarding developmental changes in interactive decision-making, especially in competitive interactions. Thus, it is important to study the developmental aspects of strategic behavior in these situations. The present research focused on cognitive-developmental changes in a competitive interaction. Specifically, it aimed at revealing how children engage in strategic interactions that involve the allocation of limited resources over a number of fields of competition, by manipulating relative strength. Relative strength refers to situations in which player strength changes midway through the game: the stronger player becomes the weaker one, while the weaker player becomes the stronger one. An experiment was conducted to find out if the behavior of children of different age groups differs in the following three aspects: 1. Perception of relative strength. 2. Ability to learn while gaining experience. 3. Ability to adapt to change in relative strength. The task was composed of a resource allocation game. After the players allocated their resources (privately and simultaneously), a competition field was randomly chosen for each player. The player who allocated more resources to the field chosen was declared the winner of that round. The resources available to the two competitors were unequal (or equal, for control). The theoretical solution for this game is that the weaker player should give up on a certain number of fields, depending on the stronger opponent’s relative strength, in order to be able to compete with the opponent on equal footing in the remaining fields. Participants were of three age groups, first-graders (N = 36, mean age = 6), fourth-graders (N = 36, mean age = 10), and eleventh-graders (N = 72, mean age = 16). The games took place between players of the same age and lasted for 16 rounds. There were two experimental conditions – a control condition, in which players were of equal strength, and an experimental condition, in which players differed in strength. In the experimental condition, players' strength was changed midway through the session. Results indicated that players in all age groups were sensitive to their relative strength, and played in line with the theoretical solution: the weaker players gave up on more fields than the stronger ones. This understanding, as well as the consequent difference in allocation between weak and strong players, was more pronounced among older participants. Experience led only to minimal behavioral change. Finally, the children from the two older groups, particularly the eleventh graders adapted quickly to the midway switch in relative strength. In contrast, the first-graders hardly changed their behavior with the change in their relative strength, indicating a limited ability to adapt. These findings highlight young children’s ability to consider their relative strength in strategic interactions and its boundaries.

Keywords: children, competition, decision making, developmental changes, strategic behavior

Procedia PDF Downloads 313
11626 Harnessing of Electricity from Distillery Effluent and Simultaneous Effluent Treatment by Microbial Fuel Cell

Authors: Hanish Mohammed, C. H. Muthukumar Muthuchamy

Abstract:

The advancement in the science and technology has made it possible to convert electrical energy into any desired form. It has given electrical energy a place of pride in the modern world. The survival of industrial undertakings and our social structure depends primarily upon low cost and uninterrupted supply of electrical energy. Microbial fuel cell (MFC) is a promising and emerging technique for sustainable bioelectricity generation and wastewater treatment. MFCs are devices which are capable of converting organic matter to electricity/hydrogen with help of microorganisms. Different kinds of wastewater could be used in this technique, distillery effluent is one of the most troublesome and complex and strong organic effluent with high chemical oxygen demand of 1,53,846 mg/L. A single cell MFC unit was designed and fabricated for the distillery effluent treatment and to generate electricity. Due to the high COD value of the distillery effluent helped in the production of energy for 74 days. The highest voltage got from the fuel cell is 206 mV on the 30th day. A maximum power density obtained from the MFC was 9.8 mW, treatment efficiency was evaluated in terms of COD removal and other parameters. COD removal efficiencies were around 68.5 % and other parameters such as Total Hardness (81.5%), turbidity (70 %), chloride (66%), phosphate (79.5%), Nitrate (77%) and sulphate (71%). MFC using distillery effluent is a promising new unexplored substrate for the power generation and sustainable treatment technique through harnessing of bioelectricity.

Keywords: microbial fuel cell (MFC), bioelectricity, distillery effluent, wastewater treatment

Procedia PDF Downloads 214
11625 Correlation between Entrepreneur's Perception of Human Resource Function and Company's Growth

Authors: Ivan Todorović, Stefan Komazec, Jelena Anđelković-Labrović, Ondrej Jaško, Miha Marič

Abstract:

Micro, small and medium enterprises (MSME) are important factors of the economy in each country. Recent years have brought increased number and higher sophistication of scientific research related to numerous aspects of entrepreneurship. Various authors try to find the positive correlation between entrepreneur's personal characteristics, skills and knowledge on one hand, and company growth and success of small business on the other hand. Different models recognize staff as one of the key elements in every organizational system. Human resource (HR) function is present in almost all large companies, despite the geographical location or industry. Small and medium enterprises also often have separate positions or even departments for HR administration. However, in early stages of organizational life cycle human resources are usually managed by the founder, entrepreneur. In this paper we want to question whether the companies where founder, entrepreneur, recognizes the significance of human capital in the organization and understands the importance of HR management have higher growth rate and better business results. The findings of this research can be implemented in practice, but also in the academia, for improving the curricula related to the MSME and entrepreneurship.

Keywords: entrepreneurship, MSME, micro small and medium enterprises, company growth, human resources, HR management

Procedia PDF Downloads 359
11624 Introducing Transport Engineering through Blended Learning Initiatives

Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi

Abstract:

Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.

Keywords: blended learning, highway design, teaching, transport planning

Procedia PDF Downloads 149
11623 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farming as Web of Things to Cloud Interface Using Platform as a Service

Authors: Sumaya Iqbal, Aijaz Ahmad Reshi

Abstract:

The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made the resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular Representational State Transfer protocol (REST) was extended for the specific requirements of the application. Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.

Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway

Procedia PDF Downloads 124
11622 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue

Authors: Linmin Zhang

Abstract:

Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.

Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure

Procedia PDF Downloads 33