Search results for: complex emotions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5840

Search results for: complex emotions

50 The Use of Cross-cultural Approaches (CCAs) in Psychotherapy in Addressing Mental Health Issues Amongst Women of Ethnic Minority

Authors: Adaku Thelma Olatise

Abstract:

Mental health disparities among women from diverse ethnic, cultural, and religious backgrounds remain a pressing concern, particularly as current psychotherapeutic models often fail to address the unique challenges these groups face. This is of particular concern since epidemiological studies across various countries and cultures consistently demonstrate higher prevalence rates of common mental disorders amongst these groups of women because of a lack of access to culturally oriented psychotherapeutic services. This literature review aims to examine how CCAs in psychotherapy can address the specific ethnic, cultural, and religious challenges women encounter in accessing mental health care. A search of relevant articles was conducted through PsycARTICLES and PubMed databases, using terms such as ‘mental health’, ‘women’, ‘culture’, and ‘ethnic minorities’. Supplementary searches on Google Scholar were also performed to capture literature not covered by traditional databases. While the importance of cross-cultural approaches in psychotherapy has become more apparent because people from diverse ethnic backgrounds inevitably perceive the world through different lenses, influencing their interpretations of human behavior and norms, there is a notable gap in the literature in understanding the influences of using of CCAs in psychotherapy amongst women of an ethnic minority. This gap not only reflects a poor understanding of the complex stressors faced by these women—such as familial, communal, and societal expectations—but also highlights the lack of support and culturally adapted interventions available to them. Even though scholars have posited that aligning treatment approaches with patients' cultural backgrounds is important to enhance therapeutic effectiveness, and the acknowledgment of culture is crucial in psychotherapy theory and practice. As well as the increasing global focus on psychotherapy applications that integrate non-Western practices, such as spiritual healing and community-based interventions, the adaptation of these approaches in mainstream mental health care has remained limited. This review found that the expectations and experiences of ethnic minority women were heavily influenced by family and community pressures. However, there were limited evidence-based, culturally oriented psychotherapeutic interventions tailored to ethnic minority women. This gap extends to inadequate representation of minority groups in clinical research, as well as a lack of culturally validated mental health outcome measures. Furthermore, studies have shown that psychotherapeutic models have largely been Western-oriented and Euro-centric because of socially constructed hierarchies. The origin of psychology from the Western world has predominantly reflected Western cultural traditions, shaped by historical, linguistic, and sociopolitical influences. These factors have led to a lack of recognition of therapeutic approaches from minority ethnic groups and the biases that emanate from hegemonic cultural beliefs and power dynamics influence the decisions about which psychotherapeutic modalities to integrate and practice. Therefore, this plethora of factors adds to the challenges women from ethnically and culturally diverse backgrounds face in accessing mental health services at the individual, familial, community, and societal levels. In conclusion, a cross-cultural approach is urgently needed within psychotherapy to address these challenges, ensuring that treatment frameworks are both culturally sensitive and gender responsive. Only by considering the lived experiences of minority women, particularly in relation to their cultural and religious contexts, can mental health services provide the appropriate care necessary to support their well-being.

Keywords: mental health, women, culture, ethnicity

Procedia PDF Downloads 24
49 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
48 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students

Authors: Kavita Goel, Donald Winchester

Abstract:

In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.

Keywords: cognitive load theory, learning style, instructional environment, working memory

Procedia PDF Downloads 145
47 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development

Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng

Abstract:

Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.

Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics

Procedia PDF Downloads 170
46 Effect of Black Cumin (Nigella sativa) Extract on Damaged Brain Cells

Authors: Batul Kagalwala

Abstract:

The nervous system is made up of complex delicate structures such as the spinal cord, peripheral nerves and the brain. These are prone to various types of injury ranging from neurodegenerative diseases to trauma leading to diseases like Parkinson's, Alzheimer's, multiple sclerosis, amyotrophic lateral sclerosis (ALS), multiple system atrophy etc. Unfortunately, because of the complicated structure of nervous system, spontaneous regeneration, repair and healing is seldom seen due to which brain damage, peripheral nerve damage and paralysis from spinal cord injury are often permanent and incapacitating. Hence, innovative and standardized approach is required for advance treatment of neurological injury. Nigella sativa (N. sativa), an annual flowering plant native to regions of southern Europe and Asia; has been suggested to have neuroprotective and anti-seizures properties. Neuroregeneration is found to occur in damaged cells when treated using extract of N. sativa. Due to its proven health benefits, lots of experiments are being conducted to extract all the benefits from the plant. The flowers are delicate and are usually pale blue and white in color with small black seeds. These seeds are the source of active components such as 30–40% fixed oils, 0.5–1.5% essential oils, pharmacologically active components containing thymoquinone (TQ), ditimoquinone (DTQ) and nigellin. In traditional medicine, this herb was identified to have healing properties and was extensively used Middle East and Far East for treating diseases such as head ache, back pain, asthma, infections, dysentery, hypertension, obesity and gastrointestinal problems. Literature studies have confirmed the extract of N. sativa seeds and TQ have inhibitory effects on inducible nitric oxide synthase and production of nitric oxide as well as anti-inflammatory and anticancer activities. Experimental investigation will be conducted to understand which ingredient of N. sativa causes neuroregeneration and roots to its healing property. An aqueous/ alcoholic extract of N. sativa will be made. Seed oil is also found to have used by researchers to prepare such extracts. For the alcoholic extracts, the seeds need to be powdered and soaked in alcohol for a period of time and the alcohol must be evaporated using rotary evaporator. For aqueous extracts, the powder must be dissolved in distilled water to obtain a pure extract. The mobile phase will be the extract while the suitable stationary phase (substance that is a good adsorbent e.g. silica gels, alumina, cellulose etc.) will be selected. Different ingredients of N. sativa will be separated using High Performance Liquid Chromatography (HPLC) for treating damaged cells. Damaged brain cells will be treated individually and in different combinations of 2 or 3 compounds for different intervals of time. The most suitable compound or a combination of compounds for the regeneration of cells will be determined using DOE methodology. Later the gene will also be determined and using Polymerase Chain Reaction (PCR) it will be replicated in a plasmid vector. This plasmid vector shall be inserted in the brain of the organism used and replicated within. The gene insertion can also be done by the gene gun method. The gene in question can be coated on a micro bullet of tungsten and bombarded in the area of interest and gene replication and coding shall be studied. Investigation on whether the gene replicates in the organism or not will be examined.

Keywords: black cumin, brain cells, damage, extract, neuroregeneration, PCR, plasmids, vectors

Procedia PDF Downloads 657
45 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications

Authors: Annika J. Meyer, Tom Piechotta

Abstract:

Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.

Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations

Procedia PDF Downloads 43
44 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling

Procedia PDF Downloads 146
43 Urban Ecosystem Health and Urban Agriculture

Authors: Mahbuba Kaneez Hasna

Abstract:

Introductory Statement outlining the background: Little has been written about political ecology of urban gardening, such as a network of knowledge generation, technologies of food production and distribution, food consumption practices, and the regulation of ‘agricultural activities. For urban food gardens to sustain as a long-term food security enterprise, we will need to better understand the anthropological, ecological, political, and institutional factors influencing their development, management, and ongoing viability. Significance of the study: Dhaka as one of the fastest growing city. There are currently no studies regards to Bangladesh on how urban slum dwellerscope with the changing urban environment in the city, where they overcome challenges, and how they cope with the urban ecological cycle of food and vegetable production. It is also essential to understand the importance of their access to confined spaces in the slums they apply their indigenous knowledge. These relationships in nature are important factors in community and conservation ecology. Until now, there has been no significant published academic work on relationships between urban and environmental anthropology, urban planning, geography, ecology, and social anthropology with a focus on urban agriculture and how this contributes to the moral economies, indigenous knowledge, and government policies in order to improve the lives and livelihoods of slum dwellers surrounding parks and open spaces in Dhaka, Bangladesh. Methodology: it have applied participant observation, semi-structured questionnaire-based interviews, and focus group discussions to collect social data. Interviews were conducted with the urban agriculture practitioners who are slum dwellers who carry out their urban agriculture activities. Some of the interviews were conducted with non-government organisations (NGOs) and local and state government officials, using semi-structured interviews. Using these methods developed a clearer understanding of how green space cultivation, local economic self-reliance, and urban gardening are producing distinctive urban ecologies in Dhaka and their policy-implications on urban sustainability. Major findings of the study: The research provided an in-depth knowledge on the challenges that slum dwellers encounter in establishing and maintaining urban gardens, such as the economic development of the city, conflicting political agendas, and environmental constraints in areas within which gardening activities take place. The research investigated (i) How do slum dwellers perform gardening practices from rural areas to open spaces in the city? (ii) How do men and women’s ethno-botanical knowledge contribute to urban biodiversity; (iii) And how do slum dwellers navigate complex constellations of land use policy, competing political agendas, and conflicting land and water tenures to meet livelihood functions provided by their gardens. Concluding statement: Lack of infrastructure facilities such as water supply and sanitation, micro-drains and waste disposal areas, and poor access to basic health care services increase the misery of people in the slum areas. Lack of environmental health awareness information for farmers, such as the risks from the use of chemical pesticides in gardens and from grazing animals in contaminated fields or cropping and planting trees or vegetable in contaminated dumping grounds, can all cause high health risk to humans and their environment.

Keywords: gender, urban agriculture, ecosystem health, urban slum systems

Procedia PDF Downloads 82
42 Family Photos as Catalysts for Writing: A Pedagogical Exercise in Visual Analysis with MA Students

Authors: Susana Barreto

Abstract:

This paper explores a pedagogical exercise that employs family photos as catalysts for teaching visual analysis and inspiring academic writing among MA students. The study aimed to achieve two primary objectives: to impart students with the skills of analyzing images or artifacts and to ignite their writing for research purposes. Conducted at Viana Polytechnic in Portugal, the exercise involved two classes on Arts Management and Art Education Master course comprising approximately twenty students from diverse academic backgrounds, including Economics, Design, Fine Arts, and Sociology, among others. The exploratory exercise involved selecting an old family photo, analyzing its content and context, and deconstructing the chosen images in an intuitive and systematic manner. Students were encouraged to engage in photo elicitation, seeking insights from family/friends to gain multigenerational perspectives on the images. The feedback received from this exercise was consistently positive, largely due to the personal connection students felt with the objects of analysis. Family photos, with their emotional significance, fostered deeper engagement and motivation in the learning process. Furthermore, visual analysing family photos stimulated critical thinking as students interpreted the composition, subject matter, and potential meanings embedded in the images. This practice enhanced their ability to comprehend complex visual representations and construct compelling visual narratives, thereby facilitating the writing process. The exercise also facilitated the identification of patterns, similarities, and differences by comparing different family photos, leading to a more comprehensive analysis of visual elements and themes. Throughout the exercise, students found analyzing their own photographs both enjoyable and insightful. They progressed through preliminary analysis, explored content and context, and artfully interwove these components. Additionally, students experimented with various techniques such as converting photos to black and white, altering framing angles, and adjusting sizes to unveil hidden meanings.The methodology employed included observation, documental analysis of written reports, and student interviews. By including students from diverse academic backgrounds, the study enhanced its external validity, enabling a broader range of perspectives and insights during the exercise. Furthermore, encouraging students to seek multigenerational perspectives from family and friends added depth to the analysis, enriching the learning experience and broadening the understanding of the cultural and historical context associated with the family photos Highlighting the emotional significance of these family photos and the personal connection students felt with the objects of analysis fosters a deeper connection to the subject matter. Moreover, the emphasis on stimulating critical thinking through the analysis of composition, subject matter, and potential meanings in family photos suggests a targeted approach to developing analytical skills. This improvement focuses specifically on critical thinking and visual analysis, enhancing the overall quality of the exercise. Additionally, the inclusion of a step where students compare different family photos to identify patterns, similarities, and differences further enhances the depth of the analysis. This comparative approach adds a layer of complexity to the exercise, ultimately leading to a more comprehensive understanding of visual elements and themes. The expected results of this study will culminate in a set of practical recommendations for implementing this exercise in academic settings.

Keywords: visual analysis, academic writing, pedagogical exercise, family photos

Procedia PDF Downloads 59
41 Linking the Genetic Signature of Free-Living Soil Diazotrophs with Process Rates under Land Use Conversion in the Amazon Rainforest

Authors: Rachel Danielson, Brendan Bohannan, S.M. Tsai, Kyle Meyer, Jorge L.M. Rodrigues

Abstract:

The Amazon Rainforest is a global diversity hotspot and crucial carbon sink, but approximately 20% of its total extent has been deforested- primarily for the establishment of cattle pasture. Understanding the impact of this large-scale disturbance on soil microbial community composition and activity is crucial in understanding potentially consequential shifts in nutrient or greenhouse gas cycling, as well as adding to the body of knowledge concerning how these complex communities respond to human disturbance. In this study, surface soils (0-10cm) were collected from three forests and three 45-year-old pastures in Rondonia, Brazil (the Amazon state with the greatest rate of forest destruction) in order to determine the impact of forest conversion on microbial communities involved in nitrogen fixation. Soil chemical and physical parameters were paired with measurements of microbial activity and genetic profiles to determine how community composition and process rates relate to environmental conditions. Measuring both the natural abundance of 15N in total soil N, as well as incorporation of enriched 15N2 under incubation has revealed that conversion of primary forest to cattle pasture results in a significant increase in the rate of nitrogen fixation by free-living diazotrophs. Quantification of nifH gene copy numbers (an essential subunit encoding the nitrogenase enzyme) correspondingly reveals a significant increase of genes in pasture compared to forest soils. Additionally, genetic sequencing of both nifH genes and transcripts shows a significant increase in the diversity of the present and metabolically active diazotrophs within the soil community. Levels of both organic and inorganic nitrogen tend to be lower in pastures compared to forests, with ammonium rather than nitrate as the dominant inorganic form. However, no significant or consistent differences in total, extractable, permanganate-oxidizable, or loss-on-ignition carbon are present between the two land-use types. Forest conversion is associated with a 0.5- 1.0 unit pH increase, but concentrations of many biologically relevant nutrients such as phosphorus do not increase consistently. Increases in free-living diazotrophic community abundance and activity appear to be related to shifts in carbon to nitrogen pool ratios. Furthermore, there may be an important impact of transient, low molecular weight plant-root-derived organic carbon on free-living diazotroph communities not captured in this study. Preliminary analysis of nitrogenase gene variant composition using NovoSeq metagenomic sequencing indicates that conversion of forest to pasture may significantly enrich vanadium-based nitrogenases. This indication is complemented by a significant decrease in available soil molybdenum. Very little is known about the ecology of diazotrophs utilizing vanadium-based nitrogenases, so further analysis may reveal important environmental conditions favoring their abundance and diversity in soil systems. Taken together, the results of this study indicate a significant change in nitrogen cycling and diazotroph community composition with the conversion of the Amazon Rainforest. This may have important implications for the sustainability of cattle pastures once established since nitrogen is a crucial nutrient for forage grass productivity.

Keywords: free-living diazotrophs, land use change, metagenomic sequencing, nitrogen fixation

Procedia PDF Downloads 194
40 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics

Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui

Abstract:

The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.

Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers

Procedia PDF Downloads 442
39 Role of Dedicated Medical Social Worker in Fund Mobilisation and Economic Evaluation in Ovarian Cancer: Experience from a Tertiary Referral Centre in Eastern India

Authors: Aparajita Bhattacharya, Mousumi Dutta, Zakir Husain, Dionne Sequeira, Asima Mukhopadhyay

Abstract:

Background: Tata Medical Centre (TMC), Kolkata is a major cancer referral centre in Eastern India and neighbouring countries providing state of the art facilities; however, it is a non-profit organisation with patients requiring to pay at subsidised rates. Although a system for social assessment and applying for governmental/ non-governmental (NGO) funds is in place, access is challenging. Amongst gynaecological cancers (GC), ovarian cancer (OC) is associated with the highest treatment cost; majority of which is required at the beginning when complex surgery is performed and funding arrangements cannot be made in time. We therefore appointed a dedicated Medical Social Worker (MSW) in 2016, supported by NGO for GC patients in order to assist patients/family members to access/avail these funds more readily and assist in economic evaluation for both direct and opportunity costs. Objectives: To reflect on our experience and challenges in collecting data on economic evaluation of cancer patients and compare success rates in achieving fund mobilization after introduction of MSW. Methods: A Retrospective survey. Patients with OC and their relatives were seen by the MSW during the initial outpatients department visit and followed though till discharge from the hospital and during follow-up visits. Assistance was provided in preparing the essential documents/paperwork/contacts for the funding agencies including both governmental (Chief-Minister/Prime-Minister/President) and NGO sources. In addition, a detailed questionnaire was filled up for economic assessment of direct/opportunity costs during the entire treatment and 12 months follow up period which forms a part of the study called HEPTROC (Health economic evaluation of primary treatment for ovarian cancer) developed in collaboration with economics departments of Universities. Results: In 2015, 102 patients were operated for OC; only 16 patients (15.68 %) had availed funding of a total sum of INR 1640000 through the hospital system for social assessment. Following challenges were faced by majority of the relatives: 1. Gathering important documents/proper contact details for governmental funding bodies and difficulty in following up the current status 3. Late arrival of funds. In contrast in 2016, 104 OC patients underwent surgery; the direct cost of treatment was significantly higher (median, INR 300000- 400000) compared to other GCs (n=274). 98/104 (94.23%) OC patients could be helped to apply for funds and 90/104(86.56%) patients received funding amounting to a total of INR 10897000. There has been a tenfold increase in funds mobilized in 2016 after the introduction of dedicated MSW in GC. So far, in 2017 (till June), 46/54(85.18%) OC patients applied for funds and 37/54(68.51%) patients have received funding. In a qualitative survey, all patients appreciated the role of the MSW who subsequently became the key worker for patient follow up and the chief portal for patient reported outcome monitoring. Data collection quality for the HEPTROC study was improved when questionnaires were administered by the MSW compared to researchers. Conclusion: Introduction of cancer specific MSW can expedite the availability of funds required for cancer patients and it can positively impact on patient satisfaction and outcome reporting. The economic assessment will influence fund allocation and decision for policymaking in ovarian cancer. Acknowledgement: Jivdaya Foundation Dallas, Texas.

Keywords: economic evaluation, funding, medical social worker, ovarian cancer

Procedia PDF Downloads 154
38 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case

Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.

Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe

Procedia PDF Downloads 105
37 Burkholderia Cepacia ST 767 Causing a Three Years Nosocomial Outbreak in a Hemodialysis Unit

Authors: Gousilin Leandra Rocha Da Silva, Stéfani T. A. Dantas, Bruna F. Rossi, Erika R. Bonsaglia, Ivana G. Castilho, Terue Sadatsune, Ary Fernandes Júnior, Vera l. M. Rall

Abstract:

Kidney failure causes decreased diuresis and accumulation of nitrogenous substances in the body. To increase patient survival, hemodialysis is used as a partial substitute for renal function. However, contamination of the water used in this treatment, causing bacteremia in patients, is a worldwide concern. The Burkholderia cepacia complex (Bcc), a group of bacteria with more than 20 species, is frequently isolated from hemodialysis water samples and comprises opportunistic bacteria, affecting immunosuppressed patients, due to its wide variety of virulence factors, in addition to innate resistance to several antimicrobial agents, contributing to the permanence in the hospital environment and to the pathogenesis in the host. The objective of the present work was to characterize molecularly and phenotypically Bcc isolates collected from the water and dialysate of the Hemodialysis Unit and from the blood of patients at a Public Hospital in Botucatu, São Paulo, Brazil, between 2019 and 2021. We used 33 Bcc isolates, previously obtained from blood cultures from patients with bacteremia undergoing hemodialysis treatment (2019-2021) and 24 isolates obtained from water and dialysate samples in a Hemodialysis Unit (same period). The recA gene was sequenced to identify the specific species among the Bcc group. All isolates were tested for the presence of some genes that encode virulence factors such as cblA, esmR, zmpA and zmpB. Considering the epidemiology of the outbreak, the Bcc isolates were molecularly characterized by Multi Locus Sequence Type (MLST) and by pulsed-field gel electrophoresis (PFGE). The verification and quantification of biofilm in a polystyrene microplate were performed by submitting the isolates to different incubation temperatures (20°C, average water temperature and 35°C, optimal temperature for group growth). The antibiogram was performed with disc diffusion tests on agar, using discs impregnated with cefepime (30µg), ceftazidime (30µg), ciprofloxacin (5µg), gentamicin (10µg), imipenem (10µg), amikacin 30µg), sulfametazol/trimethoprim (23.75/1.25µg) and ampicillin/sulbactam (10/10µg). The presence of ZmpB was identified in all isolates, while ZmpA was observed in 96.5% of the isolates, while none of them presented the cblA and esmR genes. The antibiogram of the 33 human isolates indicated that all were resistant to gentamicin, colistin, ampicillin/sulbactam and imipenem. 16 (48.5%) isolates were resistant to amikacin and lower rates of resistance were observed for meropenem, ceftazidime, cefepime, ciprofloxacin and piperacycline/tazobactam (6.1%). All isolates were sensitive to sulfametazol/trimethoprim, levofloxacin and tigecycline. As for the water isolates, resistance was observed only to gentamicin (34.8%) and imipenem (17.4%). According to PFGE results, all isolates obtained from humans and water belonged to the same pulsotype (1), which was identified by recA sequencing as B. cepacia¸, belonging to sequence type ST-767. By observing a single pulse type over three years, one can observe the persistence of this isolate in the pipeline, contaminating patients undergoing hemodialysis, despite the routine disinfection of water with peracetic acid. This persistence is probably due to the production of biofilm, which protects bacteria from disinfectants and, making this scenario more critical, several isolates proved to be multidrug-resistant (resistance to at least three groups of antimicrobials), turning the patient care even more difficult.

Keywords: hemodialysis, burkholderia cepacia, PFGE, MLST, multi drug resistance

Procedia PDF Downloads 99
36 Nanocarriers Made of Amino Acid Based Biodegradable Polymers: Poly(Ester Amide) and Related Cationic and PEGylating Polymers

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

Polymeric nanoparticles-based drug delivery systems and therapeutics have a great potential in the treatment of a numerous diseases, due to they are characterizing the flexible properties which is giving possibility to modify their structures with a complex definition over their structures, compositions and properties. Important characteristics of the polymeric nanoparticles (PNPs) used as drug carriers are high particle’s stability, high carrier capacity, feasibility of encapsulation of both hydrophilic and hydrophobic drugs, and feasibility of variable routes of administration, including oral application and inhalation; NPs are especially effective for intracellular drug delivery since they penetrate into the cells’ interior though endocytosis. A variety of PNPs based drug delivery systems including charged and neutral, degradable and non-degradable polymers of both natural and synthetic origin have been developed. Among these huge varieties the biodegradable PNPs which can be cleared from the body after the fulfillment of their function could be considered as one of the most promising. For intracellular uptake it is highly desirable to have positively charged PNPs since they can penetrate deep into cell membranes. For long-lasting circulation of PNPs in the body it is important they have so called “stealth coatings” to protect them from the attack of immune system of the organism. One of the effective ways to render the PNPs “invisible” for immune system is their PEGylation which represent the process of pretreatment of polyethylene glycol (PEG) on the surface of PNPs. The present work deals with constructing PNPs from amino acid based biodegradable polymers – regular poly(ester amide) (PEA) composed of sebacic acid, leucine and 1,6-hexandiol (labeled as 8L6), cationic PEA composed of sebacic acid, arginine and 1,6-hexandiol (labeled as 8R6), and comb-like co-PEA composed of sebacic acid, malic acid, leucine and 1,6-hexandiol (labeled as PEG-PEA). The PNPs were fabricated using the polymer deposition/solvent displacement (nanoprecipitation) method. The regular PEA 8L6 form stable negatively charged (zeta-potential within 2-12 mV) PNPs of desired size (within 150-200 nm) in the presence of various surfactants (Tween 20, Tween 80, Brij 010, etc.). Blending the PEAs 8L6 and 8R6 gave the 130-140 nm sized positively charged PNPs having zeta-potential within +20 ÷ +28 mV depending 8L6/8R6 ratio. The PEGylating PEA PEG-PEA was synthesized by interaction of epoxy-co-PEA [8L6]0,5-[tES-L6]0,5 with mPEG-amine-2000 The stable and positively charged PNPs were fabricated using pure PEG-PEA as a surfactant. A firm anchoring of the PEG-PEA with 8L6/8R6 based PNPs (owing to a high afinity of the backbones of all three PEAs) provided good stabilization of the NPs. In vitro biocompatibility study of the new PNPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed they are biocompatible. Considering high stability and cell compatibility of the elaborated PNPs one can conclude that they are promising for subsequent therapeutic applications. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 “New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications”.

Keywords: biodegradable poly(ester amide)s, cationic poly(ester amide), pegylating poly(ester amide), nanoparticles

Procedia PDF Downloads 121
35 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 101
34 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams

Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.

Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension

Procedia PDF Downloads 225
33 A Prospective Neurosurgical Registry Evaluating the Clinical Care of Traumatic Brain Injury Patients Presenting to Mulago National Referral Hospital in Uganda

Authors: Benjamin J. Kuo, Silvia D. Vaca, Joao Ricardo Nickenig Vissoci, Catherine A. Staton, Linda Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Lydia Nanjula, Christine Muhumuza, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: Traumatic Brain Injury (TBI) is disproportionally concentrated in low- and middle-income countries (LMICs), with the odds of dying from TBI in Uganda more than 4 times higher than in high income countries (HICs). The disparities in the injury incidence and outcome between LMICs and resource-rich settings have led to increased health outcomes research for TBIs and their associated risk factors in LMICs. While there have been increasing TBI studies in LMICs over the last decade, there is still a need for more robust prospective registries. In Uganda, a trauma registry implemented in 2004 at the Mulago National Referral Hospital (MNRH) showed that RTI is the major contributor (60%) of overall mortality in the casualty department. While the prior registry provides information on injury incidence and burden, it’s limited in scope and doesn’t follow patients longitudinally throughout their hospital stay nor does it focus specifically on TBIs. And although these retrospective analyses are helpful for benchmarking TBI outcomes, they make it hard to identify specific quality improvement initiatives. The relationship among epidemiology, patient risk factors, clinical care, and TBI outcomes are still relatively unknown at MNRH. Objective: The objectives of this study are to describe the processes of care and determine risk factors predictive of poor outcomes for TBI patients presenting to a single tertiary hospital in Uganda. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Research Electronic Data Capture (REDCap) was used to systematically collect variables spanning 8 categories. Univariate and multivariate analysis were conducted to determine significant predictors of mortality. Results: 563 TBI patients were enrolled from 1 June – 30 November 2016. 102 patients (18%) received surgery, 29 patients (5.1%) intended for surgery failed to receive it, and 251 patients (45%) received non-operative management. Overall mortality was 9.6%, which ranged from 4.7% for mild and moderate TBI to 55% for severe TBI patients with GCS 3-5. Within each TBI severity category, mortality differed by management pathway. Variables predictive of mortality were TBI severity, more than one intracranial bleed, failure to receive surgery, high dependency unit admission, ventilator support outside of surgery, and hospital arrival delayed by more than 4 hours. Conclusions: The overall mortality rate of 9.6% in Uganda for TBI is high, and likely underestimates the true TBI mortality. Furthermore, the wide-ranging mortality (3-82%), high ICU fatality, and negative impact of care delays suggest shortcomings with the current triaging practices. Lack of surgical intervention when needed was highly predictive of mortality in TBI patients. Further research into the determinants of surgical interventions, quality of step-up care, and prolonged care delays are needed to better understand the complex interplay of variables that affect patient outcome. These insights guide the development of future interventions and resource allocation to improve patient outcomes.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury

Procedia PDF Downloads 235
32 Closing down the Loop Holes: How North Korea and Other Bad Actors Manipulate Global Trade in Their Favor

Authors: Leo Byrne, Neil Watts

Abstract:

In the complex and evolving landscape of global trade, maritime sanctions emerge as a critical tool wielded by the international community to curb illegal activities and alter the behavior of non-compliant states and entities. These sanctions, designed to restrict or prohibit trade by sea with sanctioned jurisdictions, entities, or individuals, face continuous challenges due to the sophisticated evasion tactics employed by countries like North Korea. As the Democratic People's Republic of Korea (DPRK) diverts significant resources to circumvent these measures, understanding the nuances of their methodologies becomes imperative for maintaining the integrity of global trade systems. The DPRK, one of the most sanctioned nations globally, has developed an intricate network to facilitate its trade in illicit goods, ensuring the flow of revenue from designated activities continues unabated. Given its geographic and economic conditions, North Korea predominantly relies on maritime routes, utilizing foreign ports to route its illicit trade. This reliance on the sea is exploited through various sophisticated methods, including the use of front companies, falsification of documentation, commingling of bulk cargos, and physical alterations to vessels. These tactics enable the DPRK to navigate through the gaps in regulatory frameworks and lax oversight, effectively undermining international sanctions regimes Maritime sanctions carry significant implications for global trade, imposing heightened risks in the maritime domain. The deceptive practices employed not only by the DPRK but also by other high-risk jurisdictions, necessitate a comprehensive understanding of UN targeted sanctions. For stakeholders in the maritime sector—including maritime authorities, vessel owners, shipping companies, flag registries, and financial institutions serving the shipping industry—awareness and compliance are paramount. Violations can lead to severe consequences, including reputational damage, sanctions, hefty fines, and even imprisonment. To mitigate risks associated with these deceptive practices, it is crucial for maritime sector stakeholders to employ rigorous due diligence and regulatory compliance screening measures. Effective sanctions compliance serves as a protective shield against legal, financial, and reputational risks, preventing exploitation by international bad actors. This requires not only a deep understanding of the sanctions landscape but also the capability to identify and manage risks through informed decision-making and proactive risk management practices. As the DPRK and other sanctioned entities continue to evolve their sanctions evasion tactics, the international community must enhance its collective efforts to demystify and counter these practices. By leveraging more stringent compliance measures, stakeholders can safeguard against the illicit use of the maritime domain, reinforcing the effectiveness of maritime sanctions as a tool for global security. This paper seeks to dissect North Korea's adaptive strategies in the face of maritime sanctions. By examining up-to-date, geographically, and temporally relevant case studies, it aims to shed light on the primary nodes through which Pyongyang evades sanctions and smuggles goods via third-party ports. The goal is to propose multi-level interaction strategies, ranging from governmental interventions to localized enforcement mechanisms, to counteract these evasion tactics.

Keywords: maritime, maritime sanctions, international sanctions, compliance, risk

Procedia PDF Downloads 70
31 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 193
30 An Engaged Approach to Developing Tools for Measuring Caregiver Knowledge and Caregiver Engagement in Juvenile Type 1 Diabetes

Authors: V. Howard, R. Maguire, S. Corrigan

Abstract:

Background: Type 1 Diabetes (T1D) is a chronic autoimmune disease, typically diagnosed in childhood. T1D puts an enormous strain on families; controlling blood-glucose in children is difficult and the consequences of poor control for patient health are significant. Successful illness management and better health outcomes can be dependent on quality of caregiving. On diagnosis, parent-caregivers face a steep learning curve as T1D care requires a significant level of knowledge to inform complex decision making throughout the day. The majority of illness management is carried out in the home setting, independent of clinical health providers. Parent-caregivers vary in their level of knowledge and their level of engagement in applying this knowledge in the practice of illness management. Enabling researchers to quantify these aspects of the caregiver experience is key to identifying targets for psychosocial support interventions, which are desirable for reducing stress and anxiety in this highly burdened cohort, and supporting better health outcomes in children. Currently, there are limited tools available that are designed to capture this information. Where tools do exist, they are not comprehensive and do not adequately capture the lived experience. Objectives: Development of quantitative tools, informed by lived experience, to enable researchers gather data on parent-caregiver knowledge and engagement, which accurately represents the experience/cohort and enables exploration of questions that are of real-world value to the cohort themselves. Methods: This research employed an engaged approach to address the problem of quantifying two key aspects of caregiver diabetes management: Knowledge and engagement. The research process was multi-staged and iterative. Stage 1: Working from a constructivist standpoint, literature was reviewed to identify relevant questionnaires, scales and single-item measures of T1D caregiver knowledge and engagement, and harvest candidate questionnaire items. Stage 2: Aggregated findings from the review were circulated among a PPI (patient and public involvement) expert panel of caregivers (n=6), for discussion and feedback. Stage 3: In collaboration with the expert panel, data were interpreted through the lens of lived experience to create a long-list of candidate items for novel questionnaires. Items were categorized as either ‘knowledge’ or ‘engagement’. Stage 4: A Delphi-method process (iterative surveys) was used to prioritize question items and generate novel questions that further captured the lived experience. Stage 5: Both questionnaires were piloted to refine wording of text to increase accessibility and limit socially desirable responding. Stage 6: Tools were piloted using an online survey that was deployed using an online peer-support group for caregivers for Juveniles with T1D. Ongoing Research: 123 parent-caregivers completed the survey. Data analysis is ongoing to establish face and content validity qualitatively and through exploratory factor analysis. Reliability will be established using an alternative-form method and Cronbach’s alpha will assess internal consistency. Work will be completed by early 2024. Conclusion: These tools will enable researchers to gain deeper insights into caregiving practices among parents of juveniles with T1D. Development was driven by lived experience, illustrating the value of engaged research at all levels of the research process.

Keywords: caregiving, engaged research, juvenile type 1 diabetes, quantified engagement and knowledge

Procedia PDF Downloads 55
29 The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray

Authors: Tahani Mashikhi

Abstract:

Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+.

Keywords: deposit, dye, electrospray, TiO₂, XPS

Procedia PDF Downloads 45
28 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 192
27 Cardiac Hypertrophy in Diabetes; The Role of Factor Forkhead Box Class O-Regulation by O-GlcNAcylation

Authors: Mohammadjavad Sotoudeheian, Navid Farahmandian

Abstract:

Cardiac hypertrophy arises in response to persistent increases in hemodynamic loads. In comparison, diabetic cardiomyopathy is defined by an abnormal myocardial changes without other cardiac-related risk factors. Pathological cardiac hypertrophy and myocardial remodeling are hallmarks of cardiovascular diseases and are risk factors for heart failure. The transcription factor forkhead box class O (FOXOs) can protect heart tissue by hostile oxidative stress and stimulating apoptosis and autophagy. FOXO proteins, as sensitive elements and mediators in response to environmental changes, have been revealed to prevent and inverse cardiac hypertrophy. FOXOs are inhibited by insulin and are critical mediators of insulin action. Insulin deficiency and uncontrolled diabetes lead to a catabolic state. FOXO1 acts downstream of the insulin-dependent pathways, which are dysregulated in diabetes. It regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K/Akt activation, which are critical regulators of cardiac hypertrophy. The complex network of signaling pathways comprising insulin/IGF-1 signaling, AMPK, JNK, and Sirtuins regulate the development of cardiovascular dysfunction by modulating the activity of FOXOs. Insulin receptors and IGF1R act via the PI3k/Akt and the MAPK/ERK pathways. Activation of Akt in response to insulin or IGF-1 induces phosphorylation of FOXOs. Increased protein synthesis induced by activation of the IGF-I/Akt/mTOR signaling pathway leads to hypertrophy. This pathway and the myostatin/Smad pathway are potent negative muscle development regulators. In cardiac muscle, insulin receptor substrates (IRS)-1 or IRS-2 activates the Akt signaling pathway and inactivate FOXO1. Under metabolic stress, p38 MAPK promotes degradation of IRS-1 and IRS-2 in cardiac myocytes and activates FOXO1, leading to cardiomyopathy. Sirt1 and FOXO1 interaction play an essential role in starvation-induced autophagy in cardiac metabolism. Inhibition of Angiotensin-II induced cardiomyocyte hypertrophy is associated with reduced FOXO1 acetylation and activation of Sirt1. The NF-κB, ERK, and FOXOs are de-acetylated by SIRT1. De-acetylation of FOXO1 induces the expression of genes involved in autophagy and stimulates autophagy flux. Therefore, under metabolic stress, FOXO1 can cause diabetic cardiomyopathy. The overexpression of FOXO1 leads to decreased cardiomyocyte size and suppresses cardiac hypertrophy through inhibition of the calcineurin–NFAT pathway. Diabetes mellitus is associated with elevation of O-GlcNAcylation. Some of its binding partners regulate the substrate selectivity of O-GlcNAc transferase (OGT). O-GlcNAcylation of essential contractile proteins may inhibit protein-protein interactions, reduce calcium sensitivity, and modulate contractile function. Uridine diphosphate (UDP)-GlcNAc is the obligatory substrate of OGT, which catalyzes a reversible post-translational protein modification. The increase of O-GlcNAcylation is accompanied by impaired cardiac hypertrophy in diabetic hearts. Inhibition of O-GlcNAcylation blocks activation of ERK1/2 and hypertrophic growth. O-GlcNAc modification on NFAT is required for its translocation from the cytosol to the nucleus, where NFAT stimulates the transcription of various hypertrophic genes. Inhibition of O-GlcNAcylation dampens NFAT-induced cardiac hypertrophic growth. Transcriptional activity of FOXO1 is enriched by improved O-GlcNAcylation upon high glucose stimulation or OGT overexpression. In diabetic conditions, the modification of FOXO1 by O-GlcNAc is promoted in cardiac troponin I and myosin light chain 2. Therefore targeting O-GlcNAcylation represents a potential therapeutic option to prevent hypertrophy in the diabetic heart.

Keywords: diabetes, cardiac hypertrophy, O-GlcNAcylation, FOXO1, Akt, PI3K, AMPK, insulin

Procedia PDF Downloads 108
26 The Impact of Right to Repair Initiatives on Environmental and Financial Performance in European Consumer Electronics Firms: An Econometric Analysis

Authors: Daniel Stabler, Anne-Laure Mention, Henri Hakala, Ahmad Alaassar

Abstract:

In Europe, 2.2 billion tons of waste annually generate severe environmental damage and economic burdens, and negatively impact human health. A stark illustration of the problem is found within the consumer electronics industry, which reflects one of the most complex global waste streams. Of the 5.3 billion globally discarded mobile phones in 2022, only 17% were properly recycled. To address these pressing issues, Europe has made significant strides in developing waste management strategies, Circular Economy initiatives, and Right to Repair policies. These endeavors aim to make product repair and maintenance more accessible, extend product lifespans, reduce waste, and promote sustainable resource use. European countries have introduced Right to Repair policies, often in conjunction with extended producer responsibility legislation, repair subsidies, and consumer repair indices, to varying degrees of regulatory rigor. Changing societal trends emphasizing sustainability and environmental responsibility have driven consumer demand for more sustainable and repairable products, benefiting repair-focused consumer electronics businesses. In academic research, much of the literature in Management studies has examined the European Circular Economy and the Right to Repair from firm-level perspectives. These studies frequently employ a business-model lens, emphasizing innovation and strategy frameworks. However, this study takes an institutional perspective, aiming to understand the adoption of Circular Economy and repair-focused business models within the European consumer electronics market. The concepts of the Circular Economy and the Right to Repair align with institutionalism as they reflect evolving societal norms favoring sustainability and consumer empowerment. Regulatory institutions play a pivotal role in shaping and enforcing these concepts through legislation, influencing the behavior of businesses and individuals. Compliance and enforcement mechanisms are essential for their success, compelling actors to adopt sustainable practices and consider product life extension. Over time, these mechanisms create a path for more sustainable choices, underscoring the influence of institutions and societal values on behavior and decision-making. Institutionalism, particularly 'neo-institutionalism,' provides valuable insights into the factors driving the adoption of Circular and repair-focused business models. Neo-institutional pressures can manifest through coercive regulatory initiatives or normative standards shaped by socio-cultural trends. The Right to Repair movement has emerged as a prominent and influential idea within academic discourse and sustainable development initiatives. Therefore, understanding how macro-level societal shifts toward the Circular Economy and the Right to Repair trigger firm-level responses is imperative. This study aims to answer a crucial question about the impact of European Right to Repair initiatives had on the financial and environmental performance of European consumer electronics companies at the firm level. A quantitative and statistical research design will be employed. The study will encompass an extensive sample of consumer electronics firms in Northern and Western Europe, analyzing their financial and environmental performance in relation to the implementation of Right to Repair mechanisms. The study's findings are expected to provide valuable insights into the broader implications of the Right to Repair and Circular Economy initiatives on the European consumer electronics industry.

Keywords: circular economy, right to repair, institutionalism, environmental management, european union

Procedia PDF Downloads 82
25 Emerging Positive Education Interventions for Clean Sport Behavior: A Pilot Study

Authors: Zeinab Zaremohzzabieh, Syasya Firzana Azmi, Haslinda Abdullah, Soh Kim Geok, Aini Azeqa Ma'rof, Hayrol Azril Mohammed Shaffril

Abstract:

The escalating prevalence of doping in sports, casting a shadow over both high-performance and recreational settings, has emerged as a formidable concern, particularly within the realm of young athletes. Doping, characterized by the surreptitious use of prohibited substances to gain a competitive edge, underscores the pressing need for comprehensive and efficacious preventive measures. This study aims to address a crucial void in current research by unraveling the motivations that drive clean adolescent athletes to steadfastly abstain from performance-enhancing substances. In navigating this intricate landscape, the study adopts a positive psychology perspective, investigating into the conditions and processes that contribute to the holistic well-being of individuals and communities. At the heart of this exploration lies the application of the PERMA model, a comprehensive positive psychology framework encapsulating positive emotion, engagement, relationships, meaning, and accomplishments. This model functions as a distinctive lens, dissecting intervention results to offer nuanced insights into the complex dynamics of clean sport behavior. The research is poised to usher in a paradigm shift from conventional anti-doping strategies, predominantly fixated on identifying deficits, towards an innovative approach firmly rooted in positive psychology. The objective of this study is to evaluate the efficacy of a positive education intervention program tailored to promote clean sport behavior among Malaysian adolescent athletes. Representing unexplored terrain within the landscape of anti-doping efforts, this initiative endeavors to reshape the focus from deficiencies to strengths. The meticulously crafted pilot study engages thirty adolescent athletes, divided into a control group of 15 and an experimental group of 15. The pilot study serves as the crucible to assess the effectiveness of the prepared intervention package, providing indispensable insights that will meticulously guide the finalization of an all-encompassing intervention program for the main study. The main study adopts a pioneering two-arm randomized control trial methodology, actively involving adolescent athletes from diverse Malaysian high schools. This approach aims to address critical lacunae in anti-doping strategies, specifically calibrated to resonate with the unique context of Malaysian schools. The study, cognizant of the imperative to develop preventive measures harmonizing with the cultural and educational milieu of Malaysian adolescent athletes, aspires to cultivate a culture of clean sport. In conclusion, this research aspires to contribute unprecedented insights into the efficacy of positive education interventions firmly rooted in the PERMA model. By unraveling the intricacies of clean sport behavior, particularly within the context of Malaysian adolescent athletes, the study seeks to introduce transformative preventive methods. The adoption of positive psychology as an avant-garde anti-doping tool represents an innovative and promising approach, bridging a conspicuous gap in scholarly research and offering potential panaceas for the sporting community. As this study unfurls its chapters, it carries the promise not only to enrich our understanding of clean sport behavior but also to pave the way for positive metamorphosis within the realm of adolescent sports in Malaysia.

Keywords: positive education interventions, a pilot study, clean sport behavior, adolescent athletes, Malaysia

Procedia PDF Downloads 58
24 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 70
23 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 244
22 Improving Diagnostic Accuracy of Ankle Syndesmosis Injuries: A Comparison of Traditional Radiographic Measurements and Computed Tomography-Based Measurements

Authors: Yasar Samet Gokceoglu, Ayse Nur Incesu, Furkan Okatar, Berk Nimetoglu, Serkan Bayram, Turgut Akgul

Abstract:

Ankle syndesmosis injuries pose a significant challenge in orthopedic practice due to their potential for prolonged recovery and chronic ankle dysfunction. Accurate diagnosis and management of these injuries are essential for achieving optimal patient outcomes. The use of radiological methods, such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a vital role in the accurate diagnosis of syndesmosis injuries in the context of ankle fractures. Treatment options for ankle syndesmosis injuries vary, with surgical interventions such as screw fixation and suture-button implantation being commonly employed. The choice of treatment is influenced by the severity of the injury and the presence of associated fractures. Additionally, the mechanism of injury, such as pure syndesmosis injury or specific fracture types, can impact the stability and management of syndesmosis injuries. Ankle fractures with syndesmosis injury present a complex clinical scenario, requiring accurate diagnosis, appropriate reduction, and tailored management strategies. The interplay between the mechanism of injury, associated fractures, and treatment modalities significantly influences the outcomes of these challenging injuries. The long-term outcomes and patient satisfaction following ankle fractures with syndesmosis injury are crucial considerations in the field of orthopedics. Patient-reported outcome measures, such as the Foot and Ankle Outcome Score (FAOS), provide essential information about functional recovery and quality of life after these injuries. When diagnosing syndesmosis injuries, standard measurements, such as the medial clear space, tibiofibular overlap, tibiofibular clear space, anterior tibiofibular ratio (ATFR), and the anterior-posterior tibiofibular ratio (APTF), are assessed through radiographs and computed tomography (CT) scans. These parameters are critical in evaluating the presence and severity of syndesmosis injuries, enabling clinicians to choose the most appropriate treatment approach. Despite advancements in diagnostic imaging, challenges remain in accurately diagnosing and treating ankle syndesmosis injuries. Traditional diagnostic parameters, while beneficial, may not capture the full extent of the injury or provide sufficient information to guide therapeutic decisions. This gap highlights the need for exploring additional diagnostic parameters that could enhance the accuracy of syndesmosis injury diagnoses and inform treatment strategies more effectively. The primary goal of this research is to evaluate the usefulness of traditional radiographic measurements in comparison to new CT-based measurements for diagnosing ankle syndesmosis injuries. Specifically, this study aims to assess the accuracy of conventional parameters, including medial clear space, tibiofibular overlap, tibiofibular clear space, ATFR, and APTF, in contrast with the recently proposed CT-based measurements such as the delta and gamma angles. Moreover, the study intends to explore the relationship between these diagnostic parameters and functional outcomes, as measured by the Foot and Ankle Outcome Score (FAOS). Establishing a correlation between specific diagnostic measurements and FAOS scores will enable us to identify the most reliable predictors of functional recovery following syndesmosis injuries. This comparative analysis will provide valuable insights into the accuracy and dependability of CT-based measurements in diagnosing ankle syndesmosis injuries and their potential impact on predicting patient outcomes. The results of this study could greatly influence clinical practices by refining diagnostic criteria and optimizing treatment planning for patients with ankle syndesmosis injuries.

Keywords: ankle syndesmosis injury, diagnostic accuracy, computed tomography, radiographic measurements, Tibiofibular syndesmosis distance

Procedia PDF Downloads 73
21 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 41