Search results for: wall thermal insulation efficacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6542

Search results for: wall thermal insulation efficacy

6002 Monitoring the Vegetation Cover Dynamics of the African Great Green Wall in Yobe State Nigeria

Authors: Isa Muhammad Zumo

Abstract:

The African Great Green Wall (GGW) is a significant initiative in northern Nigeria because it promotes land restoration and conservation utilizing both commercial and species of forest trees while also helping to mitigate desertification and hazards from the sand dunes and shifting Sahara deserts. Conflicts and weather, however, pose a significant danger to the achievement of these goals. The scientific method for monitoring the vegetation dynamics since inception has not received the required attention, despite the African Development Bank (ADB)'s help in funding the project and its integration into the state's development plans for GGW initiatives. This study will monitor the changes in the vegetation cover of the great green wall within Yobe State Nigeria from 2014 to 2023. The vegetation dynamics will be monitored using Landsat 8 Operational Land Imager (OLI) for 6 years at 2 years intervals. The result will show the fluctuations in the vegetation cover density within the period of study. This will guide the design and implementation of policies of the GGW in achieving its objectives. The result can also contribute to the realization of Sustainable Development Goal (SDG) Target 13.2: Integrate climate change measures into national policies, strategies, and planning.

Keywords: monitoring, green wall, Landsat 8, Nigeria

Procedia PDF Downloads 69
6001 Effects of a Nursing Intervention Program Using a Rehabilitation Self-Management Workbook on Depression, Motivation and Self-Efficacy of Rehabilitation Inpatients

Authors: Young Ae Song, So Yun Kim, Nan Ji Kim, So Young Jang, Yun Mee Park, Mi Jin Lee, Ji Yeon Lee

Abstract:

Background & Purpose: Many patients have psychological problems such as depression and anxiety during the rehabilitation period. Such psychological instability affects the prognosis of the patient in the long term. We develop a nursing intervention program for rehabilitation inpatients using a rehabilitation self –management note and evaluate the effects of the program on depression, motivation, and self-efficacy. Methods: The study was conducted using a nonequivalent control group non-synchronized design. Participants were rehabilitation inpatients, 27 patients in the control group and 20 in the experimental group. Questionnaires were completed three times (pretest, 5 days, 10 days) Final data for 40 patients were analyzed, 23 patients in the control group and 17 in the experimental group. Data were analyzed using x2-test, t-test, and repeated measure ANOVA. Results: Depression in the experimental group decreased compared to the control group, but it was not significant. The motivation for the experimental group changed significantly (F=3.90, p=.029) and self-efficacy increased, but not significantly (F=0.59, p=.559) Conclusion: Results of this study indicate that nursing intervention programs for rehabilitation inpatients could be useful to decrease depression and to improve motivation and self-efficacy.

Keywords: depression, motivation, self-efficacy, rehabilitation inpatient, self-management workbook

Procedia PDF Downloads 132
6000 Polygeneration Solar Thermal System

Authors: S. K. Deb, B. C. Sarma

Abstract:

The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system.

Keywords: concentrator, polygeneration, aperture, renewable energy, exergy, solar energy

Procedia PDF Downloads 519
5999 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 407
5998 Self-Efficacy and Attitude of the Graduating Pre-Service Teachers as Influenced in Their Student Teaching Performance

Authors: Sonia Arradaza-Pajaron, Maria Aida Manila

Abstract:

Teaching is considered the noblest yet believed to be one of the most complicated and challenging professions. Along this view, every teacher-producing institution should look into producing quality pre-service graduates who are efficacious enough with the right attitude and to deal with the task accorded to them. This study investigated the association between self-efficacy and attitude of graduating pre-service teachers with their actual student teaching performance. Survey questionnaires on self-efficacy and attitude toward practice teaching were fielded to the 90 actual respondents while their practice teaching grade was extracted to serve as the other main variable. Data were analyzed and treated statistically utilizing weighted mean and Pearson r to determine the relationship of variables of the study. Findings revealed that attitude of respondents of the three curricular programs was favorable, and they are self-efficacious. Their practice teaching performance was interpreted as very good. Results further showed a significant positive relationship between their self-efficacy and practice teaching performance. It showed that their rating was a manifestation of self- efficacious group. Although they exude positive attitude towards practice teaching, yet no significant relationship was seen with their attitude and performance. Moreover, data manifested that most of them can pay attention during their conduct of lessons in the class, as well as, listen attentively to their cooperating teachers during post conferences. They can perform student teaching tasks better even when there were other interesting things to do. Most of all, they can regulate or suppress not so pleasant thoughts or feelings and take things lightly even in most challenging situations. As gleaned from the results, it can be concluded that there was an association between self-efficacy and practice teaching performance of the respondents.

Keywords: academic achievement, attitude, self-efficacy, student teaching performance

Procedia PDF Downloads 305
5997 Athlete’s Preparation and Quality of Opponent as Determinants of Self-Efficacy among University Athletes in South-West Nigeria

Authors: Raimi Abiodun Moronfolu, Anthonia Olusola Moronfolu

Abstract:

The purpose of this study was to assess athlete’s preparation and quality of opponent as determinants of self-efficacy among university athletes in south-west Nigeria. The descriptive research method was employed in conducting the study. A total of 200 athletes, selected from 4 universities in South-West geopolitical zone of Nigeria through a stratified random sampling technique, were used in the study. The instrument used for data collection was a self-structured questionnaire named ‘Athletes Self-Efficacy Assessment Questionnaire (ASAQ)’. This was developed by the researchers and face validated by three experts in sports psychology. The test-retest method was used in establishing the reliability of the instrument (r=0.79). A total of 200 copies of the validated ASAQ were administered on selected respondents using the spot method. The data collected was used to develop a frequency distribution table for analysis. The descriptive statistics of percentage was used in presenting the data collected, while inferential statistics of linear regression was used in drawing inferences at a 0.05 level of significance. The findings indicated that athlete’s preparation and quality of opponent were significant determinants of self-efficacy among university athletes in South-West Nigeria.

Keywords: athletes, preparation, opponent, self-efficacy

Procedia PDF Downloads 122
5996 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy

Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii

Abstract:

Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.

Keywords: stress, self-efficacy, child obesity, depression

Procedia PDF Downloads 53
5995 Thermal Performance of Reheat, Regenerative, Inter-Cooled Gas Turbine Cycle

Authors: Milind S. Patil, Purushottam S. Desale, Eknath R. Deore

Abstract:

Thermal analysis of reheat, regenerative, inter-cooled gas turbine cycle is presented. Specific work output, thermal efficiency and SFC is simulated with respect to operating conditions. Analytical formulas were developed taking into account the effect of operational parameters like ambient temperature, compression ratio, compressor efficiency, turbine efficiency, regenerator effectiveness, pressure loss in inter cooling, reheating and regenerator. Calculations were made for wide range of parameters using engineering equation solver and the results were presented here. For pressure ratio of 12, regenerator effectiveness 0.95, and maximum turbine inlet temperature 1200 K, thermal efficiency decreases by 27% with increase in ambient temperature (278 K to 328 K). With decrease in regenerator effectiveness thermal efficiency decreases linearly. With increase in ambient temperature (278 K to 328 K) for the same maximum temperature and regenerator effectiveness SFC decreases up to a pressure ratio of 10 and then increases. Sharp rise in SFC is noted for higher ambient temperature. With increase in isentropic efficiency of compressor and turbine, thermal efficiency increases by about 40% for low ambient temperature (278 K to 298 K) however, for higher ambient temperature (308 K to 328 K) thermal efficiency increases by about 70%.

Keywords: gas turbine, reheating, regeneration, inter-cooled, thermal analysis

Procedia PDF Downloads 325
5994 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration

Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing

Abstract:

Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).

Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid

Procedia PDF Downloads 207
5993 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 213
5992 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost

Authors: German Osma, Gabriel Ordonez

Abstract:

The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.

Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling

Procedia PDF Downloads 159
5991 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones

Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu

Abstract:

In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.

Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV

Procedia PDF Downloads 152
5990 Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms

Authors: Khalil Khanafer

Abstract:

The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1.

Keywords: elastic modulus, MMPs/TIMPs levels, Ascending Thoracic Aortic Aneurysm

Procedia PDF Downloads 146
5989 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 391
5988 Investigate and Control Thermal Spectra in Nanostructures and 2D Van der Waals Materials

Authors: Joon Sang Kang, Ming Ke, Yongjie Hu

Abstract:

Controlling heat transfer and thermal properties of materials is important to many fields such as energy efficiency and thermal management of integrated circuits. Significant progress over the past decade has been made to improve material performance through structuring at the nanoscale, however a clear relationship between structure dimensions, interfaces, and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral contribution from different phonons. Here, we describe our current progress on quantifying and controlling thermal spectra based on our recently developed technical approach using ultrafast optical spectroscopy. Our work brings further the promise of rational material design to achieve high performance through a synergistic experimental-modeling approach. This approach can be broadly applicable to a wide range of materials and energy systems. In particular, we demonstrate in-situ characterization and tunable thermal properties of 2D van der waals materials through ionic intercalations. The significant impacts of this research in improving the efficiency of thermal energy conversion and management will also be illustrated.

Keywords: energy, mean free path, nanoscale heat transfer, nanostructure, phonons, TDTR, thermoelectrics, 2D materials

Procedia PDF Downloads 279
5987 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System

Authors: Seung-Ho Yoo, Jong-Ryeul Sohn

Abstract:

An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.

Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote

Procedia PDF Downloads 501
5986 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation

Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne

Abstract:

One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.

Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model

Procedia PDF Downloads 206
5985 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field

Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf

Abstract:

One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.

Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER

Procedia PDF Downloads 114
5984 Preliminary Study of Material Composition of Wreathed Hornbill (Rhycticeros undulatus) Nest Cover Entrance in Mount Ungaran

Authors: Margareta Rahayuningsih, Siti Alimah, Novita Hermayani, Misbahul Munir

Abstract:

Wreathed Hornbill (Rhycticeros undulatus) was a protected bird that we can found in Mount Ungaran. It is known that the bird have been breeding and nesting on the mountain. The objective of the research was to analysis the materials composition of the Wreathed Hornbill nest wall plaster. The study was carried out in Curug Lawe and Gunung Gentong, Mount Ungaran Central Java. Nest wall plaster samples were collected from nest cavities were used by hornbill but after they left from the nest. The nest tree species on Gunung Gentong was Syzygium antisepticum and Syzigium glabratum on Curug Lawe. Materials analysis used proximate analysis and have been done on Chemistry Laboratory of Semarang State University. The result of proximate analysis showed that the material composition of nest wall plaster such as water, proteins. lipid, carbohydrate, and ash between Curug Lawe and Gunung Gentong was different. Except Carbohidrate, the highest componen showed in the nest wall plaster on Gunung Gentong.

Keywords: Mount Ungaran, nest cover entrance, Rhyticeros undulatus, proximate analysis

Procedia PDF Downloads 239
5983 Nanotechnology-Based Treatment of Liver Cancer

Authors: Lucian Mocan

Abstract:

We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

Keywords: HepG2 cells, gold nanoparticles, nanoparticle functionalization, laser irradiation

Procedia PDF Downloads 357
5982 Creating an Inclusive Classroom: Country Case Studies Analysis on Mainstream Teachers' Teaching-Efficacy and Attitudes towards Inclusive Education in Japan and Singapore

Authors: Yei Mian Adrian Yap

Abstract:

This study aims to assess the Japanese and Singaporean mainstream teachers’ attitudes and teaching-efficacy towards the inclusion of students with special needs in the regular classrooms by investigating what kind of key variables influence their attitudes and teaching-efficacy. It also further investigates how they strategize to address their challenges to include their students with special needs in their regular classrooms. In order to understand the nature of teachers’ attitudes and teaching-efficacy towards the inclusive education, a mixed-method research methodology was carried out in Japan and Singapore; it involved an explanatory sequential method of employing quantitative research first before qualitative research. In the quantitative research, 189 Japanese and 183 Singaporean teachers were invited to participate in the questionnaires and out of these participants, 38 Japanese and 15 Singaporean teachers shared their views during their semi-structured interviews. Based on the empirical findings, Japanese teachers’ attitudes and teaching-efficacy were more likely to be influenced by their experiences in teaching students with special needs, knowledge about disability legislation, presence of their disabled family members and level of confidence to teach students with special needs. On the other hand, Singaporean teachers’ attitudes and teaching-efficacy were affected by gender, educational level, received trainings in special needs education, knowledge about disability legislation and level of confidence to teach students with special needs. Both country results also demonstrated that there was a positive correlation between their teaching-efficacy and attitude. Narrative findings further expanded the reasons behind these quantitative factors that shaped teachers’ attitudes and teaching-efficacy. Also, it discussed the various problems faced by Japanese and Singaporean teachers and how they identified their coping strategies to circumvent their challenges in including their students with special needs in their regular classrooms. The significance of this research manifests in necessary educational reforms in both countries especially in the context of inclusive education. These findings may not be as definitive as expected but it is believed that it could provide useful information on the current situation about teachers’ concerns towards the inclusive education. In conclusion, this research could potentially make its positive contribution to the body of literature on teachers’ attitudes and teaching-efficacy in the context of Asian developed countries. Further, these findings could posit that regular teachers’ positive attitudes and strong sense of teaching self-efficacy could directly improve the success rate of inclusion of students with special needs in the regular classrooms.

Keywords: attitudes, inclusive education, special education, teaching-efficacy

Procedia PDF Downloads 319
5981 Teaching in One’s Second Language in a Bilingual University: Comparing the Perceptions of Francophone and Anglophone Instructors

Authors: Hélène Knoerr

Abstract:

This paper examines the impact of teaching in one’s second language on a faculty's sense of self-efficacy. With the increasing internationalization of universities, teaching in a foreign language, mainly in English, has been extensively studied. However, only a few studies have focused on teaching in one’s second language. In Canada, international faculty members have reported adverse effects on their academic careers due to unrealistic linguistic expectations. The aim of our study was to investigate the perceived impacts of teaching in one’s second language on professors in a bilingual university in Canada. It seeks to explore how faculty perceive their ability to teach effectively in their L2 and what personal and professional impacts they feel as a result of teaching in their second language. The study found that teaching in one's second language has a significant impact on faculty's sense of self-efficacy, including anxiety, frustration, and a sense of inadequacy. However, it was also noted that some instructors felt that teaching in their second language had a positive impact on their teaching practices and personal growth. This study highlights the importance of understanding the impact of teaching in one's second language on faculty's sense of self-efficacy in a bilingual university context. It also indicates the need to provide support programs.

Keywords: teacher sense of efficacy, bilingual education, teaching in one’s L2, narrative inquiry

Procedia PDF Downloads 74
5980 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency

Procedia PDF Downloads 363
5979 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor

Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan

Abstract:

The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.

Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management

Procedia PDF Downloads 232
5978 Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake

Authors: Jie Su, Zhenghua Zhou, Yushi Wang, Yongyi Li

Abstract:

The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect.

Keywords: hanging-wall and foot-wall effect, peak ground acceleration, rupture directivity effect, strong ground motion

Procedia PDF Downloads 341
5977 The Importance of Self-Efficacy and Collective Competence Beliefs in Managerial Competence of Sports Managers'

Authors: Şenol Yanar, Sinan Çeli̇kbi̇lek, Mehmet Bayansalduz, Yusuf Can

Abstract:

Managerial competence defines as the skills that managers in managerial positions have in relation to managerial responsibilities and managerial duties. Today's organizations, which are in a competitive environment, have the desire to work with effective managers in order to be more advantageous position than the other organizations they are competing with. In today's organizations, self-efficacy and collective competence belief that determine managerial competencies of managers to assume managerial responsibility are of special importance. In this framework, the aim of this study is to examine the effects of sports managers' perceptions of self-efficacy and collective competence in managerial competence perceptions. In the study, it has also been analyzed if there is a significant difference between self-efficacy, collective competence and managerial competence levels of sports managers in terms of their gender, age, duty status, year of service and level of education. 248 sports managers, who work at the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the self-efficacy scale which was developed by Schwarzer, R. & Jerusalem, M. (1995), collective competence scale developed by Goddard, Hoy and Woolfolk-Hoy (2000) and managerial competence scale developed by Cetinkaya (2009) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among self-efficacy, collective competence belief, and managerial competence levels in sports managers and regression analysis have been used to define the affect of self-efficacy and collective competence belief on the perception of managerial competence. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers' self-efficacy, collective competence beliefs, and managerial competence levels. According to the results of the regression analysis, it is understood that the managers’ perception of self-efficacy and collective competence belief significantly defines the perception of managerial competence. Also, the results show that there is no significant difference in self-efficacy, collective competence, and level of managerial competence of sports managers in terms of duty status, year of service and level of education.

Keywords: sports manager, self-efficacy, collective competence, managerial competence

Procedia PDF Downloads 223
5976 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice

Authors: T. Ewetumo, K. D. Adedayo, Festus Ben

Abstract:

Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.

Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation

Procedia PDF Downloads 338
5975 Valorization of Plastic and Cork Wastes in Design of Composite Materials

Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni

Abstract:

Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.

Keywords: composite materials, cork and polymer wastes, flammability, modificated cork

Procedia PDF Downloads 70
5974 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN

Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali

Abstract:

In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.

Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN

Procedia PDF Downloads 456
5973 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 182