Search results for: in vitro assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2280

Search results for: in vitro assay

1740 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays

Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova

Abstract:

Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.

Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS

Procedia PDF Downloads 96
1739 Natural Honey and Effect on the Activity of the Cells

Authors: Abujnah Dukali

Abstract:

Natural honey was assessed in cell culture system for its anticancer activity. Human leukemic cell line HL 60 was treated with honey and cultured for 5 days and cytotoxicity was calculated by MTT assay. Honey showed cytotoxicity with CC50 value of 174.20 µg/ml. Radical modulation activities was assessed by lipid peroxidation assay using egg lecithin. Honey showed antioxidant activity with EC50 value of 159.73 µg/ml. In addition, treatment with HL60 cells also resulted in nuclear DNA fragmentation, as seen in agarose gel electrophoresis. This is a hallmark of cells undergoing apoptosis. Confirmation of apoptosis was performed by staining the cells with Annexin V and FACS analysis. Apoptosis is an active, genetically regulated disassembly of the cell form within. Disassembly creates changes in the phospholipid content of the cytoplasmic membrane outer leaflet. Phosphatidylserine (PS) is translocated from the inner to the outer surface of the cell for phagocytic cell recognition. The human anticoagulant, annexin V, is a Ca2+-dependent phospholipid protein with a high affinity for PS. Annexin V labeled with fluorescein can identify apoptotic cells in the population It is a confirmatory test for apoptosis. Annexin V-positive cells were defined as apoptotic cells. Since honey shows both antioxidant activity and cytotoxicity at almost the same concentration, it can prevent the free radical induced cancer as prophylactic agent and kill the cancer cells by apoptotic process as a chemotherapeutic agent. Everyday intake of honey can prevent the cancer induction.

Keywords: anticancer, cells, DNA, honey

Procedia PDF Downloads 188
1738 Process Optimization for Albanian Crude Oil Characterization

Authors: Xhaklina Cani, Ilirjan Malollari, Ismet Beqiraj, Lorina Lici

Abstract:

Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil.

Keywords: TBP distillation curves, crude oil, optimization, simulation

Procedia PDF Downloads 288
1737 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro

Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku

Abstract:

Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.

Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science

Procedia PDF Downloads 438
1736 Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Capacity of in vitro Propagated Hyssop, Hyssopus officinalis L.

Authors: Maria P. Geneva, Ira V. Stancheva, Marieta G. Hristozkova, Roumiana D. Vasilevska-Ivanova, Mariana T. Sichanova, Janet R. Mincheva

Abstract:

Hyssopus officinalis L., Lamiaceae, commonly called hyssop, is an aromatic, semi-evergreen, woody-based, shrubby perennial plant. Hyssop is a good expectorant and antiviral herb commonly used to treat respiratory conditions such as influenza, sinus infections, colds, and bronchitis. Most of its medicinal properties are attributed to the essential oil of hyssop. The study was conducted to evaluate the influence of inoculation with arbuscular mycorrhizal fungi of in vitro propagated hyssop plants on the: activities of antioxidant enzymes superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase; accumulation of non-enzymatic antioxidants total phenols and flavonoid, water-soluble soluble antioxidant metabolites expressed as ascorbic acid; the antioxidant potential of hyssop methanol extracts assessed by two common methods: free radical scavenging activity using free stable radical (2,2-diphenyl-1-picrylhydrazyl, DPPH• and ferric reducing antioxidant power FRAP in flowers and leaves. The successfully adapted to field conditions in vitro plants (survival rate 95%) were inoculated with arbuscular mycorrhizal fungi (Claroideoglomus claroideum, ref. EEZ 54). It was established that the activities of enzymes with antioxidant capacity (superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase) were significantly higher in leaves than in flowers in both control and mycorrhized plants. In flowers and leaves of inoculated plants, the antioxidant enzymes activity were lower than in non-inoculated plants, only in SOD activity, there was no difference. The content of low molecular metabolites with antioxidant capacity as total phenols, total flavonoids, and water soluble antioxidants was higher in inoculated plants. There were no significant differences between control and inoculated plants both for FRAP and DPPH antioxidant activity. According to plant essential oil content, there was no difference between non-inoculated and inoculated plants. Based on our results we could suggest that antioxidant capacity of in vitro propagated hyssop plant under conditions of cultivation is determined by the phenolic compounds-total phenols and flavonoids as well as by the levels of water-soluble metabolites with antioxidant potential. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.

Keywords: antioxidant enzymes, antioxidant metabolites, arbuscular mycorrhizal fungi, Hyssopus officinalis L.

Procedia PDF Downloads 302
1735 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease

Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin

Abstract:

Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.

Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease

Procedia PDF Downloads 226
1734 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 190
1733 Hsa-miR-329 Functions as a Tumor Suppressor through Targeting MET in Non-Small Cell Lung Cancer

Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li

Abstract:

MicroRNAs (miRNAs) act as key regulators of multiple cancers. Hsa-miR-329 (miR-329) functions as a tumor suppressor in some malignancies. However, its role on lung cancer remains poorly understood. In this study, we investigated the role of miR-329 on the development of lung cancer. The results indicated that miR-329 was decreased in primary lung cancer tissues compared with matched adjacent normal lung tissues and very low levels were found in a non-small cell lung cancer (NSCLC) cell lines. Ectopic expression of miR-329 in lung cancer cell lines substantially repressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibiting cyclin D1, cyclin D2, and up-regulatiing p57(Kip2) and p21(WAF1/CIP1). In addition, miR-329 promoted NSCLC cell apoptosis, as indicated by up-regulation of key apoptosis gene cleaved caspase-3, and down-regulation of anti-apoptosis gene Bcl2. Moreover, miR-329 inhibited cellular migration and invasiveness through inhibiting matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene MET was revealed to be a putative target of miR-329, which was inversely correlated with miR-329 expression. Furthermore, down-regulation of MET by siRNA performed similar effects to over-expression of miR-329. Collectively, our results demonstrated that miR-329 played a pivotal role in lung cancer through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic MET.

Keywords: hsa-miRNA-329(miR-329), MET, non-small cell lung cancer (NSCLC), proliferation, apoptosis

Procedia PDF Downloads 392
1732 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 314
1731 In vivo Determination of Anticoagulant Property of the Tentacle Extract of Aurelia aurita (Moon Jellyfish) Using Sprague-Dawley Rats

Authors: Bea Carmel H. Casiding, Charmaine A. Guy, Funny Jovis P. Malasan, Katrina Chelsea B. Manlutac, Danielle Ann N. Novilla, Marianne R. Oliveros, Magnolia C. Sibulo

Abstract:

Moon jellyfish, Aurelia aurita, has become a popular research organism for diverse studies. Recent studies have verified the prevention of blood clotting properties of the moon jellyfish tentacle extract through in vitro methods. The purpose of this study was to validate the blood clotting ability of A. aurita tentacle extract using in vivo method of experimentation. The tentacles of A. aurita jellyfish were excised and filtered then centrifuged at 3000xg for 10 minutes. The crude nematocyst extract was suspended in 1:6 ratios with phosphate buffer solution and sonicated for three periods of 20 seconds each at 50 Hz. Protein concentration of the extract was determined using Bradford Assay. Bovine serum albumin was the standard solution used with the following concentrations: 35.0, 70.0, 105.0, 140.0, 175.0, 210.0, 245.0, and 280.0 µg/mL. The absorbance was read at 595 nm. Toxicity testing from OECD guidelines was adapted. The extract suspended in phosphate-buffered saline solution was arbitrarily set into three doses (0.1mg/kg, 0.3mg/kg, 0.5mg/kg) and were administered daily for five days to the experimental groups of five male Sprague-Dawley rats (one dose per group). Before and after the administration period, bleeding time and clotting time tests were performed. The One-way Analysis of Variance (ANOVA) was used to analyze the difference of before and after bleeding time and clotting time from the three treatment groups, time, positive and negative control groups. The average protein concentration of the sonicated crude tentacle extract was 206.5 µg/mL. The highest dose administered (0.5mg/kg) produced significant increase in the time for both bleeding and clotting tests. However, the preceding lower dose (0.3mg/kg) only was significantly effective for clotting time test. The protein contained in the tentacle extract with a concentration of 206.5 mcg/mL and dose of 0.3 mg/kg and 0.5 mg/kg of A. aurita elicited anticoagulating activity.

Keywords: anticoagulant, bleeding time test, clotting time test, moon jellyfish

Procedia PDF Downloads 380
1730 Investigation on Porcine Follicular Fluid Protein Pattern of Medium and Large Follicles

Authors: Hatairuk Tungkasen, Somrudee Phetchrid, Suwapat Jaidee, Supinya Yoomak, Chantana Kankamol, Mayuree Pumipaiboon, Mayuva Areekijseree

Abstract:

Ovaries of reproductive female pigs were obtained from local slaughterhouses in Nakorn Pathom Province, Thailand. Follicular fluid of medium follicle (5-6 diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected by sterile technique and analyzed protein pattern. The follicular fluid protein bands were found by SDS-PAGE which has no protein band in difference compared to standard protein band. So we chose protein band molecular weight 50, 62-65, 75-80, 90, 120-160, and >220 kDa were analyzed by LC/MS/MS. The result was found immunoglobulin gamma chain, keratin, transferrin, heat shock protein, and plasminogen precursor, ceruloplasmin, and hemopexin, and protease, respectively. All proteins play important roles in promotion and regulation on growth and development of reproductive cells. The result of this study found many proteins which were useful and important for in vitro oocyte maturation and embryonic development of cell technology in animals. The further study will be use porcine follicular fluid protein of medium and large follicles as feeder cells in in vitro condition to promote oocyte and embryo maturation.

Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE

Procedia PDF Downloads 564
1729 Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy

Authors: Madhu Gupta, G. P. Agrawa, Suresh P. Vyas

Abstract:

Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature.

Keywords: solid Tumor, docetaxel, targeting, NGR ligand

Procedia PDF Downloads 465
1728 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering

Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei

Abstract:

Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.

Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation

Procedia PDF Downloads 240
1727 In vitro Assessment of Tomato (Lycopersicon esculentum) and Cauliflower (Brassica oleracea) Seedlings Growth and Proline Production under Salt Stress

Authors: Amir Wahid, Fazal Hadi, Amin Ullah Jan

Abstract:

Tomato and Cauliflower seedlings were grown in-vitro under salt concentrations (0, 2, 4, 8, and 10 dSm-1) with objectives to investigate; (1) The effect of salinity on seedling growth and free proline production, (2) the correlation between seedling growth and proline contents, (3) comparative salt tolerance of both species. Different concentrations of salt showed considerable effect on percent (%) germination of seeds, length and biomass of shoot and root and also showed effect on percent water content of both plants seedlings. Germination rate in cauliflower was two times higher than tomato even at highest salt concentration (10 dSm-1). Seedling growth of both species was less effected at low salt concentrations (2 and 4 dSm-1) but at high concentrations (6 and 8 dSm-1) the seedling growth of both species was significantly decreased. Particularly the tomato root was highly significantly reduced. The proline level linearly increased in both species with increasing salt concentrations up-to 4 dSm-1 and then declined. The cauliflower showed higher free proline level than tomato under all salt treatments. Overall, the cauliflower seedlings showed better growth response along with higher proline contents on comparison with tomato seedlings.

Keywords: NaCl (Sodium Chloride), EC (Electrical Conductivity), MS (Murashig and Skoog), ANOVA (Analysis of Variance), LSD (Least Significant Differences)

Procedia PDF Downloads 541
1726 Hepatoprotective Effect of Ethyl Acetate Fraction of Ficus carica L. Leaves against Carbon Tetrachloride-Induced Toxicity in vitro and in vivo

Authors: Syeda Hira, Muhammad Gulfraz

Abstract:

Background: Liver diseases cause serious health issues. Plants contain active compounds that significantly help in the treatment of various diseases. Ficus carica is traditionally used for the treatment of liver diseases. The purpose of the present study was the isolation and identification of active components from F.carica leaves which are responsible for hepatoprotective activity. Methods: The study was designed to identify the most active hepatoprotective sub-fraction from ethyl acetate fraction of Ficus carica by in vitro study and evaluation of its in vivo hepatoprotective effect in animal models. Ethyl acetate fraction was subjected to column, and a total of eight sub-fractions were obtained. In vitro, the hepatoprotective effect of all sub-fractions was determined on HepG2 cell lines. Toxicity was induced by CCl₄ (Carbon tetrachloride), and silymarin was used as a positive control. On the basis of the results, the most active sub-fraction was subjected to LC-MS and FT-IR analysis for the identification of bioactive compounds. In vivo, the hepatoprotective effect was determined in mice. Toxicity was induced by CCl₄; at the end of the experiment, biochemical parameters such as ALT, AST, ALP, bilirubin, and total protein were estimated in serum. Histopathology of liver tissues was also done. Results: Sub-fraction FVI exhibited significant (P<0.05) hepatoprotective activity as compared to other sub-fractions, which was almost similar to the standard drug silymarin. Six known bioactive compounds were identified from this sub-fraction after LC-MS analysis. In vivo, the hepatoprotective activity of sub-fraction FVI was evaluated in CCl₄-induced toxicated mice. Administration of CCl₄ significantly increased level of ALT (Alanine transaminase), AST (Aspartate aminotransferase), ALP (Alkaline phosphatase), and bilirubin and decreased the total protein. Treatment with sub-fraction FVI significantly (p<0.05) reversed the level of these biomarkers toward normal at both doses of 25 mg/kg and 50 mg/kg. Conclusion: Our findings confirmed the hepatoprotective effect of ethyl acetate fraction of F.carica. It could be a good candidate for the development of a natural hepatoprotective drug; pre-clinical investigation on ethyl acetate fraction is recommended.

Keywords: Ficus carica, hepatoprotective, CCl₄, bioactive compounds, liver markers

Procedia PDF Downloads 45
1725 Perfluoroheptanoic Acid Affects Xenopus Embryo Embryogenesis by Inducing the Phosphorylation of ERK and JNK

Authors: Chowon Kim, Yoo-Kyung Kim, Kyeong Yeon Park, Hyun-Shik Lee

Abstract:

Perfluoroalkyl compounds (PFCs) are globally distributed synthetic compounds that are known to adversely affect human health. Developmental toxicity assessment of PFCs is important to facilitate the evaluation of their environmental impact. In the present study, we assessed the developmental toxicity and teratogenicity of PFCs with different numbers of carbon atoms on Xenopus embryogenesis. An initial frog embryo teratogenicity assay-Xenopus (FETAX) assay was performed that identified perfluorohexanoic (PFHxA) and perfluoroheptanoic (PFHpA) acids as potential teratogens and developmental toxicants. The mechanism underlying this teratogenicity was also investigated by measuring the expression of tissue-specific biomarkers such as phosphotyrosine‑binding protein, xPTB (liver); NKX2.5 (heart); and Cyl18 (intestine). Whole‑mount in situ hybridization, reverse transcriptase‑polymerase chain reaction (RT-PCR), and histologic analyses detected severe defects in the liver and heart following exposure to PFHxA or PFHpA. In addition, immunoblotting revealed that PFHpA significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), while PFHxA slightly increased these, as compared with the control. These results suggest that PFHxA and PFHpA are developmental toxicants and teratogens, with PFHpA producing more severe effects on liver and heart development through the induction of ERK and JNK phosphorylation.

Keywords: PFCs, ERK, JNK, xenopus

Procedia PDF Downloads 284
1724 Non-Steroidal Anti-inflammatory Drugs, Plant Extracts, and Characterized Microparticles to Modulate Antimicrobial Resistance of Epidemic Meca Positive S. Aureus of Dairy Origin

Authors: Amjad I. Aqib, Shanza R. Khan, Tanveer Ahmad, Syed A. R. Shah, Muhammad A. Naseer, Muhammad Shoaib, Iqra Sarwar, Muhammad F. A. Kulyar, Zeeshan A. Bhutta, Mumtaz A. Khan, Mahboob Ali, Khadija Yasmeen

Abstract:

The current study focused on resistance modulation of dairy linked epidemic mec A positive S. aureus for resistance modulation by plant extract (Eucalyptus globolus, Calotropis procera), NSAIDs, and star like microparticles. Zinc oxide {ZnO}c and {Zn (OH)₂} microparticles were synthesized by solvothermal method and characterized by calcination, X-ray diffraction (XRD), and scanning electron microscope (SEM). Plant extracts were prepared by the Soxhlet extraction method. The study found 34% of subclinical samples (n=200) positive for S. aureus from dairy milk having significant (p < 0.05) association of assumed risk factors with pathogen. The antimicrobial assay showed 55, 42, 41, and 41% of S. aureus resistant to oxacillin, ciprofloxacin, streptomycin, and enoxacin. Amoxicillin showed the highest percentage of increase in zone of inhibitions (ZOI) at 100mg of Calotropis procera extract (31.29%) followed by 1mg/mL (28.91%) and 10mg/mL (21.68%) of Eucalyptus globolus. Amoxicillin increased ZOI by 42.85, 37.32, 29.05, and 22.78% in combination with 500 ug/ml with each of diclofenac, aspirin, ibuprofen, and meloxicam, respectively. Fractional inhibitory concentration indices (FICIs) showed synergism of amoxicillin with diclofenac and aspirin and indifferent synergy with ibuprofen and meloxicam. The preliminary in vitro finding of combination of microparticles with amoxicillin proved to be synergistic, giving rise to 26.74% and 14.85% increase in ZOI of amoxicillin in combination with zinc oxide and zinc hydroxide, respectively. The modulated antimicrobial resistance incurred by NSAIDs, plant extracts, and microparticles against pathogenic S. aureus invite immediate attention to probe alternative antimicrobial sources.

Keywords: antimicrobial resistance, dairy milk, nanoparticles, NSIDs, plant extracts, resistance modulation, S. aureus

Procedia PDF Downloads 194
1723 CICAP: Promising Wound Healing Gel from Bee Products and Medicinal Plants

Authors: Laïd Boukraâ

Abstract:

Complementary and Alternative Medicine is an inclusive term that describes treatments, therapies, and modalities that are not accepted as components of mainstream education or practice, but that are performed on patients by some practitioners. While these treatments and therapies often form part of post-graduate education, study and writing, they are generally viewed as alternatives or complementary to more universally accepted treatments. Ancient civilizations used bee products and medicinal plants, but modern civilization and ‘education’ have seriously lessened our natural instinctive ability and capability. Despite the fact that the modern Western establishment appears to like to relegate apitherapy and aromatherapy to the status of 'folklore' or 'old wives' tales', they contain a vast spread of pharmacologically-active ingredients and each one has its own unique combination and properties. They are classified in modern herbal medicine according to their spheres of action. Bee products and medicinal plants are well-known natural product for their healing properties and their increasing popularity recently as they are widely used in wound healing. Honey not only has antibacterial properties which can help as an antibacterial agent but also has chemical properties which may further help in the wound healing process. A formulation with honey as its main component was produced into a honey gel. This new formulation has enhanced texture and is more user friendly for usage as well. This new formulation would be better than other formulas as it is hundred percent consisting of natural products and has been made into a better formulation. In vitro assay, animal model study and clinical trials have shown the effectiveness of LEADERMAX for the treatment of diabetic foot, burns, leg ulcer and bed sores. This one hundred percent natural product could be the best alternative to conventional products for wound and burn management. The advantages of the formulation are: 100% natural, affordable, easy to use, strong power of absorption, dry surface on the wound making a film, will not stick to the wound bed; helps relieve wound pain, inflammation, edema and bruising while improving comfort.

Keywords: bed sore bee products, burns, diabetic foot, medicinal plants, leg ulcer, wounds

Procedia PDF Downloads 323
1722 Antioxidative Potential of Aqueous Extract of Ocimum americanum L. Leaves: An in vitro and in vivo Evaluation

Authors: Bukola Tola Aluko, Omotade Ibidun Oloyede

Abstract:

Ocimum americanum L. (Lamiaceae) is an annual herb that is native to tropical Africa. The in vitro and in vivo antioxidant activity of its aqueous extract was carefully investigated by assessing the DPPH radical scavenging activity, ABTS radical scavenging activity and hydrogen peroxide radical scavenging activity. The reducing power, total phenol, total flavonoids and flavonols content of the extract were also evaluated. The data obtained revealed that the extract is rich in polyphenolic compounds and scavenged the radicals in a concentration-dependent manner. This was done in comparison with the standard antioxidants such as BHT and Vitamin C. Also, the induction of oxidative damage with paracetamol (2000 mg/kg) resulted in the elevation of lipid peroxides and significant (P < 0.05) decrease in activities of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase in the liver and kidney of rats. However, the pretreatment of rats with aqueous extract of O. americanum leaves (200 and 400 mg/kg), and silymarin (100 mg/kg) caused a significant (P < 0.05) reduction in the values of lipid peroxides and restored the levels of antioxidant parameters in these organs. These findings suggest that the leaves of O. americanum have potent antioxidant properties which may be responsible for its acclaimed folkloric uses.

Keywords: antioxidants, free radicals, ocimum americanum, scavenging activity

Procedia PDF Downloads 318
1721 Polyethylene Terephthalate Plastic Degradation by Fungus Rasamsonia Emersonii

Authors: Naveen Kumar

Abstract:

Microplastics, tiny plastic particles less than 5 mm in size formed by the disposal and breakdown of industrial and consumer products, have become a primary environmental concern due to their ubiquitous presence and application in the environment and their potential to cause harm to the ecosystem, wildlife and human health. In this, we study the ability of the fungus Rasamsonia emersonii IMI 393752 to degrade the rigid microplastics of Coke bottles. Microplastics were extracted from Coke bottles and incubated with Rasamsonia emersonii in Sabouraud dextrose agar media. Microplastics were pre-sterilized without altering the chemistry of microplastic. Preliminary analysis was performed by observing radial growth assessment of microplastic-containing media enriched with fungi vs. control. The assay confirmed no impedance or change in the fungi's growth pattern and rate by introducing microplastics. The degradation of the microplastics was monitored over time using microscopy and FTIR, and biodegradation/deterioration on the plastic surface was observed. Furthermore, the liquid assay was performed. HPLC and GCMS will be conducted to check the biodegradation and presence of enzyme release by fungi to counteract the presence of microplastics. These findings have important implications for managing plastic waste, as they suggest that fungi such as Rasamsonia emersonii can potentially degrade microplastics safely and effectively. However, further research to optimise the conditions for microplastic degradation by Rasamsonia emersonii and to develop strategies for scaling up the process for industrial applications will be beneficial.

Keywords: bioremediation, mycoremediation, plastic degradtion, polyethylene terephthalate

Procedia PDF Downloads 80
1720 Screening of Indigenous Rhizobacteria for Growth Promoting and Antagonistic Activity against Fusarium Oxysporoum in Tomato

Authors: Mohammed H. Abu-Dieyeh, Mohammad M. Zalloum

Abstract:

Plant growth-promoting rhizobacteria (PGPR) are known to enhance plant growth and/or reduce plant damage due to soil-borne pathogens. Tomato is the highest consumable vegetable world-wide including Jordan. Fusarium oxysporum is a pathogen that causes well-known damages and losses to many vegetable crops including tomato. In this study, purification of 112 isolates of PGPR strains from rhizosphere environment of different regions in Jordan was accomplished. All bacterial isolates were In-vitro screened for antagonistic effects against F. oxysporum. The eleven most effective isolates that caused 30%-50% in-vitro growth reduction of F. oxysporum were selected. 8 out of 11 of these isolates were collected from Al-Halabat (arid-land). 7 isolates of Al-Halabat exerted 40-54% In-vitro growth reduction of F. oxysporum. Four-week-old seedlings of tomato cultivar (Anjara, the most susceptible indigenous cultivar to F. oxysporum) treated with PGPR5 (Bacillus amyloliquefaciens), and exposed to F. oxysporum, showed no disease symptoms and no significant changes in biomasses or chlorophyll contents indicating a non-direct mechanism of action of PGPR on tomato plants. However PGPR3 (Bacillus sp.), PGPR4 (Bacillus cereus), and PGPR38 (Paenibacillus sp.) treated plants or PGPR treated and exposed to F. oxysporum showed a significant increasing growth of shoot and root biomasses as well as chlorophyll contents of leaves compared to control untreated plants or plants exposed to the fungus without PGPR treatment. A significant increase in number of flowers per plant was also recorded in all PGPR treated plants. The characterization of rhizobacterial strains were accomplished using 16S rRNA gene sequence analysis in addition to microscopic characterization. Further research is necessary to explore the potentiality of other collected PGPR isolates on tomato plants in addition to investigate the efficacy of the identified isolates on other plant pathogens and then finding a proper and effective methods of formulation and application of the successful isolates on selected crops.

Keywords: antagonism, arid land, growth promoting, rhizobacteria, tomato

Procedia PDF Downloads 359
1719 Multifunctional Polydopamine-Silver-Polydopamine Nanofilm With Applications in Digital Microfluidics and SERS

Authors: Yilei Xue, Yat-Hing Ham, Wenting Qiu, Wan Chan, Stefan Nagl

Abstract:

Polydopamine (PDA) is a popular material in biological and medical applications due to its excellent biocompatibility, outstanding physicochemical properties, and facile fabrication. In this project, a new sandwich-structured PDA and silver (Ag) hybrid material named PDA-Ag-PDA was synthesized and characterized layer-by-layer, where silver nanoparticles (Ag NPs) are wrapped in PDA coatings, using SEM, AFM, 3D surface metrology, and contact angle meter. The silver loading capacity is positively proportional to the roughness value of the initial PDA film. This designed film was subsequently integrated within a digital microfluidic (DMF) platform coupling with an oxygen sensor layer for on-chip antibacterial assay. The concentration of E. coli was quantified on DMF by real-time monitoring oxygen consumption during E. coli growth with the optical oxygen sensor layer. The PDA-Ag-PDA coating shows an 99.9% reduction in E. coli population under non-nutritive condition with 1-hour treatment and has a strong growth inhibition of E. coliin nutrient LB broth as well. Furthermore, PDA-Ag-PDA film maintaining a low cytotoxicity effect to human cells. After treating with PDA-Ag-PDA film for 24 hours, 82% HEK 293 and 86% HeLa cells were viable. The SERS enhancement factor of PDA-Ag-PDA is estimated to be 1.9 × 104 using Rhodamine 6G (R6G). Multifunctional PDA-Ag-PDA coating provides an alternative platform to conjugate biomolecules and perform biological applications on DMF, in particular, for the adhesive protein and cell study.

Keywords: polydopamine, silver nanoparticles, digital microfluidic, optical sensor, antimicrobial assay, SERS

Procedia PDF Downloads 81
1718 Optimization of Hepatitis B Surface Antigen Purifications to Improving the Production of Hepatitis B Vaccines on Pichia pastoris

Authors: Rizky Kusuma Cahyani

Abstract:

Hepatitis B is a liver inflammatory disease caused by hepatitis B virus (HBV). This infection can be prevented by vaccination which contains HBV surface protein (sHBsAg). However, vaccine supply is limited. Several attempts have been conducted to produce local sHBsAg. However, the purity degree and protein yield are still inadequate. Therefore optimization of HBsAg purification steps is required to obtain high yield with better purification fold. In this study, optimization of purification was done in 2 steps, precipitation using variation of NaCl concentration (0,3 M; 0,5 M; 0,7 M) and PEG (3%, 5%, 7%); ion exchange chromatography (IEC) using NaCl 300-500 mM elution buffer concentration.To determine HBsAg protein, bicinchoninic acid assay (BCA) and enzyme-linked immunosorbent assay (ELISA) was used in this study. Visualization of HBsAg protein was done by SDS-PAGE analysis. Based on quantitative analysis, optimal condition at precipitation step was given 0,3 M NaCl and PEG 3%, while in ion exchange chromatography step, the optimum condition when protein eluted with NaCl 500 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicates that the presence of protein HBsAg with a molecular weight of 25 kDa (monomer) and 50 kDa (dimer). The optimum condition for purification of sHBsAg produced in Pichia pastoris gave a yield of 47% and purification fold 17x so that it would increase the production of hepatitis B vaccine to be more optimal.

Keywords: hepatitis B virus, HBsAg, hepatitis B surface antigen, Pichia pastoris, purification

Procedia PDF Downloads 135
1717 In vitro Antioxidant, Anticancer Properties and Probiotic Characteristics of Selected Lactic Acid Bacteria Strains

Authors: M. G. Shehata, S. A. El Sohaimy, Marwa M. Abu-Serie, Nourhan M. Abd El-Aziz

Abstract:

Probiotic strains can potentially be used as bio-preservatives and functional food supplement. Eight lactic acid bacteria strains (LAB) Lactobacillus brevis NRRL B-4527; Streptococcus thermophilus BLM 58; Pediococcusacidilactici ATCC 8042; Lactobacillus rhamnosus CCUG 1452; Lactobacillus curvatus ATCC 51436; Lactococcuslactis sub sp. lactisDSM 20481; Lactobacillus plantarum DMSZ 20079 and Lactobacillus plantarumTF103 were selected to screen the antioxidant, anticancer potential and probiotic properties. LAB strains exhibited good probiotic, antioxidant properties and showed antagonistic activity against food-borne pathogenic (Bacillus subtilis DB 100 host; Candida albicans ATCCMYA-2876; Clostridium botulinum ATCC 3584; Escherichia coli BA 12296; Klebsiellapneumoniae ATCC12296; Salmonella senftenberg ATCC 8400 and Staphylococcus aureus NCTC 10788). Further, in vitro probiotic properties of eight strains displayed excellent acid tolerance, bile tolerance, simulated gastrointestinal juice tolerance, in vitro adhesion ability for HT-29 cell line. The antioxidant effect of intracellular and cell-free extract of lactic acid bacteria strains was evaluated by various antioxidant assays, namely, resistance to hydrogen peroxide, DPPH radical scavenging, ABTS radical scavenging, and hydroxyl radical scavenging (HRS). The results showed that intracellular and cell-free supernatant of S. Thermophilus BLM 58, L. lactissubsp.lactis DSM 20481, P. acidilactici ATCC 8042, L. brevis NRRL B-4527 strains possess excellent antioxidant capacity. The intracellular of S. Thermophilus BLM 58 and P. acidilactici ATCC 8042 also showed excellent anticancer activity against Caco-2, MCF-7, HepG-2, and PC-3. Antioxidative property of selected lactic acid bacteria strains would be useful in the functional food manufacturing industry. They could beneficially affect the consumer by providing dietary source of antioxidants.

Keywords: anticancer activity, antioxidant activity, functional food, lactic acid bacteria, probiotic

Procedia PDF Downloads 213
1716 Effect of Humic Substance on Ex-Vitro Propagation of Saffron (Crocus Sativus L.)

Authors: Abdelghani Tahiri, Youssef Karra, Naima Ait Aabd, Abdelaziz Mimouni

Abstract:

Saffron (Crocus sativus L.), the most expensive spice in the world derived from the stigmas, is an autumn-flowering and sterile triploid (2n=3x=24) geophyte species that belong to the Iridaceae family. This plant species is mainly propagated vegetatively through the formation of daughter corms from the mother one. Low multiplication rates of daughter corms under natural conditions, along with fungal contamination, significantly reduce the productivity and quality of saffron corms. The development of efficient and sustainable strategies for rapid and large-scale production of selected cultivars of saffron will be desired. For this, the main objective of this work is to improve the vegetative propagation of saffron under ex-vitro conditions. Preliminary results of the influence of increasing doses of humic substances (HS) on the growth and multiplication of corms under greenhouse conditions are evaluated. The obtained data shows that the effect of HS depends on the concentration used and the mode of application. Indeed, the application through irrigation has increased the number of shoots and corms, but it has reduced other parameters. On the other hand, the temporary treatment has improved all observed parameters except for the number of shoots and corms. Results obtained in this work suggest that it is possible to improve the propagation of saffron corms under greenhouse conditions.

Keywords: saffron, Crocus sativus L., corm, humic substances

Procedia PDF Downloads 198
1715 Formulation and Evaluation of Mouth Dissolving Tablet of Ketorolac Tromethamine by Using Natural Superdisintegrants

Authors: J. P. Lavande, A. V.Chandewar

Abstract:

Mouth dissolving tablet is the speedily growing and highly accepted drug delivery system. This study was aimed at development of Ketorolac Tromethamine mouth dissolving tablet (MDTs), which can disintegrate or dissolve rapidly once placed in the mouth. Conventional Ketorolac tromethamine tablet requires water to swallow it and has limitation like low disintegration rate, low solubility etc. Ketorolac Tromethamine mouth dissolving tablets (formulation) consist of super-disintegrate like Heat Modified Karaya Gum, Co-treated Heat Modified Agar & Filler microcrystalline cellulose (MCC). The tablets were evaluated for weight variation, friability, hardness, in vitro disintegration time, wetting time, in vitro drug release profile, content uniformity. The obtained results showed that low weight variation, good hardness, acceptable friability, fast wetting time. Tablets in all batches disintegrated within 15-50 sec. The formulation containing superdisintegrants namely heat modified karaya gum and heat modified agar showed better performance in disintegration and drug release profile.

Keywords: mouth dissolving tablet, Ketorolac tromethamine, disintegration time, heat modified karaya gum, co-treated heat modified agar

Procedia PDF Downloads 270
1714 Avidity and IgE versus IgG and IgM in Diagnosis of Maternal Toxoplasmosis

Authors: Ghada A. Gamea, Nabila A. Yaseen, Ahmed A. Othman, Ahmed S. Tawfik

Abstract:

Infection with Toxoplasma gondii can cause serious complications in pregnant women, leading to abortion, stillbirth, and congenital anomalies in the fetus. Definitive diagnosis of T. gondii acute infection is therefore critical for the clinical management of a mother and her fetus. This study was conducted on 250 pregnant females in the first trimester who were inpatients or outpatients at Obstetrics and Gynaecology Department at Tanta University Hospital. Screening of the selected females was done for the detection of immunoglobulin (IgG and IgM), and all subjects were submitted to history taking through a questionnaire including personal data, risk factors for Toxoplasma, complaint and history of the present illness. Thirty-eight samples, including 18 IgM +ve and 20 IgM-ve cases were further investigated by the avidity and IgE ELISA tests. The seroprevalence of toxoplasmosis in pregnant women was (42.8%) based on the presence of IgG antibodies in their sera. Contact with cats and consumption of raw or undercooked meat are important risk factors that were associated with toxoplasmosis in pregnant women. By serology, it could be observed that in the IgM +ve group, only one case (5.6%) showed an acute pattern by using the avidity test, though 10 (55.6%) cases were found to be acute by the IgE assay. On the other hand, in the IgM –ve group, 3 (15%) showed low avidity, but none of them was positive by using the IgE assay. In conclusion, there is no single serological test that can be used to confirm whether T. gondii infection is recent or was acquired in the distant past. A panel of tests for detection of toxoplasmosis will certainly have higher discriminatory power than any test alone.

Keywords: diagnosis, serology, seroprevalence, toxoplasmosis

Procedia PDF Downloads 136
1713 Effect of Lignocellulose-Degrading Bacteria Isolated from Termite Gut on the Nutritive Value of Wheat Straw as Ruminant Feed

Authors: Ayoub Azizi-Shotorkhoft, Tahereh Mohammadabadi, Hosein Motamedi, Morteza Chaji, Hasan Fazaeli

Abstract:

This study was conducted to investigate nutritive value of wheat straw processed with termite gut symbiotic bacteria with lignocellulosic-degrading potential including Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola in vitro. These bacteria were isolated by culturing termite guts contents in different culture media containing different lignin and lignocellulosic materials that had been prepared from water-extracted sawdust and wheat straw. Results showed that incubating wheat straw with all of three isolated bacteria increased (P<0.05) acid-precipitable polymeric lignin (APPL) compared to control, and highest amount of APPL observed following treatment with B. licheniformis. Highest and lowest (P<0.05) in vitro gas production and ruminal organic matter digestibility were obtained when treating wheat straw with B. licheniformis and control, respectively. However, other fermentation parameters such as b (i.e., gas production from the insoluble fermentable fractions at 144h), c (i.e., rate of gas production during incubation), ruminal dry matter digestibility, metabolizable energy, partitioning factor, pH and ammonia nitrogen concentration were similar between experimental treatments (P>0.05). It is concluded that processing wheat straw with isolated bacteria improved its nutritive value as ruminants feed.

Keywords: termite gut bacteria, wheat straw, nutritive value, ruminant

Procedia PDF Downloads 320
1712 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability

Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte

Abstract:

This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.

Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen

Procedia PDF Downloads 154
1711 Biochemical and Electrochemical Characterization of Glycated Albumin: Clinical Relevance in Diabetes Associated Complications

Authors: Alok Raghav, Jamal Ahmad

Abstract:

Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations. Conclusion: Glucose modified human serum albumin confers AGE formation causes biochemical and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes.

Keywords: glycation, diabetes, human serum albumin, biochemical and electrochemical characterization

Procedia PDF Downloads 361