Search results for: equilibrium and kinetics
907 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria
Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe
Abstract:
Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy
Procedia PDF Downloads 326906 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process
Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel
Abstract:
A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)
Procedia PDF Downloads 217905 Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy
Authors: Ju Hyun Won, Seok Hong Min, Tae Kwon Ha
Abstract:
Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs.Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging
Procedia PDF Downloads 430904 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite
Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee
Abstract:
Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration
Procedia PDF Downloads 232903 Prey-Predator Eco-Epidemiological Model with Nonlinear Transmission Disease
Authors: Qamar J. A. Khan, Fatma Ahmed Al Kharousi
Abstract:
A prey-predator eco-epidemiological model is studied where transmission of the disease between infected and uninfected prey is nonlinear. The interaction of the predator with infected and uninfected prey species depend on their numerical superiority. Harvesting of both uninfected and infected prey is considered. Stability analysis is carried out for equilibrium values. Using the parameter µ, the death rate of infected prey as a bifurcation parameter it is shown that Hopf bifurcation could occur. The theoretical results are compared with numerical results for different set of parameters.Keywords: bifurcation, optimal harvesting, predator, prey, stability
Procedia PDF Downloads 302902 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal
Authors: Hakimeh Sharififard, Mansooreh Soleimani
Abstract:
In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich
Procedia PDF Downloads 463901 Evaluation of TRIS-DMA-NVP Hydrogels for Making Silicone-Based Contact Lenses
Authors: N. P. D. Tran, H. Q. D. Nguyen, M. C. Yang
Abstract:
In this study, contact lenses were prepared through the polymerization of tris-(trimethyl-silyl-propyl-methacrylate) (TRIS), N,N-dimethylacrylamide (DMA), N-vinylpyrrolidone (NVP), and cross-linked with ethylene glycol dimethylacrylate (EGDMA). The equilibrium water content (EWC), oxygen permeability (Dk), light transmittance, and in vitro cytotoxicity of TRIS-DMA-NVP with various ratios were measured. The results showed that the EWC increased while the Dk decreased with the increase of NVP content. For the sample with 25 wt% NVP, the EWC attained 53% whereas the Dk decreased to 46 barrers. All these lenses exhibited light transmittance over than 95%. In addition, all these lenses exhibited no inhibition to the growth of L292 fibroblasts. Thus, this study showed that TRIS-DMA-NVP can be applicable for making contact lens.Keywords: DMA, TRIS, NVP, silicone hydrogel, contact lens
Procedia PDF Downloads 322900 Pyrolysis and Combustion Kinetics of Palm Kernel Shell Using Thermogravimetric Analysis
Authors: Kanit Manatura
Abstract:
The combustion and pyrolysis behavior of Palm Kernel Shell (PKS) were investigated in a thermogravimetric analyzer. A 10 mg sample of each biomass was heated from 30 °C to 800 °C at four heating rates (within 5, 10, 15 and 30 °C/min) in nitrogen and dry air flow of 20 ml/min instead of pyrolysis and combustion process respectively. During pyrolysis, thermal decomposition occurred on three different stages include dehydration, hemicellulose-cellulose and lignin decomposition on each temperature range. The TG/DTG curves showed the degradation behavior and the pyrolysis/combustion characteristics of the PKS samples which led to apply in thermogravimetric analysis. The kinetic factors including activation energy and pre-exponential factor were determined by the Coats-Redfern method. The obtained kinetic factors are used to simulate the thermal decomposition and compare with experimental data. Rising heating rate leads to shift the mass loss towards higher temperature.Keywords: combustion, palm kernel shell, pyrolysis, thermogravimetric analyzer
Procedia PDF Downloads 228899 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space
Authors: A. S. Mousa, F. Shoman
Abstract:
We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.Keywords: coherent strategy, split strategy, pure strategy, mixed strategy, Nash equilibrium, game theory
Procedia PDF Downloads 148898 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity
Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek
Abstract:
In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.Keywords: zeta potential, adsorption, Orange 16, isotherms
Procedia PDF Downloads 196897 Bio-Equivalence of Doxycycline in Two Preparations in Broiler Chickens
Authors: Abdelrazzag Elmajdoub
Abstract:
The present study was designed to investigate the bio-equivalence of doxycycline in Dolistin® and Colidox® at a dose rate of 10 mg doxycycline/kg of body weight in 48 clinically normal broiler chickens. After oral administration, plasma levels of doxycycline peaked after 2 hours post-dosing without significant differences between the two products and it could be detected therapeutically and exceeded the minimum inhibitory concentration (MIC) for most micro-organisms sensitive to doxycycline for 12 hours. The disposition kinetics of doxycycline in the two products following oral administration revealed that the maximum plasma concentrations (Cmax.) were 22.65 and 21.80 µg/ml and attained at (Tmax.) 2.10 and 2.20 hours, respectively. Doxycycline in both of the products was eliminated with half- lives (t0.5α) equal to 7.70 and 6.93 hours, respectively. The mean systemic bio availabilities of doxycycline in both of the products after oral administration in chickens were 80.60 and 79.70%, respectively. It was concluded that doxycycline in the form of Dolistin® and Colidox® needs a dose equivalent to 20 mg doxycycline/kg of body weight a day is better to keep the plasma concentration higher than the MIC.Keywords: tetracyclines, doxycycline, bioavailability, broilers, chickens
Procedia PDF Downloads 506896 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater
Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar
Abstract:
Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater
Procedia PDF Downloads 590895 CO₂ Conversion by Low-Temperature Fischer-Tropsch
Authors: Pauline Bredy, Yves Schuurman, David Farrusseng
Abstract:
To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process
Procedia PDF Downloads 58894 Tax Evasion in Brazil: The Case of Specialists
Authors: Felippe Clemente, Viviani S. Lírio
Abstract:
Brazilian tax evasion is very high. It causes many problems for economics as budget realization, income distribution and no allocation of productive resources. Therefore, the purpose of this article is to use the instrumental game theory to understand tax evasion agents and tax authority in Brazil (Federal Revenue and Federal Police). By means of Game Theory approaches, the main results from considering cases both with and without specialists show that, in a high dropout situation, penalizing taxpayers with either high fines or deprivations of liberty may not be very effective. The analysis also shows that audit and inspection costs play an important role in driving the equilibrium system. This would suggest that a policy of investing in tax inspectors would be a more effective tool in combating non-compliance with tax obligations than penalties or fines.Keywords: tax evasion, Brazil, game theory, specialists
Procedia PDF Downloads 327893 Increment of Panel Flutter Margin Using Adaptive Stiffeners
Authors: S. Raja, K. M. Parammasivam, V. Aghilesh
Abstract:
Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape
Procedia PDF Downloads 293892 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation
Authors: Pavlo Selyshchev, Tetiana Didenko
Abstract:
Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects
Procedia PDF Downloads 202891 Mathematical Model for Defection between Two Political Parties
Authors: Abdullahi Mohammed Auwal
Abstract:
Formation and change or decamping from one political party to another have now become a common trend in Nigeria. Many of the parties’ members who could not secure positions and or win elections in their parties or are not very much satisfied with the trends occurring in the party’s internal democratic principles and mechanisms, change their respective parties. This paper developed/presented and analyzed the used of non linear mathematical model for defections between two political parties using epidemiological approach. The whole population was assumed to be a constant and homogeneously mixed. Equilibria have been analytically obtained and their local and global stability discussed. Conditions for the co-existence of both the political parties have been determined, in the study of defections between People Democratic Party (PDP) and All Progressive Congress (APC) in Nigeria using numerical simulations to support the analytical results.Keywords: model, political parties, deffection, stability, equilibrium, epidemiology
Procedia PDF Downloads 638890 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons
Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda
Abstract:
This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis
Procedia PDF Downloads 268889 Fast Fashion Parallel to Sustainable Fashion in India
Authors: Saurav Sharma, Deepshikha Sharma, Pratibha Sharma
Abstract:
This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability.Keywords: fast fashion, sustainable fashion, sustainability, India
Procedia PDF Downloads 771888 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics
Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma
Abstract:
Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery
Procedia PDF Downloads 243887 Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy
Authors: K. Sahithya, I. Balasundar, Pritapant, T. Raghua
Abstract:
Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure.Keywords: superalloys, dynamic material modeling, nickel alloys, dynamic recrystallization, superplasticity
Procedia PDF Downloads 121886 Effects of Residence Time on Selective Absorption of Hydrogen Suphide
Authors: Dara Satyadileep, Abdallah S. Berrouk
Abstract:
Selective absorption of Hydrogen Sulphide (H2S) using methyldiethanol amine (MDEA) has become a point of interest as means of minimizing capital and operating costs of gas sweetening plants. This paper discusses the prominence of optimum design of column internals to best achieve H2S selectivity using MDEA. To this end, a kinetics-based process simulation model has been developed for a commercial gas sweetening unit. Trends of sweet gas H2S & CO2 contents as function of fraction active area (and hence residence time) have been explained through analysis of interdependent heat and mass transfer phenomena. Guidelines for column internals design in order to achieve desired degree of H2S selectivity are provided. Also the effectiveness of various operating conditions in achieving H2S selectivity for an industrial absorber with fixed internals is investigated.Keywords: gas sweetening, H2S selectivity, methyldiethanol amine, process simulation, residence time
Procedia PDF Downloads 344885 Imbalance on the Croatian Housing Market in the Aftermath of an Economic Crisis
Authors: Tamara Slišković, Tomislav Sekur
Abstract:
This manuscript examines factors that affect demand and supply of the housing market in Croatia. The period from the beginning of this century, until 2008, was characterized by a strong expansion of construction, housing and real estate market in general. Demand for residential units was expanding, and this was supported by favorable lending conditions of banks. Indicators on the supply side, such as the number of newly built houses and the construction volume index were also increasing. Rapid growth of demand, along with the somewhat slower supply growth, led to the situation in which new apartments were sold before the completion of residential buildings. This resulted in a rise of housing price which was indication of a clear link between the housing prices with the supply and demand in the housing market. However, after 2008 general economic conditions in Croatia worsened and demand for housing has fallen dramatically, while supply descended at much slower pace. Given that there is a gap between supply and demand, it can be concluded that the housing market in Croatia is in imbalance. Such trend is accompanied by a relatively small decrease in housing price. The final result of such movements is the large number of unsold housing units at relatively high price levels. For this reason, it can be argued that housing prices are sticky and that, consequently, the price level in the aftermath of a crisis does not correspond to the discrepancy between supply and demand on the Croatian housing market. The degree of rigidity of the housing price can be determined by inclusion of the housing price as the explanatory variable in the housing demand function. Other independent variables are demographic variable (e.g. the number of households), the interest rate on housing loans, households' disposable income and rent. The equilibrium price is reached when the demand for housing equals its supply, and the speed of adjustment of actual prices to equilibrium prices reveals the extent to which the prices are rigid. The latter requires inclusion of the housing prices with time lag as an independent variable in estimating demand function. We also observe the supply side of the housing market, in order to explain to what extent housing prices explain the movement of new construction activity, and other variables that describe the supply. In this context, we test whether new construction on the Croatian market is dependent on current prices or prices with a time lag. Number of dwellings is used to approximate new construction (flow variable), while the housing prices (current or lagged), quantity of dwellings in the previous period (stock variable) and a series of costs related to new construction are independent variables. We conclude that the key reason for the imbalance in the Croatian housing market should be sought in the relative relationship of price elasticities of supply and demand.Keywords: Croatian housing market, economic crisis, housing prices, supply imbalance, demand imbalance
Procedia PDF Downloads 272884 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions
Authors: Saif Alomari
Abstract:
The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters
Procedia PDF Downloads 142883 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses
Authors: Djamila Aboutaleb, Brahim Safi
Abstract:
In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.Keywords: sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics
Procedia PDF Downloads 337882 Salt Scarcity and Crisis Solution in Islam Perspective
Authors: Taufik Nugroho, Firsty Dzainuurahmana, Tika Widiastuti
Abstract:
The polemic about the salt crisis re-emerged, this is a classic problem in Indonesia and is still a homework that is not finished yet. This salt crisis occurs due to low productivity of salt commodities that have not been able to meet domestic demand and lack of salt productivity caused by several factors. One of the biggest factors of the crisis is the weather anomaly that disrupts salt production, less supportive technology and price stability. This study will try to discuss the salt scarcity and crisis solution in Islamic view. As for the conclusion of this study is the need for equilibrium or balancing between demand and supply, need to optimize the role of the government as Hisbah to maintain the balance of market mechanisms and prepare the stock system of salt stock by buying farmers products at reasonable prices then storing them.Keywords: crisis, Islamic solution, scarcity, salt
Procedia PDF Downloads 290881 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus
Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay
Abstract:
Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus
Procedia PDF Downloads 170880 Microwave Assisted Foam-Mat Drying of Guava Pulp
Authors: Ovais S. Qadri, Abhaya K. Srivastava
Abstract:
Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.Keywords: foam mat drying, foam mat guava, guava powder, microwave drying
Procedia PDF Downloads 332879 Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation
Authors: O. P. Yadav
Abstract:
Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics.Keywords: degradation, nanocomposite, photocatalyst, spectroscopy, XRD
Procedia PDF Downloads 497878 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light
Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed
Abstract:
BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light
Procedia PDF Downloads 103