Search results for: tetracyclines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: tetracyclines

4 Bio-Equivalence of Doxycycline in Two Preparations in Broiler Chickens

Authors: Abdelrazzag Elmajdoub

Abstract:

The present study was designed to investigate the bio-equivalence of doxycycline in Dolistin® and Colidox® at a dose rate of 10 mg doxycycline/kg of body weight in 48 clinically normal broiler chickens. After oral administration, plasma levels of doxycycline peaked after 2 hours post-dosing without significant differences between the two products and it could be detected therapeutically and exceeded the minimum inhibitory concentration (MIC) for most micro-organisms sensitive to doxycycline for 12 hours. The disposition kinetics of doxycycline in the two products following oral administration revealed that the maximum plasma concentrations (Cmax.) were 22.65 and 21.80 µg/ml and attained at (Tmax.) 2.10 and 2.20 hours, respectively. Doxycycline in both of the products was eliminated with half- lives (t0.5α) equal to 7.70 and 6.93 hours, respectively. The mean systemic bio availabilities of doxycycline in both of the products after oral administration in chickens were 80.60 and 79.70%, respectively. It was concluded that doxycycline in the form of Dolistin® and Colidox® needs a dose equivalent to 20 mg doxycycline/kg of body weight a day is better to keep the plasma concentration higher than the MIC.

Keywords: tetracyclines, doxycycline, bioavailability, broilers, chickens

Procedia PDF Downloads 481
3 Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products

Authors: Morello Sara, Pederiva Sabina, Bianchi Manila, Martucci Francesca, Marchis Daniela, Decastelli Lucia

Abstract:

Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain.

Keywords: plant-based products, ARG, PCR, antibiotic residues

Procedia PDF Downloads 52
2 Pharmacokinetics of Oral Controlled-Release Formulation of Doxycycline Hyclate with Polymethacrylate and Acrylic Acid for Dogs

Authors: S. M. Arciniegas, D. Vargas, L. Gutierrez

Abstract:

The aim of this study was to develop oral drug presentation of doxycycline hyclate that maintains longer therapeutic levels than conventional forms. A polymethacrylate and acrylic acid based matrix were used in different proportions to obtain controlled-release formulations; DOX1 (1:0.25:0.0035), DOX2 (1:2:0.0225) and DOX-C (without excipients). All were tested in vivo in healthy dogs and their serum concentrations vs. time profile was investigated after its oral administration in this species. DOX1 and DOX2 show therapeutic concentrations for 60 hours, while DOX-C only for 24 hours. The pharmacokinetics values tested were K½el, Cmax, Tmax, AUC, AUC∞, AUCt, AUMC, RT, Kel, Vdss, Clb and Frel. DOX1 does not differ significantly from DOX-C, but shows significant differences in all variables with DOX2 (p<0.05). In conclusion, DOX1 presents best pharmacokinetics for time-dependent drug and longer release time of 60 hours, thereby reducing the frequency of administration, the patient's stress, the occurrence of adverse effects and the cost of treatment.

Keywords: tetracyclines, long-acting, sustained-release, carbopol, eudragit, canine

Procedia PDF Downloads 583
1 Spectrum of Causative Pathogens and Resistance Rates to Antibacterial Agents in Bacterial Prostatitis

Authors: kamran Bhatti

Abstract:

Objective: To evaluate spectrum and resistance rates to antibacterial agents in causative pathogens of bacterial prostatitis in patients from Southern Europe, the Middle East, and Africa. Materials: 1027 isolates from cultures of urine or expressed prostatic secretion, post-massage urine or seminal fluid, or urethral samples were considered. Results: Escherichia coli (32%) and Enterococcus spp. (21%) were the most common isolates. Other Gram-negative, Gram-positive, and atypical pathogens accounted for 22%, 20%, and 5%, respectively. Resistance was <15% for piperacillin/tazobactam and carbapenems (both Gram-negative and -positive pathogens); <5% for glycopeptides against Gram-positive; 7%, 14%, and 20% for aminoglycosides, fosfomycin, and macrolides against Gram-negative pathogens, respectively; 10% for amoxicillin/clavulanate against Gram-positive pathogens; <20% for cephalosporins and fluoroquinolones against to Gram-negative pathogens (higher against Gram-positive pathogens); none for macrolides against atypical pathogens, but 20% and 27% for fluoroquinolones and tetracyclines. In West Africa, the resistance rates were generally higher, although the highest rates for ampicillin, cephalosporins, and fluoroquinolones were observed in the Gulf area. Lower rates were observed in Southeastern Europe. Conclusions: Resistance to antibiotics is a health problem requiring local health authorities to combat this phenomenon. Knowledge of the spectrum of pathogens and antibiotic resistance rates is crucial to assess local guidelines for the treatment of prostatitis.

Keywords: enterobacteriacae; escherichia coli, gram-positive pathogens, antibiotic, bacterial prostatitis, resistance

Procedia PDF Downloads 37