Search results for: deep deterministic policy gradient (DDPG)
6267 China's Middle East Policy and the Competition with the United States
Authors: Shabnam Dadparvar, Laijin Shen
Abstract:
This paper focuses on China’s policy in the Middle East and the rivalry with the U.S. The question is that what are the main factors on China’s Middle East policy and its competition with the U.S? The hypothesis regards to three effective factors: 'China’s energy dependency' on the Middle East, 'economy' and support for 'stability' in the Middle East. What is important in China’s competition with the U.S regarding to its Middle East policy is the substantial difference in ways of treating the countries of the region; China is committed to Westphalia model based on non-interference in internal affairs of the countries and respect the sovereignty of the governments. However, after 9/11, the U.S is seeking a balance between stability and change through intervention in the international affairs and in some cases is looking for a regime change. From the other hand, China, due to its dependency on the region’s energy welcomes America’s military presence in the region for providing stability. The authors by using a descriptive analytical method try to explain the situation of rivalry between China and the United States in Middle East. China is an 'emerging power' with high economic growth and in demand of more energy supply. The problem is that a rising power in the region is often a source of concern for hegemony.Keywords: China's foreign policy, energy, hegemony, the Middle East
Procedia PDF Downloads 3526266 Competitiveness and Pricing Policy Assessment for Resilience Surface Access System at Airports
Authors: Dimitrios J. Dimitriou
Abstract:
Considering a worldwide tendency, air transports are growing very fast and many changes have taken place in planning, management and decision making process. Given the complexity of airport operation, the best use of existing capacity is the key driver of efficiency and productivity. This paper deals with the evaluation framework for the ground access at airports, by using a set of mode choice indicators providing key messages towards airport’s ground access performance. The application presents results for a sample of 12 European airports, illustrating recommendations to define policy and improve service for the air transport access chain.Keywords: airport ground access, air transport chain, airport access performance, airport policy
Procedia PDF Downloads 3716265 The impact of International Trade on Maritime Ecosystems: Evidence from the California Emission Control Area and the Kelp Forests
Authors: Fabien Candau, Florian Lafferrere
Abstract:
This article analyses how an emission policy for vessels (named California’s Ocean-Going Vessel Fuel Rule) was implemented in 2009 in California impacts trade and marine biodiversity. By studying the decrease in emission levels anticipated by the policy, we measure not only the consequences for port activities but also for one of the most important marine ecosystems of the California Coast: the Kelp forests. Using the Difference in Difference (DiD) approach at the Californian ports level, we find that this policy has led to a significant decrease in trade volume during this period. Therefore, we find a positive and significant effect of shipping policy on kelp canopy and biomass growth by controlling the specific climatic and environmental characteristics of California coastal areas.Keywords: international trade, shipping, marine biodiversity, emission control area
Procedia PDF Downloads 616264 Material Vitalism’s Potential Role in Informing EU Construction and Demolition Waste Policy
Authors: Cameron Jones
Abstract:
Emissions, produced by landfill waste from demolished obsolete buildings, have a damaging effect on both the Earth’s climate and human health. The philosophical theory of material vitalism - the potential for materials to react and emit harmful pollutants - therefore defines this construction and demolition waste (CDW) as having vitality. The European Union’s ‘Circular Economic Action Plan’ (CEAP) aims to mitigate the effects of CDW by prioritising the circularity of building materials. This dissertation examines how the philosophical theory of material vitalism can make an environmentally responsible contribution to CDW policy. The CEAP and Silvertown Quays development are used as case studies for the application of vitalism to policy revision. The study concludes that vitalism has a positive role to play in informing CDW policy, although its contribution is stronger in some areas. This is established by first appraising the aspects that relate to the obsolescence of buildings outlined in the EU’s existing CDW policies. Next, these policy directives are compared with the CE principles employed in the Silvertown Quays development. Subsequently, a keyword analysis model is used to categorise the language used in the CEAP, demonstrating how socio-political approaches to the CE and strategies to address resource scarcity could be strengthened to represent the EU’s policy aspirations more effectively. Recommendations are then made on how material vitalism could be utilised to strengthen legislation, arguing that a notable contribution can be made in most policy areas. Finally, theoretical testing of the impact of these revisions to policy on the case study development identified some practicalities for consideration in improving waste management outcomes.Keywords: vitalism, construction waste, obsolescence, political ecology, exceptionalism
Procedia PDF Downloads 446263 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 4206262 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film
Authors: Nalla Somaiah, Praveen Kumar
Abstract:
Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.Keywords: Blech structure, electromigration, temperature gradient, thin films
Procedia PDF Downloads 2576261 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1866260 Bilateral Trade Costs Analysis of Policy Barriers for Growth Oriented Strategies in Exports
Authors: Shabana Noureen, Zafar Mahmood
Abstract:
Economies consistently engage in trade across borders and face tariff, non-tariff barriers and other quotas that constitute trade costs. The trade costs imposed by policy barriers on exports are considered an impediment in the export growth rate. This work aims to measure over-year trends in total and bilateral trade costs and their trends in relevance to policy barriers (tariff and non-tariff). The analysis through the micro-founded theoretically based gravity model showed that the total trade costs have a general decreasing trend in the world while in the case of developing countries, the rate by which these trends decline is very low. Bilateral trade cost estimates associated with the policy barriers represent that the non-tariff barriers in a developing country have a major role in sustaining the high trade costs as compared to the tariff barriers. This ultimately leads to a low net declining rate. This work emphasizes that for developing countries the non-tariff barriers are a major factor that renders their exports and to be uncompetitive in the world market.Keywords: trade costs, policy barriers, tariff barriers, non-tariff barriers, trade policies, export growth
Procedia PDF Downloads 2646259 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 886258 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2106257 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data
Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis
Abstract:
Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction
Procedia PDF Downloads 5896256 Effects of Education Equity Policy on Housing Prices: Evidence from Simultaneous Admission to Public and Private Schools Policy in Shanghai
Authors: Tianyu Chen
Abstract:
China's school district education policy has encouraged parents to purchase properties in school districts with high-quality education resources. Shanghai has implemented "Simultaneous Admission to Public and Private Schools" (SAPPS) since 2018, which has covered all nine-year compulsory education by 2020. This study examines the impact of SAPPS on the housing market, specifically the premium effect of houses located in dual-school districts. Based on the Hedonic Pricing Model and the Signaling Theory, data is collected from 585 second-hand house transactions in Pudong New Area, Shanghai, and it is analyzed with the Difference-in-Differences (DID) model. The results indicate that the implementation of SAPPS has exacerbated the premium of dual school district housing and weakened the effect of the policy to a certain degree. To ensure equal access to education for all students, the government should work both on the supply and demand sides of the education resource equation.Keywords: simultaneous admission to public and private schools, housing prices, education policy, education equity
Procedia PDF Downloads 776255 Green Energy, Fiscal Incentives and Conflicting Signals: Analysing the Challenges Faced in Promoting on Farm Waste to Energy Projects
Authors: Hafez Abdo, Rob Ackrill
Abstract:
Renewable energy (RE) promotion in the UK relies on multiple policy instruments, which are required to overcome the path dependency pressures favouring fossil fuels. These instruments include targeted funding schemes and economy-wide instruments embedded in the tax code. The resulting complexity of incentives raises important questions around the coherence and effectiveness of these instruments for RE generation. This complexity is exacerbated by UK RE policy being nested within EU policy in a multi-level governance (MLG) setting. To gain analytical traction on such complexity, this study will analyse policies promoting the on-farm generation of energy for heat and power, from farm and food waste, via anaerobic digestion. Utilising both primary and secondary data, it seeks to address a particular lacuna in the academic literature. Via a localised, in-depth investigation into the complexity of policy instruments promoting RE, this study will help our theoretical understanding of the challenges that MLG and path dependency pressures present to policymakers of multi-dimensional policies.Keywords: anaerobic digestion, energy, green, policy, renewable, tax, UK
Procedia PDF Downloads 3706254 Public Policy for Quality School Lunch Development in Thailand
Authors: W. Kongnoo, J. Loysongkroa, S. Chotivichien, N. Viriyautsahakul, N. Saiwongse
Abstract:
Obesity, stunting and wasting problems among Thai school-aged children are increasing due to inappropriate food consumption behavior and poor environments for desirable nutritional behavior. Because of a low school lunch budget of only 0.40 USD per person per day, food quality is not up to nutritional standards. Therefore, the Health Department with the Education Ministry and the Thai Health Promotion Foundation have developed a quality school lunch project during 2009–2013. The program objectives were development and management of public policy to increase school lunch budget. The methods used a healthy public policy motivation process and movement in 241 local administrative organizations and 538 schools. The problem and solution research was organized to study school food and nutrition management, create a best practice policy mobilization model and hold a public hearing to motivate an increase of school meal funding. The results showed that local public policy has been motivated during 2009-2011 to increase school meal budget using local budgets. School children with best food consumption behavior and exercise increased from 13.2% in 2009 to 51.6% in 2013 and stunting decreased from 6.0% in 2009 to 4.7% in 2013. As the result of national policy motivation (2012-2013), the cabinet meeting on October 22, 2013 has approved an increase of school lunch budget from 0.40 USD to 0.62 USD per person per day. Thus, 5,800,469 school children nationwide have benefited from the budget increase.Keywords: public policy, quality school lunch, Thailand, obesity
Procedia PDF Downloads 3486253 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1136252 Potential Determinants of Research Output: Comparing Economics and Business
Authors: Osiris Jorge Parcero, Néstor Gandelman, Flavia Roldán, Josef Montag
Abstract:
This paper uses cross-country unbalanced panel data of up to 146 countries over the period 1996 to 2015 to be the first study to identify potential determinants of a country’s relative research output in Economics versus Business. More generally, it is also one of the first studies comparing Economics and Business. The results show that better policy-related data availability, higher income inequality, and lower ethnic fractionalization relatively favor economics. The findings are robust to two alternative fixed effects specifications, three alternative definitions of economics and business, two alternative measures of research output (publications and citations), and the inclusion of meaningful control variables. To the best of our knowledge, our paper is also the first to demonstrate the importance of policy-related data as drivers of economic research. Our regressions show that the availability of this type of data is the single most important factor associated with the prevalence of economics over business as a research domain. Thus, our work has policy implications, as the availability of policy-related data is partially under policy control. Moreover, it has implications for students, professionals, universities, university departments, and research-funding agencies that face choices between profiles oriented toward economics and those oriented toward business. Finally, the conclusions show potential lines for further research.Keywords: research output, publication performance, bibliometrics, economics, business, policy-related data
Procedia PDF Downloads 1346251 South Korean Discourse on Bioecomomy in the Sector of Agriculture
Authors: Mi Sun Park
Abstract:
Biotechnology provides us with technological solutions to resource-based challenges facing the global society. A bioeconomy or bio-based economy emerged as all economic activities derived from biotechnology. This paper aims to understand discourses on bioeconomy in the sector of agriculture with three dimensions; media discourse, science discourse, and policy discourse. For achieving research goals, content analysis was applied to this research. Media articles, academic journal articles and policy documents published from 2000 to 2016 were collected in South Korea. The text was coded and analyzed with the categories of speakers and their arguments. The research findings indicate that powerful actors and key messages of bioeconomy in South Korean agriculture. Differences and similarities among media, science, and policy were examined. Therefore this case study can contribute to understanding dynamic interaction and interfaces of media, science and policy discourse on biotechnology in the sector of agriculture.Keywords: media, discourse, bioeconomy, agriculture
Procedia PDF Downloads 2366250 On the Allopatry of National College Entrance Exam in China: The Root, Policy and Strategy
Authors: Shi Zhang
Abstract:
This paper aims to introduce the allopatry of national college entrance examination which allow migrant students enter senior high schools and take college entrance exam where they live, identifies the reasons affect the implementation of this policy in the Chinese context. Most of China’s provinces and municipalities recently have announced new policies regarding national college entrance exams for non-local students. The paper conducts SWOT analysis reveals the opportunities, strength, weakness and challenges of the scheme, so as to discuss the implementation strategies from the perspectives of idea and institution. The research findings imply that the government should take a more positive attitude toward relaxing the allopatry of NCEE policy restrictions, and promote the reform household registration policy and NCEE policy with synchronous operations. Higher education institutions should explore the diversification of enrollment model; the government should issue the authority of universities and colleges to select elite migrant students beyond the restrictions of NCEE. To suit reform policies to local conditions, the big cities such as Beijing, Shanghai and Guangzhou should publish related compensate measures for children of migrant workers access to higher vocational colleges with tuition fee waivered.Keywords: college entrance examination, higher education, education policy, education equality
Procedia PDF Downloads 3776249 Detecting Covid-19 Fake News Using Deep Learning Technique
Authors: AnjalI A. Prasad
Abstract:
Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.Keywords: BERT, CNN, LSTM, RNN
Procedia PDF Downloads 2066248 Self-Government Health Policy Programs as a Form of Implementation of Public Health Tasks in Poland
Authors: T. Holecki, J. Wozniak-Holecka, K. Sobczyk
Abstract:
Development, implementation, and evaluation of the effects of health policy programs, resulting from the identified health needs and health status of residents, is the own task of all local government units in Poland. This is due to the obligation to provide access to healthcare services to all residents and the implementation of tasks in the field of health promotion based on specific legal acts. Until the end of 2016 local governments financed health policy programs only with their own funds. Currently, there are additional resources available from the public health insurance subsidising up to 80% of health policy programs costs in cities with a population under 5 thousand people and up to 40% in bigger cities. Changes in legal provisions do not translate automatically to increased involvement of local government units in the implementation of public health tasks. The main objective of the study was to assess the actual impact of the new legal regulation on financing local health policy programs on the engagement of local administration in this area of public health activity. To achieve this aim, we analyzed difference in the number of local governments developing and implementing health policy programs before and after the new law came into force. The aim of the study was also to estimate the level of expenditures incurred by self-government units and the National Health Fund to cover the costs of health policy programs. In the first stage of the project, legal acts concerning the subject of research and financial data published by the National Health Fund were analyzed. The material for the second, main stage of the study was the detailed financial data obtained from the National Health Fund and data obtained from local government units. The results present the situation in Poland in territorial terms, divided into 16 voivodships.Keywords: health care system, health policy programs, local self-governments, public health
Procedia PDF Downloads 1566247 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 2976246 Carbon Capture and Storage in Geological Formation, its Legal, Regulatory Imperatives and Opportunities in India
Authors: Kalbende Krunal Ramesh
Abstract:
The Carbon Capture and Storage Technology (CCS) provides a veritable platform to bridge the gap between the seemingly irreconcilable twin global challenges of ensuring a secure, reliable and diversified energy supply and mitigating climate change by reducing atmospheric emissions of carbon dioxide. Making its proper regulatory policy and making it flexible for the government and private company by law to regulate, also exploring the opportunity in this sector is the main aim of this paper. India's total annual emissions was 1725 Mt CO2 in 2011, which comprises of 6% of total global emission. It is very important to control the greenhouse gas emission for the environment protection. This paper discusses the various regulatory policy and technology adopted by some of the countries for successful using CCS technology. The brief geology of sedimentary basins in India is studied, ranging from the category I to category IV and deep water and potential for mature technology in CCS is reviewed. Areas not suitable for CO2 storage using presently mature technologies were over viewed. CSS and Clean development mechanism was developed for India, considering the various aspects from research and development, project appraisal, approval and validation, implementation, monitoring and verification, carbon credit issued, cap and trade system and its storage potential. The opportunities in oil and gas operations, power sector, transport sector is discussed briefly.Keywords: carbon credit issued, cap and trade system, carbon capture and storage technology, greenhouse gas
Procedia PDF Downloads 4336245 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 1996244 Trade and Environmental Policy Strategies
Authors: Olakunle Felix Adekunle
Abstract:
In the recent years several non-tariff provisions have been regarded as means holding back transboundary environmental damages. Affected countries have then increasingly come up with trade policies to compensate for or to In recent years, several non‐tariff trade provisions have been regarded as means of holding back transboundary environmental damages. Affected countries have then increasingly come up with trade policies to compensate for or to enforce the adoption of environmental policies elsewhere. These non‐tariff trade constraints are claimed to threaten the freedom of trading across nations, as well as the harmonization sought towards the distribution of income and policy measures. Therefore the ‘greening’ of world trade issues essentially ranges over whether there ought or ought not to be a trade‐off between trade and environmental policies. The impacts of free trade and environmental policies on major economic variables (such as trade flows, balances of trade, resource allocation, output, consumption and welfare) are thus studied here, and so is the EKC hypothesis, when such variables are played against the resulting emission levels. The policy response is seen as a political game, played here by two representative parties named North and South. Whether their policy choices, simulated by four scenarios, are right or wrong depends on their policy goals, split into economic and environmental ones.Keywords: environmental, policies, strategies, constraint
Procedia PDF Downloads 3336243 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence
Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur
Abstract:
To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.Keywords: cognition, deep learning, drawing behavior, interpretability
Procedia PDF Downloads 1656242 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method
Authors: Jurriaan Gillissen
Abstract:
This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence
Procedia PDF Downloads 2246241 Ranking Priorities for Digital Health in Portugal: Aligning Health Managers’ Perceptions with Official Policy Perspectives
Authors: Pedro G. Rodrigues, Maria J. Bárrios, Sara A. Ambrósio
Abstract:
The digitalisation of health is a profoundly transformative economic, political, and social process. As is often the case, such processes need to be carefully managed if misunderstandings, policy misalignments, or outright conflicts between the government and a wide gamut of stakeholders with competing interests are to be avoided. Thus, ensuring open lines of communication where all parties know what each other’s concerns are is key to good governance, as well as efficient and effective policymaking. This project aims to make a small but still significant contribution in this regard in that we seek to determine the extent to which health managers’ perceptions of what is a priority for digital health in Portugal are aligned with official policy perspectives. By applying state-of-the-art artificial intelligence technology first to the indexed literature on digital health and then to a set of official policy documents on the same topic, followed by a survey directed at health managers working in public and private hospitals in Portugal, we obtain two priority rankings that, when compared, will allow us to produce a synthesis and toolkit on digital health policy in Portugal, with a view to identifying areas of policy convergence and divergence. This project is also particularly peculiar in the sense that sophisticated digital methods related to text analytics are employed to study good governance aspects of digitalisation applied to health care.Keywords: digital health, health informatics, text analytics, governance, natural language understanding
Procedia PDF Downloads 656240 Peculiar Implications of Self Perceived Identity as Policy Tool for Transgender Recognition in Pakistan
Authors: Hamza Iftikhar
Abstract:
The research study focuses on the transgender community's gender recognition challenges. It is one of the issues for the transgender community, interacting directly with the difficulties of gender identity and the lives of these people who are facing gender disapproval from society. This study investigates the major flaws of the transgender act. The study's goal is to look into the strange implications of self-perceived identity as a policy tool for transgender recognition. This policy tool jeopardises the rights of Pakistan's indigenous gender-variant people as well as the country's legal and social framework. Qualitative research using semi structured interviews will be carried out. This study proposes developing a scheme for mainstreaming gender-variant people on the basis of the Pakistani Constitution, Supreme Court guidelines, and internationally recognised principles of law. This would necessitate a thorough review of current law using a new approach and reference point.Keywords: transgender act, self perceived identity, gender variant, policy tool
Procedia PDF Downloads 1176239 Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty
Authors: Adelakun O. Johnson
Abstract:
The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy.Keywords: FDI inflows, geopolitical risk, economic policy uncertainty, panel ARDL model
Procedia PDF Downloads 246238 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 191