Search results for: color properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9854

Search results for: color properties

9314 Effect of Freeze-Thaw (F-T) Processes on the Engineering and Textural Properties of Nevşehir Stone (Nevşehir / Turkey)

Authors: İsmail İnce, Mustafa Fener

Abstract:

Natural stones used as building materials are exposed to various direct or indirect atmospheric effects depending on the climatic and seasonal conditions. Stones deteriorate partially or fully as a result of these effects. Freezing and thawing (F-T) process is the most important interaction. Nevşehir is located in the Central Anatolia region in Turkey and it has a typical continental climate with cold, snowy winters and hot, dry summers. Effects of freeze-thaw processes were widely observed on the building stones used in the region. Pyroclastic rocks, which are named as Nevşehir stone in the region, have been used in most of these buildings. The purpose of this study is to investigate the variations in engineering and textural properties of Nevşehir stone during different F-T cycles.

Keywords: Nevşehir stone, freeze-thaw, engineering properties, textural properties

Procedia PDF Downloads 981
9313 Thermodynamic Properties of Binary Gold-Rare Earth Compounds (Au-RE)

Authors: H. Krarchaa, A. Ferroudj

Abstract:

This work presents the results of thermodynamic properties of intermetallic rare earth-gold compounds at different stoichiometric structures. It mentions the existence of the AuRE AuRE2, Au2RE, Au51RE14, Au6RE, Au3RE and Au4RE phases in the majority of Au-RE phase diagrams. It's observed that equiatomic composition is a common compound for all gold rare earth alloys and it has the highest melting temperature. Enthalpies of the formation of studied compounds are calculated based on a new reformulation of Miedema’s model.

Keywords: rare earth element, enthalpy of formation, thermodynamic properties, macroscopic model

Procedia PDF Downloads 25
9312 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and micro fractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by a different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with the higher ratio of steel scrap in the charge.

Keywords: nodular cast iron, silicon carbide, microstructure, mechanical properties

Procedia PDF Downloads 582
9311 Determination of Mechanical Properties of Tomato Fruits: Experimental and Finite Element Analysis

Authors: Mallikarjunachari G., Venkata Ravi M.

Abstract:

The objective of this research work is to evaluate the mechanical properties such as elastic modulus and critical rupture load of tomato fruits. Determination of mechanical properties of tomato fruits is essential in various material handling applications, especially as related to robot harvesting, packaging, and transportation. However, extracting meaningful mechanical properties of tomato fruits are extremely challenging due to its layered structure, i.e., the combination of exocarp, mesocarp, and locular gel tissues. Apart from this layered structure, other physical parameters such as diameter, sphericity, locule number, and, the surface to volume ratio also influence the mechanical properties. In this research work, tomato fruits are cultivated in two different ways, namely organic and inorganic farming. Static compression tests are performed to extract the mechanical properties of tomato fruits. Finite element simulations are done to complement the experimental results. It is observed that the effective modulus decreases as the compression depth increase from 0.5 mm to 10 mm and also a critical load of fracture decreases as the locule number increases from 3 to 5. Significant differences in mechanical properties are observed between organically and inorganically cultivated tomato fruits. The current study significantly helps in the design of material handling systems to avoid damage of tomato fruits.

Keywords: elastic modulus, critical load of fracture, locule number, finite element analysis

Procedia PDF Downloads 122
9310 Elastomeric Nanocomposites for Space Applications

Authors: Adriana Stefan, Cristina-Elisabeta Pelin, George Pelin, Maria Daniela Stelescu, Elena Manaila

Abstract:

Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy.

Keywords: elastomeric nanocomposites, O-rings, space applications, mechanical properties

Procedia PDF Downloads 288
9309 Active Food Packaging Films Based on Functionalized Graphene/Polymer Composites

Authors: Ahmad Ghanem, Mohamad Yasin, Mona Abdel Rehim, Fabrice Gouanve, Eliane Espuche

Abstract:

Biodegradable polymers are of great interest, especially for biomedical and packaging applications. Current research efforts are focused on the development of biopolymers with the purpose of reducing the plastic pollution induced by the widely used in biodegradable polyolefins. The main challenge is focused on the elaboration of biopolymers having properties competitive to those of polyolefins. On the other hand, graphene oxide (GO), a graphene derivative, is characterized by the presence of several functional groups on the surface such as carboxylic, hydroxyl and epoxide. This feature enables modification of GO surface with different modifiers to obtain versatile surface properties and overcome the problem of graphene sheets aggregations during inclusion in a polymer matrix. In this context, poly (butylene succinate) (PBS) as promising biopolyester is modified through blending with different ratios of functionalized (GO) to improve its barrier properties. Modification of GO has been carried out using different hyperbranched polymeric structures in order to increase miscibility of the nanosheets in the hosting polymeric matrix. Films have been prepared from the modified PBS and their mechanical, thermal and gas barrier properties were investigated. The results reveal enhancement in the thermal and mechanical properties beside observed improvement of the barrier properties for the films prepared from the modified PBS. This improvement is related to the strong dependence on tortuosity effects of dispersion, exfoliation levels of fillers into the polymer matrix and interactions between the fillers and the polymer matrix.

Keywords: gas barrier properties, graphene oxide, food packaging, transport properties

Procedia PDF Downloads 235
9308 Mechanical and Microstructural Properties of SA 210 Gr. C Pipes Welded by Tungsten Inert Gas

Authors: H. Demirtaş, İ. H. Kara, H. Ahlatcı

Abstract:

Welding failures of steel pipes in power plants usually occur in weld zones. This is similar for the economizer, water walls and superheaters in the power plants where SA 210 Gr. C steel pipes are used. Although these steel pipes have very good welding properties, the welding parameters are also important for the welding life. Welding processes of this pipes are carried out by TIG and SMA techniques. In this study SA 210 Gr. C steel pipes were welded by TIG method and investigated how PWHT affected the welding properties. The results show that this steel does not require post weld heat treatment.

Keywords: SA 210 Gr. C steel pipes, TIG welding, HAZ region, Widmanstatten ferrite

Procedia PDF Downloads 299
9307 Beijerinckia indica Extracellular Extract Mediated Green Synthesis of Silver Nanoparticles with Antioxidant and Antibacterial Activities against Clinical Pathogens

Authors: Gopalu Karunakaran, Matheswaran Jagathambal, Nguyen Van Minh, Evgeny Kolesnikov, Denis Kuznetsov

Abstract:

This work investigated the use of Beijerinckia indica extracellular extract for the synthesis of silver nanoparticles using AgNO3. The formation of nanoparticles was confirmed by different methods, such as UV-Vis absorption spectroscopy, XRD, FTIR, EDX, and TEM analysis. The formation of silver nanoparticles (AgNPs) was confirmed by the change in color from light yellow to dark brown. The absorbance peak obtained at 430 nm confirmed the presence of silver nanoparticles. The XRD analysis showed the cubic crystalline phase of the synthesized nanoparticles. FTIR revealed the presence of groups that acts as stabilizing and reducing agents for silver nanoparticles formation. The synthesized silver nanoparticles were generally found to be spherical in shape with size ranging from 5 to 20 nm, as evident by TEM analysis. These nanoparticles were found to inhibit pathogenic bacterial strains. This work proved that the bacterial extract is a potential eco-friendly candidate for the synthesis of silver nanoparticles with promising antibacterial and antioxidant properties. 

Keywords: antioxidant activity, antimicrobial activity, Beijerinckia indica, characterisation, extracellular extracts, silver nanoparticles

Procedia PDF Downloads 340
9306 Effects of Li2O Doping on Mechanical and Electrical Properties of Bovine Hydroxyapatite Composites (BHA)

Authors: Sibel Daglilar, Isil Kerti, Murat Karagoz, Fatih Dumludag, Oguzhan Gunduz, Faik Nuzhet Oktar

Abstract:

Hydroxyapatite (HA) materials have common use in bone repairing due to its ability to accelerate the bone growth around the implant. In spite of being a biocompatible and bioactive material, HA has a limited usage as an implant material because of its weak mechanical properties. HA based composites are required to improve the strength and toughness properties of the implant materials without compromising of biocompatibility. The excellent mechanical properties and higher biocompatibilities are expected from each of biomedical composites. In this study, HA composites were synthesized by using bovine bone reinforced doped with different amount of (wt.%) Li2O. The pressed pellets were sintered at various sintering temperatures between 1000ºC and 1300°C, and mechanical, electrical properties of the obtained products were characterized. In addition to that, in vitro stimulated body fluid (SBF) tests for these samples were conducted. The most suitable composite composition for biomedical applications was discussed among the composites studied.

Keywords: biocomposites, sintering temperature, biocompatibility, electrical property, conductivity, mechanical property

Procedia PDF Downloads 401
9305 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

Authors: Walid M. Adel, Liang Guo-Zhu

Abstract:

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, strain rate

Procedia PDF Downloads 233
9304 Polysorb®-A Versatile Monomer for Improving Thermoplastics and Thermosetting Properties: Case Study of Polyesters

Authors: R. Saint-Loup, H. Amedro, N. Jacquel, S. Legrand, F. Fenouillot, J. P. Pascault, A. Rousseau

Abstract:

Isosorbide or 1,4-3,6 dianhydrohexitol has been developped for several years as a new biobased monomer. It is commercially available as a starch derivative, more precisely obtained derivated from starch and more precisely from sorbitol. Isosorbide can find several applications, directly as a monomer or after chemical modification, in different polymer fields like thermoplastics (obtained from polycondensation or from radical polymerization of unsaturated monomers) or like Thermosetting resins (like cross linked PU, or after modification like acrylates or epoxy coatings) Concerning aliphatic or semi-aromatic polyesters, the addition of isosorbide improves thermal stability an,d optical properties, allowing a large range of applications as semi-crystalline or amorphous polymers. The preparation of poly (ethylene-co-isosorbide) terephthalate with different ratios of isosorbide will be particularly detailed. The structure – properties relationship will permit a focus on the obtention of polyesters with semi-crystalline or amorphous structures. The influence of isosorbide on the polymerization, on the processing of the resulting polyester as well as the modification of the final properties will be enlightened. The properties of Poly (ethylene-co-isosorbide) terephthlate will be emphasized and related to their applications. The evolutions related to Isosorbide with the replacement of ethylene glycol by Cyclohexanedimethanol allowed to drastically change the properties of the resulting polyester, with a large gap on the properties and new potential applications.

Keywords: modified PET, poly(ethylene-co-isosorbide)terephthalate, specialy polyester, poly(isosorbide_co_cyclohexanediol)terephthalate

Procedia PDF Downloads 73
9303 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 330
9302 Luffa cylindrica as Alternative for Treatment of Waste in the Classroom

Authors: Obradith Caicedo, Paola Devia

Abstract:

Methylene blue (MB) and malachite green (MG) are substances commonly used in classrooms for academic purposes. Nevertheless, in most cases, there is no adequate disposal of this type of waste, their presence in the environment affects ecosystems due to the presence of color and the reduction of photosynthetic processes. In this work, we evaluated properties of fibers of Luffa cylindrica in removal from dyes of aqueous solutions through an adsorption process. The point of zero charge, acid and basic sites was also investigated. The best conditions of the adsorption process were determined under a discontinuous system, evaluating an interval of the variables 2 3 : pH value, particle size of the adsorbent and contact time. The temperature (18ºC), agitation (220 rpm) and adsorbent dosage (10g/L) were constant. Measurements were made using UV- Visible spectrophotometry. The point of zero charge for Luffa cylindrica was 4,3. The number of acidic and basic sites was 2.441 meq/g and 1,009 meq/g respectively. These indicate a prevalence of acid groups. The maximum dye sorption was found to be at a pH of 5,5 (97,1 % for MB) and 5,0 (97,7% for MG) and particle size of the adsorbent 850 µm. The equilibrium uptake was attained within 60 min. With this study, it has been shown that Luffa cylindrica can be used as efficient adsorbent for the removal of methylene blue, and malachite green from aqueous solution in classrooms.

Keywords: adsorption, dye removal, low-cost adsorbents, Luffa cylindrical

Procedia PDF Downloads 191
9301 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder

Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav

Abstract:

Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.

Keywords: bitumen, crumb rubber, modification, rheological properties

Procedia PDF Downloads 316
9300 Improvement of Microstructure, Wear and Mechanical Properties of Modified G38NiCrMo8-4-4 Steel Used in Mining Industry

Authors: Mustafa Col, Funda Gul Koc, Merve Yangaz, Eylem Subasi, Can Akbasoglu

Abstract:

G38NiCrMo8-4-4 steel is widely used in mining industries, machine parts, gears due to its high strength and toughness properties. In this study, microstructure, wear and mechanical properties of G38NiCrMo8-4-4 steel modified with boron used in the mining industry were investigated. For this purpose, cast materials were alloyed by melting in an induction furnace to include boron with the rates of 0 ppm, 15 ppm, and 50 ppm (wt.) and were formed in the dimensions of 150x200x150 mm by casting into the sand mould. Homogenization heat treatment was applied to the specimens at 1150˚C for 7 hours. Then all specimens were austenitized at 930˚C for 1 hour, quenched in the polymer solution and tempered at 650˚C for 1 hour. Microstructures of the specimens were investigated by using light microscope and SEM to determine the effect of boron and heat treatment conditions. Changes in microstructure properties and material hardness were obtained due to increasing boron content and heat treatment conditions after microstructure investigations and hardness tests. Wear tests were carried out using a pin-on-disc tribometer under dry sliding conditions. Charpy V notch impact test was performed to determine the toughness properties of the specimens. Fracture and worn surfaces were investigated with scanning electron microscope (SEM). The results show that boron element has a positive effect on the hardness and wear properties of G38NiCrMo8-4-4 steel.

Keywords: G38NiCrMo8-4-4 steel, boron, heat treatment, microstructure, wear, mechanical properties

Procedia PDF Downloads 196
9299 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.

Keywords: mechanical properties, ECAP, titanium, biomedical applications

Procedia PDF Downloads 451
9298 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 318
9297 Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique

Authors: Musa Momoh, A. U. Moreh, A. M. Bayawa, Sanusi Abdullahi, I. Atiku

Abstract:

In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline.

Keywords: zinc oxide, spray pyrolysis, rf sputtering, optical properties, electrical properties

Procedia PDF Downloads 268
9296 Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric

Authors: Arjun Dakuri, J. Hayavadana

Abstract:

The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton.

Keywords: antimicrobial activity, bamboo, cotton, comfort properties, moisture management, zinc oxide

Procedia PDF Downloads 353
9295 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 161
9294 Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels

Authors: Emre Alan, Yusuf Yamanturk, Gokay Bas

Abstract:

Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3.

Keywords: electrical steels, hot rolling, magnetic properties, roughing mill

Procedia PDF Downloads 326
9293 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China

Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan

Abstract:

The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.

Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure

Procedia PDF Downloads 474
9292 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator

Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí

Abstract:

This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.

Keywords: heat affected zone, impact test, thermal cycle simulator, time of tempering

Procedia PDF Downloads 303
9291 Effect of the Firing Cycle on the Microstructure and Mechanical Properties of High Steel Barrel Fabricated by Forging Process

Authors: El Oualid Mokhnache, Noureddine Ramdani

Abstract:

The choice of gun barrel materials is crucial to ensure the maximum high rate of fire. The high rate of fire causes wear-out damage and shuts off mechanical properties (hardness, strength, wear resistance, etc.) and ballistic properties (bullet speed, dispersion and precision, longevity of barrel, etc). To overcome these kinds of problems, a deep understanding of the effect of the firing cycle on the mechanical and ballistic properties of the barrel is regarded as crucial to improving its characteristics. In the present work, a real experimental test of firing by using a high steel barrel with 7.62x39 ammunition was carried. Microstructural observations by using SEM were investigated. Hardness evolution through the barrel of both barrels labeled as reference barrels and as fired barrels were compared and discussed. Ballistic properties during the firing test, including speed of projectile and precision dispersion, are revealed and discussed as well. The aim of the present communication is about to discuss the relationship between pressure distribution versus mechanical properties through the wall barrel. Ballistic properties, including speed of the projectile, dispersion, and precision results during the shooting process, were investigated. Microstructure observations of the as-rifled barrel in comparison with the as-reference barrel were performed as well.

Keywords: barrel, ballistic, pressure, microstructure evolution, hardness

Procedia PDF Downloads 77
9290 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.

Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)

Procedia PDF Downloads 447
9289 Liquid Illumination: Fabricating Images of Fashion and Architecture

Authors: Sue Hershberger Yoder, Jon Yoder

Abstract:

“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.

Keywords: fashion, print design, architecture, projection mapping, image, fabrication

Procedia PDF Downloads 88
9288 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.

Keywords: Cu-doped CeO₂, DFT, Wien2k, properties

Procedia PDF Downloads 256
9287 The Effect of the Deposition Parameters on the Microstructural and Optical Properties of Mn-Doped GeTe Chalcogenide Materials

Authors: Adam Abdalla Elbashir Adam, Xiaomin Cheng, Xiang Shui Miao

Abstract:

In this work, the effect of the magnetron sputtering system parameters on the optical properties of the Mn doped GeTe were investigated. The optical properties of the Ge1-xMnxTe thin films with different thicknesses are determined by analyzing the transmittance and reflectance data. The energy band gaps of the amorphous Mn-doped GeTe thin films with different thicknesses were calculated. The obtained results demonstrated that the energy band gap values of the amorphous films are quite different and they are dependent on the films thicknesses. The extinction coefficients of amorphous Mn-doped GeTe thin films as function of wavelength for different thicknesses were measured. The results showed that the extinction coefficients of all films are varying inversely with their optical transmission. Moreover, the results emphasis that, not only the microstructure, electrical and magnetic properties of Mn doped GeTe thin films vary with the films thicknesses but also the optical properties differ with the film thickness.

Keywords: phase change magnetic materials, transmittance, absorbance, extinction coefficients

Procedia PDF Downloads 404
9286 Nutritional and Antioxidant Properties of Prickly Pear (Opuntia ficus indica Mill.) Grown in Algeria

Authors: Asma Temagoult, Bariza Zitouni, Yassin Noui

Abstract:

Cactus fruit contains different nutritional and functional components, which are used because of their benefits to human health, such as flavonoids, phenolic compounds, carotenoids and vitamins C. It has hypoglycemic and hypolipidemic action, and antioxidant properties related to anticarcinogenic, antiulcerogenic and immunomodulatory effects. The antioxidant and nutritional properties have been characterized in cactus prickly pear (Opuntia ficus-indica Mill.), cultivar yellow, grown in Arris area; Eastern of Algeria. The antioxidant properties of this cactus cultivar were higher than the others cactus cultivar in the world. The amount of fruit phenolic compounds revealed contents between 20.65 and 45.70 mg / 100 g of FW for total polyphenols and 0.519 - 0.591 mg / 100 g of FW for the flavonoids. The antioxidant activity was evaluated by DPPH radical scavenging and FRAP (ferric reducing antioxidant power) methods. The average recorded to the potassium content is about 1070 mg / 100 g of the fresh weight; sodium is 60.7 mg / 100 g of the fresh weight and 80 mg / 100g for the calcium. According to the high value of this cactus, it was considered as a good nutrient and important pharmaceutical resource. It could be used as a natural additive or substituted food supplement in many foodstuffs production, to benefit from these benefits.

Keywords: antioxidant properties, DPPH, FRAP, nutritional properties, Opuntia ficus indica

Procedia PDF Downloads 316
9285 Influence of the Mixer on the Rheological Properties of the Fresh Concrete

Authors: Alexander Nitsche, Piotr-Robert Lazik, Harald Garrecht

Abstract:

The viscosity of the concrete has a great influence on the properties of the fresh concrete. Fresh concretes with low viscosity have a good flowability, whereas high viscosity has a lower flowability. Clearly, viscosity is directly linked to other parameters such as consistency, compaction, and workability of the concrete. The above parameters also depend very much on the energy induced during the mixing process and, of course, on the installation of the mixer itself. The University of Stuttgart has decided to investigate the influence of different mixing systems on the viscosity of various types of concrete, such as road concrete, self-compacting concrete, and lightweight concrete, using a rheometer and other testing methods. Each type is tested with three different mixers, and the rheological properties, namely consistency, and viscosity are determined. The aim of the study is to show that different types of concrete mixed with different types of mixers reach completely different yield points. Therefore, a 3 step procedure will be introduced. At first, various types of concrete mixtures and their differences are introduced. Then, the chosen suspension mixer and conventional mixers, which are going to be used in this paper, will be discussed. Lastly, the influence of the mixing system on the rheological properties of each of the select mix designs, as well as on fresh concrete, in general, will be presented.

Keywords: rheological properties, flowability, suspension mixer, viscosity

Procedia PDF Downloads 144