Search results for: breast implants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 840

Search results for: breast implants

300 Synthesis and Biological Activity Evaluation of U Complexes

Authors: Mohammad Kazem Mohammadi

Abstract:

The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.

Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D

Procedia PDF Downloads 441
299 Effect of Copper Ions Doped-Hydroxyapatite 3D Fiber Scaffold

Authors: Adil Elrayah, Jie Weng, Esra Suliman

Abstract:

The mineral in human bone is not pure stoichiometric calcium phosphate (Ca/P) as it is partially substituted by in organic elements. In this study, the copper ions (Cu2+) substituted hydroxyapatite (CuHA) powder has been synthesized by the co-precipitation method. The CuHA powder has been used to fabricate CuHA fiber scaffolds by sol-gel process and the following sinter process. The resulted CuHA fibers have slightly different microstructure (i.e. porosity) compared to HA fiber scaffold, which is denser. The mechanical properties test was used to evaluate CuHA, and the results showed decreases in both compression strength and hardness tests. Moreover, the in vitro used endothelial cells to evaluate the angiogenesis of CuHA. The result illustrated that the viability of endothelial cell on CuHA fiber scaffold surfaces tends to antigenic behavior. The results obtained with CuHA scaffold give this material benefit in biological applications such as antimicrobial, antitumor, antigens, compacts, filling cavities of the tooth and for the deposition of metal implants anti-tumor, anti-cancer, bone filler, and scaffold.

Keywords: fiber scaffold, copper ions, hydroxyapatite, in vitro, mechanical property

Procedia PDF Downloads 132
298 Soy Candle vs Paraffin Candle

Authors: Otana A. Jakpor

Abstract:

Air pollution is without a doubt one of the gravest environmental threats the world is facing today in terms of its sheer toll on human lives. Each year an estimated 70,000 Americans lose their lives to air pollution -- a number equal to deaths from both breast and prostate cancer combined. Since Americans spend nearly 90% of their time indoors, more research is needed on indoor air pollution and common exposures such as candles. Paraffin wax is a by-product of petroleum, and similarities have been observed between fine particulate emissions from paraffin candles and diesel exhaust. The purpose of this study is to determine whether or not paraffin candles are a major potential source of indoor air pollution. Furthermore, this study aims to determine whether or not soy candles are a safer, cleaner alternative to paraffin candles.

Keywords: soy candle, soy, paraffin candle, paraffin

Procedia PDF Downloads 229
297 An Investigation on Orthopedic Rehabilitation by Avoiding Thermal Necrosis

Authors: R. V. Dahibhate, A. B. Deoghare, P. M. Padole

Abstract:

Maintaining natural integrity of biosystem is paramount significant for orthopedic surgeon while performing surgery. Restoration is challenging task to rehabilitate trauma patient. Drilling is an inevitable procedure to fix implants. The task leads to rise in temperature at the contact site which intends to thermal necrosis. A precise monitoring can avoid thermal necrosis. To accomplish it, data acquiring instrument is integrated with the drill bit. To contemplate it, electronic feedback system is developed. It not only measures temperature without any physical contact in between measuring device and target but also visualizes the site and monitors correct movement of tool path. In the current research work an infrared thermometer data acquisition system is used which monitors variation in temperature at the drilling site and a camera captured movement of drill bit advancement. The result is presented in graphical form which represents variations in temperature, drill rotation and time. A feedback system helps in keeping drill speed in threshold limit.

Keywords: thermal necrosis, infrared thermometer, drilling tool, feedback system

Procedia PDF Downloads 209
296 Piezosurgery in Periodontics and Oral Implantology

Authors: Neelesh Papineni

Abstract:

Aim: Piezosurgery is a relatively new technique for osteotomy and osteoplasty that uses ultrasonic vibration. The conventional method of treating periodontal cases are by conventional surgeries. However, in this advancing field the use of motor-driven instruments is being considered less invasive. Out of these motor-driven instruments, piezo-electric device has been introduced to the field of periodontics and oral implantology. This article discusses about the wide range of application of piezo-electric device in periodontology, its advantages over conventional surgical therapies and other motor-driven instruments. Results: Piezo- electric has shown better results in aspect of osteotomy, osteoplasty, implants, and any procedure which includes conserving the bone. Also piezo-electric does not cause any kind of damage to the surrounding soft tissue and eliminates the risk of bone necrosis which is a risk factor in other motor driven instruments. Conclusion: In this era of modern dentistry , a successful periodontal and implant surgery requires a sound osseous support. This review gives a pictorial representation about the wide range of application of piezo-electric device in periodontology.

Keywords: piezo-electric, osteotomy, osteoplasty, implantology

Procedia PDF Downloads 341
295 Prevalence of Cyp2d6 and Its Implications for Personalized Medicine in Saudi Arabs

Authors: Hamsa T. Tayeb, Mohammad A. Arafah, Dana M. Bakheet, Duaa M. Khalaf, Agnieszka Tarnoska, Nduna Dzimiri

Abstract:

Background: CYP2D6 is a member of the cytochrome P450 mixed-function oxidase system. The enzyme is responsible for the metabolism and elimination of approximately 25% of clinically used drugs, especially in breast cancer and psychiatric therapy. Different phenotypes have been described displaying alleles that lead to a complete loss of enzyme activity, reduced function (poor metabolizers – PM), hyperfunctionality (ultrarapid metabolizers–UM) and therefore drug intoxication or loss of drug effect. The prevalence of these variants may vary among different ethnic groups. Furthermore, the xTAG system has been developed to categorized all patients into different groups based on their CYP2D6 substrate metabolization. Aim of the study: To determine the prevalence of the different CYP2D6 variants in our population, and to evaluate their clinical relevance in personalized medicine. Methodology: We used the Luminex xMAP genotyping system to sequence 305 Saudi individuals visiting the Blood Bank of our Institution and determine which polymorphisms of CYP2D6 gene are prevalent in our region. Results: xTAG genotyping showed that 36.72% (112 out of 305 individuals) carried the CYP2D6_*2. Out of the 112 individuals with the *2 SNP, 6.23% had multiple copies of *2 SNP (19 individuals out of 305 individuals), resulting in an UM phenotype. About 33.44% carried the CYP2D6_*41, which leads to decreased activity of the CYP2D6 enzyme. 19.67% had the wild-type alleles and thus had normal enzyme function. Furthermore, 15.74% carried the CYP2D6_*4, which is the most common nonfunctional form of the CYP2D6 enzyme worldwide. 6.56% carried the CYP2D6_*17, resulting in decreased enzyme activity. Approximately 5.73% carried the CYP2D6_*10, consequently decreasing the enzyme activity, resulting in a PM phenotype. 2.30% carried the CYP2D6_*29, leading to decreased metabolic activity of the enzyme, and 2.30% carried the CYP2D6_*35, resulting in an UM phenotype, 1.64% had a whole-gene deletion CYP2D6_*5, thus resulting in the loss of CYP2D6 enzyme production, 0.66% carried the CYP2D6_*6 variant. One individual carried the CYP2D6_*3(B), producing an inactive form of the enzyme, which leads to decrease of enzyme activity, resulting in a PM phenotype. Finally, one individual carried the CYP2D6_*9, which decreases the enzyme activity. Conclusions: Our study demonstrates that different CYP2D6 variants are highly prevalent in ethnic Saudi Arabs. This finding sets a basis for informed genotyping for these variants in personalized medicine. The study also suggests that xTAG is an appropriate procedure for genotyping the CYP2D6 variants in personalized medicine.

Keywords: CYP2D6, hormonal breast cancer, pharmacogenetics, polymorphism, psychiatric treatment, Saudi population

Procedia PDF Downloads 544
294 Comparative Study of Titanium and Polyetheretherketone Cranial Implant Using Finite Element Model

Authors: Khaja Moiduddin, Sherif Mohammed Elseufy, Hisham Alkhalefah

Abstract:

Recent advances in three-dimensional (3D) printing, medical imaging, and implant design may alter how craniomaxillofacial surgeons construct individualized treatments using patient data. By utilizing medical image data, medical professionals can obtain detailed information about a patient's injuries, enabling them to conduct a thorough preoperative assessment while ensuring the implant's accuracy. However, selecting the right implant material requires careful consideration of various mechanical properties. This study aims to compare the two commonly used implant material for cranial reconstruction which includes titanium (Ti6Al4V) and Polyetheretherketone (PEEK). Biomechanical analysis was performed to study the implant behavior, by keeping the implant design and fixation constant in both cases. A finite element model was created and analyzed under loading conditions. The finite element analysis proves that although Ti6Al4V is stronger than PEEK but, its mechanical strength is adequate to bear the loads of the adjacent bone tissue.

Keywords: cranial reconstruction, titanium implants, PEEK, finite element model

Procedia PDF Downloads 46
293 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses

Authors: William Huang

Abstract:

Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.

Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization

Procedia PDF Downloads 120
292 Microwave-Assisted Synthesis of a Class of Pyridine and Purine Thioglycoside Analogs

Authors: Mamdouh Abu-Zaied, K. Mohamed, Galal A. Nawwar

Abstract:

Microwave-assisted synthesis of a new class of pyridine or purine thioglycoside analogs from readily available starting materials has been described. The key step of this protocol is the formation of sodium pyridine 4-thiolate 4 and pyrazolo[1,5-a]pyrimidine-7-thiolate 5 derivatives via condensation of 1 with cyanoacetanilide derivative 2 or 5-aminopyrazole derivative 3 respectively under microwave irradiation, followed by coupling with halo sugars to give the corresponding pyridine and purine thioglycoside analogs. The obtained compounds were evaluated in vitro against lung (A549), colon (HCT116), liver (HEPG2), and MCF-7(breast) cancer cell lines. Some of them recorded promising activities.

Keywords: antitumor, cyclic sugars, pyrazoles, pyridines, pyrimidines, purines, thioglycosides

Procedia PDF Downloads 219
291 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 119
290 Quantitative Analysis of Carcinoembryonic Antigen (CEA) Using Micromechanical Piezoresistive Cantilever

Authors: Meisam Omidi, M. Mirijalili, Mohammadmehdi Choolaei, Z. Sharifi, F. Haghiralsadat, F. Yazdian

Abstract:

In this work, we have used arrays of micromechanical piezoresistive cantilever with different geometries to detect carcinoembryonic antigen (CEA), which is known as an important biomarker associated with various cancers such as the colorectal, lung, breast, pancreatic, and bladder cancer. The sensing principle is based on the surface stress changes induced by antigen–antibody interaction on the microcantilevers surfaces. Different concentrations of CEA in a human serum albumin (HSA) solution were detected as a function of the deflection of the beams. According to the experiments, it was revealed that microcantilevers have surface stress sensitivities in the order of 8 (mJ/m). This matter allows them to detect CEA concentrations as low as 3 ng/mL or 18 pM. This indicates the fact that the self-sensing microcantilever approach is beneficial for pathological tests.

Keywords: micromechanical biosensors, carcinoembryonic antigen (CEA), surface stress

Procedia PDF Downloads 447
289 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers

Authors: Oluwatosin M. A. Jesuyon

Abstract:

In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.

Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight

Procedia PDF Downloads 181
288 The High Strength Biocompatible Wires of Commercially Pure Titanium

Authors: J. Palán, M. Zemko

Abstract:

COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.

Keywords: CONFORM, ECAP, rotary swaging, titanium

Procedia PDF Downloads 219
287 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 56
286 Combined Orthodontic and Restorative Management of Complex Cases: Concepts and Case Reports

Authors: Awais Ali, Hesham Ali

Abstract:

The absence of teeth through either premature loss or developmental absence is a common condition with potentially severe impact on affected individuals. Management of these cases presents a clinical challenge which may be difficult to resolve given the effects of tooth loss or hypodontia over the course of a patient’s lifetime. Treatment of such cases is often best provided by a multi-disciplinary team, where the patient’s expectations and care delivery can be optimally managed. Orthodontic treatment is often used to prepare the dentition in advance of restorative replacement of missing teeth. Conversely, the placement of implants may precede the delivery of orthodontic treatment and indeed may function as an adjunctive orthodontic procedure. We discuss the use of both approaches here and illustrate their clinical implementation with two case reports. The first case demonstrates the use of fixed appliances to prepare the mouth for an opposing implant-retained complete denture. A second case demonstrates the use of implant-retained crowns to provide orthodontic anchorage in a partially dentate patient. We propose that complex cases such as these should always be planned and treated by a multi-disciplinary team in order to optimise the delivery of care, patient experience, and treatment outcome. The presented cases add to the body of evidence in this area.

Keywords: orthodontics, dental implantology, hypodontia, multi-disciplinary

Procedia PDF Downloads 103
285 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins

Authors: Haiyang Su, Kun Qian

Abstract:

We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.

Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins

Procedia PDF Downloads 180
284 Improving the Aqueous Solubility of Taxol through Altering XLOGP3

Authors: Arianna Zhu, Thomas Bakupog

Abstract:

Taxol (generic name paclitaxel) is an antineoplastic drug used to treat breast, lung, and ovarian cancer. It performs exceptionally well against a wide variety of tumors, including B16 melanoma, L1210 and P388 leukemias, MX-1 mammary tumors, and CX-1 colon tumor xenografts. However, despite taxol’s efficacy in antitumor activity, its aqueous solubility is extremely poor, decreasing its bioavailability and making it difficult for the body to absorb. The objective of this study is to improve the solubility of taxol, thus increasing the bioavailability of the drug in preventing cancer. By modifying the structure of taxol, four novel taxol derivatives were created with improved solubilities. Two of the derivatives were given an additional hydrogen donor and acceptor and thus showed a pronounced positive change in solubility. The results of this work solve the issue of taxol’s inadequate solubility and show potential in increasing the absorption of the drug.

Keywords: Taxol, Solubility, improving bioavailability, logP

Procedia PDF Downloads 37
283 Synthesis and Anti-Cancer Evaluation of Uranyle Complexes

Authors: Abdol-Hassan Doulah

Abstract:

In this research, some of the inorganic complexes of uranyl with N- donor ligands were synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR, ¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center of uranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds. The structure is linear (O=U=O, 180) and usually stable. So other ligands often coordinate to the U atom in the plane perpendicularly to the O=U=O axis. The antitumor activity of some of ligand and their complexes against a panel of human tumor cell lines (HT29: Haman colon adenocarcinoma cell line T47D: human breast adenocarcinoma cell line) were determined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. These data suggest that some of these compounds provide good models for the further design of potent antitumor compounds.

Keywords: inorganic, uranyl complex-donor ligands, Schiff bases, anticancer activity

Procedia PDF Downloads 429
282 Current Medical and Natural Synchronization Methods in Small Ruminants

Authors: Mehmet Akoz, Mustafa Kul

Abstract:

Ewes and goats are seasonally polyestrus animals. Their reproductive activities are associated with the reduction or extending of daylight. Melatonin releasing from pineal gland regulates the sexual activities depending on daylight. In recent years, number of ewes decreased in our country. This situation dispatched to developing of some methods to increase productivity. Small ruminants can be synchronized with the natural and medical methods. known methods from natural light set with ram and goat participation. The most important natural methods of male influence, daylight is regulated and feed. On the other hand, progestagens, PGF2α, melatonin, and gonadotropins are commonly used for the purpose of estrus synchranization. But it is not effective PGF2α anestrous season The short-term and long-term progesterone treatment was effective to synchronize estrus in small ruminats during both breeding and anestrus seasons. Alternative choices of progesterone/progestagen have been controlled internal drug release (CIDR) devices, supplying natural progesterone, norgestomet implants, and orally active melengestrol acetate Melatonin anestrous season and should be applied during the transition period, but the season can be synchronized. Estrus synchronisation shortens anestrus season, decreases labor for mating/insemination and estrus pursuit, and induces multiple pregnancies.

Keywords: ewes, goat, synchronization, progestagen, PGF2α

Procedia PDF Downloads 317
281 Asymptomatic Intercostal Schwannoma in a Patient with COVID-19: The First of Its Kind

Authors: Gabriel Hunduma

Abstract:

Asymptomatic intra-thoracic neurogenic tumours are rare. Tumours arising from the intercostal nerves of the chest wall are exceedingly rare. This paper reports an incidental discovery of a neurogenic intercostal tumour while being investigated for Coronavirus Disease 2019 (COVID-19). A 54-year-old female underwent a thoracotomy and resection for an intercostal tumour. Pre-operative images showed an intrathoracic mass, and the biopsy revealed a schwannoma. The most common presenting symptom recorded in literature is chest pain; however, our case remained asymptomatic despite the size of the mass and thoracic area it occupied. After an extensive search of the literature, COVID-19 was found to have an influence on the development of certain cells in breast cancer. Hence there is a possibility that COVID-19 played a role in progressing the development of the schwannoma cells.

Keywords: thoracic surgery, intercostal schwannoma, chest wall oncology, COVID-19

Procedia PDF Downloads 185
280 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: wave atom transform, statistical features, multi-resolution representation, mammogram

Procedia PDF Downloads 197
279 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 302
278 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications

Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia

Abstract:

In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 26
277 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 135
276 Auditory and Language Skills Development after Cochlear Implantation in Children with Multiple Disabilities

Authors: Tamer Mesallam, Medhat Yousef, Ayna Almasaad

Abstract:

BACKGROUND: Cochlear implantation (CI) in children with additional disabilities can be a fundamental and supportive intervention. Although, there may be some positive impacts of CI on children with multiple disabilities such as better outcomes of communication skills, development, and quality of life, the families of those children complain from the post-implant habilitation efforts that considered as a burden. OBJECTIVE: To investigate the outcomes of CI children with different co-disabilities through using the Meaningful Auditory Integration Scale (MAIS) and the Meaningful Use of Speech Scale (MUSS) as outcome measurement tools. METHODS: The study sample comprised 25 hearing-impaired children with co-disability who received cochlear implantation. Age and gender-matched control group of 25 cochlear-implanted children without any other disability has been also included. The participants' auditory skills and speech outcomes were assessed using MAIS and MUSS tests. RESULTS: There was a statistically significant difference in the different outcomes measure between the two groups. However, the outcomes of some multiple disabilities subgroups were comparable to the control group. Around 40% of the participants with co-disabilities experienced advancement in their methods of communication from behavior to oral mode. CONCLUSION: Cochlear-implanted children with multiple disabilities showed variable degrees of auditory and speech outcomes. The degree of benefits depends on the type of the co-disability. Long-term follow-up is recommended for those children.

Keywords: children with disabilities, Cochlear implants, hearing impairment, language development

Procedia PDF Downloads 92
275 Comparison Between Tension Band Wiring Using K-Wires and Cannulated Screws in Transverse Patella Fracture Fixation

Authors: Daniel Francis, Mo Yassin

Abstract:

Transverse patella fractures are routinely fixed using tension band wiring (TBW) using Kirschner wires and a wire in the shape of a figure of 8. The idea of the study was to compare the outcomes of the traditional technique against the more recently used cannulated screws and fiber tape in the shape of a figure of 8. We performed a retrospective cohort study of all the surgically fixed patella fractures from the year 2019 to 2022. The patients were divided into two groups TBW group and cannulated screws group. The primary outcome measure was the failure of fixation and the need for the removal of metalwork. Twenty-six patellar fractures were studied. TBW was used in 14 (53.8%), and cannulated screws were used for fixation in 12 (46.2%). There was one incident of metalwork failure in the TBW and one incident in the cannulated screws group. Five (35.7%) of patients in the TBW needed symptomatic metal work removed and One (8.3%) in the cannulated screw group. In both groups, the rate of fixation failure was low. Symptomatic implants, the most common complication observed, were higher in the TBW group in our practice. Although the small numbers in both groups, the hope of this study is to shine the light on the use of cannulated screws for patella fractures as it would reduce the need for a second operation and reduce the load on the already stretched services as well as improving the patient experience by not requiring further surgery. Although this is not a brand-new technique, it is not commonly used as there have not yet been any studies that demonstrate the lower rates of second surgery needed.

Keywords: patella, tension band wiring, randomised, new technique

Procedia PDF Downloads 53
274 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering

Authors: Amin Jabbari

Abstract:

The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.

Keywords: AM, 3D printed implants, bioceramic, tissue engineering

Procedia PDF Downloads 52
273 Phylogenetic Study of L1 Protein Human Papillomavirus Type 16 From Cervical Cancer Patients in Bandung

Authors: Fitri Rahmi Fadhilah, Edhyana Sahiratmadja, Ani Melani Maskoen, Ratu Safitri, Supartini Syarif, Herman Susanto

Abstract:

Cervical cancer is the second most common cancer in women after breast cancer. In Indonesia, the incidence of cervical cancer cases is estimated at 25-40 per 100,000 women per year. Human papillomavirus (HPV) infection is a major cause of cervical cancer, and HPV-16 is the most common genotype that infects the cervical tissue. The major late protein L1 may be associated with infectivity and pathogenicity and its variation can be used to classify HPV isolates. The aim of this study was to determine the phylogenetic tree of HPV 16 L1 gene from cervical cancer patient isolates in Bandung. After confirming HPV-16 by Linear Array Genotyping Test, L1 gene was amplified using specific primers and subject for sequencing. Phylogenetic analysis revealed that HPV 16 from Bandung was in the subgroup of Asia and East Asia, showing the close host-agent relationship among the Asian type.

Keywords: L1 HPV 16, cervical cancer, bandung, phylogenetic

Procedia PDF Downloads 474
272 An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells

Authors: Salvador Garcia Bernal, Chi Zheng, Keqi Zhang, Lei Mao

Abstract:

Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time.

Keywords: Circulating Tumor Cells (CTC), cell analysis, immunofluorescent, medical image analysis

Procedia PDF Downloads 190
271 Relation of Cad/Cam Zirconia Dental Implant Abutments with Periodontal Health and Final Aesthetic Aspects; A Systematic Review

Authors: Amin Davoudi

Abstract:

Aim: New approaches have been introduced to improve soft tissue indices of the dental implants. This systematic review aimed to investigate the effect of computer-aided design and computer-assisted manufacture (CAD/CAM) zirconia (Zr) implant abutments on periodontal aspects. Materials and Methods: Five electronic databases were searched thoroughly based on prior defined MeSH and non-MeSH keywords. Clinical studies were collected via hand searches in English language journals up to September 2020. Interproximal papilla stability, papilla recession, pink and white esthetic score (PES, WES), bone and gingival margin levels, color, and contour of soft tissue were reviewed. Results: The initial literature search yielded 412 articles. After the evaluation of abstracts and full texts, six studies were eligible to be screened. The study design of the included studies was a prospective cohort (n=3) and randomized clinical trial (n=3). The outcome was found to be significantly better for Zr than titanium abutments, however, the studies did not show significant differences between stock and CAD/CAM abutments. Conclusion: Papilla fill, WES, PES, and the distance from the contact point to dental crest bone of adjacent tooth and inter-tooth–implant distance were not significantly different between Zr CAD/CAM and Zr stock abutments. However, soft tissue stability and recession index were better in Zr CAD/CAM abutments.

Keywords: zirconia, CADCAM, periodental, implant

Procedia PDF Downloads 75