Search results for: online learning activities
8765 Gamification in Education: A Case Study on the Use of Serious Games
Authors: Maciej Zareba, Pawel Dawid
Abstract:
This article provides a case study exploring the use of serious games in educational settings, indicating their potential to transform conventional teaching methods into interactive and engaging learning experiences. By incorporating game elements such as points, leaderboards and progress indicators, serious games establish clear goals, provide real-time feedback and give a sense of progress. These elements enable students to solve complex problems in simulated environments, fostering critical thinking, creativity and contextual learning. The article provides a case study of the feasibility of using the 4FactryManager serious game in a selected educational context, demonstrating its effectiveness in increasing student motivation, improving academic performance and promoting knowledge consolidation. The study and presentation are based on the results of industrial research and development work conducted as part of the project titled (4FM) 4FACTORY Manager – an innovative simulation game for managing real production processes using a novel gameplay model based on the interaction between the virtual and real worlds, applying the Industry 4.0 concept (Project number: POIR.01.02.00-00-0057/19).Keywords: gamification, serious games, education, elearning
Procedia PDF Downloads 138764 Reorientation Orphanage in Muhammadiyah as Strength Effort for Islamic-Based Human Services Organization: Phenomenology Study on Muhammadiyah Orphanages in Malang Raya
Authors: Fauzik Lendriyono, Isbandi Rukminto Adi
Abstract:
Muhammadiyah is an Islamic-based organization taking care to human suffering. The existence of Muhammadiyah organization is strong supported by its members. Muhammadiyah as the oldest Islamic organization in Indonesia, since its establishment has had main activities, such as in the fields of education, health, and social services, one of the form is Orphanage. However, at present, Muhammadiyah orphanage was in a dilemma because of differences in orientation and commitment of the caretaker-managers. This research on Muhammadiyah orphanage is very important because it is able to know the problem identification and to find the ideal concept for the better management of an orphanage in Muhammadiyah. This research is a phenomenology study by research subjects: caretaker of the orphanage in Muhammadiyah at Great Malang. The research data was obtained after the observation, in-depth interviews, review of documentation and the discussion focused. Data were analyzed with interpretative phenomenological analysis. Basic problems for causes of differences in orientation and commitment administrators of Muhammadiyah orphanage is the influence of organizational culture and organizational environment factors. Organizational culture factors include the Islamic-based value and organization ideology, so that the Islamic values and the values of Muhammadiyah are used as guidelines in the orphanage. Environmental factors include the demand for its organization sustainability as characterized by economically productive activities organized by Orphanage and a program to produce a cadre of Muhammadiyah. To support the social welfare of Muhammadiyah, the ideal Orphanage concept for Muhammadiyah is a missionary and self-sufficient orphanage.Keywords: orphanage, Muhammadiyah, misionary, Great Malang
Procedia PDF Downloads 2088763 Obesity and Lifestyle of Students in Roumanian Southeastern Region
Authors: Mariana Stuparu-Cretu, Doina-Carina Voinescu, Rodica-Mihaela Dinica, Daniela Borda, Camelia Vizireanu, Gabriela Iordachescu, Camelia Busila
Abstract:
Obesity is involved in the etiology or acceleration of progression of important non-communicable diseases, such as: metabolic, cardiovascular, rheumatological, oncological and depression. It is a need to prevent the obesity occurrence, like a key link in disease management. From this point of view, the best approach is to early educate youngsters upon the need for a healthy nutrition lifestyle associated with constant physical activities. The objective of the study was to assess correlations between weight condition, physical activities and food preferences of students from South East Romania. Questionnaires were applied on high school students in Galati: 1006 girls and 880 boys, aged between 14 and 19 years (being approved by Local School Inspectorate and the Ethics Committee of the 'Dunarea de Jos' University of Galati). The collected answers have been statistically processed by using the multivariate regression method (PLS2) by Unscramble X program (Camo, Norway). Multiple variables such as age group, body mass index, nutritional habits and physical activities were separately analysed, depending on gender and general mathematical models were proposed to explain the obesity trend at an early age. The study results show that overweight and obesity are present in less than a fifth of the adolescents who were surveyed. With a very small variation and a strong correlation of over 86% for 99% of the cases, a general preference for sweet foods, nocturnal eating associated with computer work and a reduced period of physical activity is noticed for girls. In addition, the overweight girls consume sweet juices and alcohol, although a percentage of them also practice the gym. There is also a percentage of the normoponderal girls that consume high caloric foods which predispose this group to turn into overweight cases in time. Within the studied group, statistics for the boys show a positive correlation of almost 87% for over 96% of cases. They prefer high calories foods, fast food, and sweet juices, and perform medium physical activities. Both overweight and underweight boys are more sedentary. Over 15% of girls and over a quarter of boys consume alcohol. All these bad eating habits seem to increase with age, for both sexes. To conclude, obesity and overweight assessed in adolescents in S-E Romania reveal nonsignificant percentage differences between boys and girls. However, young people in this area of the country are sedentary in general; a significant percentage prefers sweets / sweet juices / fast-food and practice computer nourishing. The authors consider that at this age, it is very useful to adapt nutritional education by new methods of food processing and market supply. This would require an early understanding of the difference among foods and nutrients and the benefits of physical activities integrated into the healthy current lifestyle, as a measure for preventing and managing non-communicable chronic diseases related to nutritional errors and sedentarism. Acknowledgment— This study has been partial founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), no.21899/ 06.09.2017.Keywords: adolescents, body mass index, nutritional habits, obesity, physical activity
Procedia PDF Downloads 2618762 Buddhism and Education for Children: Cultivating Wisdom and Compassion
Authors: Harry Einhorn
Abstract:
This paper aims to explore the integration of Buddhism into educational settings with the goal of fostering the holistic development of children. By incorporating Buddhist principles and practices, educators can create a nurturing environment that cultivates wisdom, compassion, and ethical values in children. The teachings of Buddhism provide valuable insights into mindfulness, compassion, and critical thinking, which can be adapted and applied to educational curricula to enhance children's intellectual, emotional, and moral growth. One of the fundamental aspects of Buddhist philosophy that is particularly relevant to education is the concept of mindfulness. By introducing mindfulness practices, such as meditation and breathing exercises, children can learn to cultivate present-moment awareness, develop emotional resilience, and enhance their ability to concentrate and focus. These skills are essential for effective learning and can contribute to reducing stress and promoting overall well-being in children. Mindfulness practices can also teach children how to manage their emotions and thoughts, promoting self-regulation and creating a positive classroom environment. In addition to mindfulness, Buddhism emphasizes the cultivation of compassion and empathy toward all living beings. Integrating teachings on kindness, empathy, and ethical behavior into the educational framework can help children develop a deep sense of interconnectedness and social responsibility. By engaging children in activities that promote empathy and encourage acts of kindness, such as community service projects and cooperative learning, educators can foster the development of compassionate individuals who are actively engaged in creating a more harmonious and compassionate society. Moreover, Buddhist teachings encourage critical thinking and inquiry, which are crucial skills for intellectual development. By introducing children to fundamental Buddhist concepts such as impermanence, interdependence, and the nature of suffering, educators can engage them in philosophical reflections and broaden their perspectives on life. These teachings promote open-mindedness, curiosity, and a deeper understanding of the interconnectedness of all things. Through the exploration of these concepts, children can develop critical thinking skills and gain insights into the complexities of the world, enabling them to navigate challenges with wisdom and discernment. While integrating Buddhism into education requires sensitivity, cultural awareness, and respect for diverse beliefs and backgrounds, it holds great potential for nurturing the holistic development of children. By incorporating mindfulness practices, fostering compassion and empathy, and promoting critical thinking, Buddhism can contribute to the creation of a more compassionate, inclusive, and harmonious educational environment. This integration can shape well-rounded individuals who are equipped with the necessary skills and qualities to navigate the complexities of the modern world with wisdom, compassion, and resilience. In conclusion, the integration of Buddhism into education offers a valuable framework for cultivating wisdom, compassion, and ethical values in children. By incorporating mindfulness, compassion, and critical thinking into educational practices, educators can create a supportive environment that promotes children's holistic development. By nurturing these qualities, Buddhism can help shape individuals who are not only academically proficient but also morally and ethically responsible, contributing to a more compassionate and harmonious society.Keywords: Buddhism, education, children, mindfulness
Procedia PDF Downloads 658761 ‘Obuntu Bulamu’: Parental Peer to Peer Support for Inclusion of Children with Disabilities in Central Uganda
Authors: Ruth Nalugya, Claire Nimusiima, Elizabeth Kawesa, Harriet Nambejja, Geert van Hove, Janet Seeley, Femke Bannink Mbazzi
Abstract:
Background: ‘Obuntu bulamu’, an intervention for children, parents, and teachers to improve the participation and inclusion of children with disabilities (CwD) through peer-to-peer support, was developed and tested in central Uganda between 2017 and 2019. The intervention consisted of children, parents, and teachers' training sessions and peer to peer support activities directed at disability inclusion using an African disability framework. In this paper, we discuss parent participation in and parent evaluation of the ‘Obuntu bulamu’ intervention. Methods: This qualitative Afrocentric intervention study was implemented in 10 communities in the Wakiso district in Central Uganda. We purposely selected children aged 8 to 14 years with different impairments, their peers, and parents, with different levels of household income and familial support, who were enrolled in primary schools in the ten communities with on average three children with disabilities per community. Sixty four parents (33 parents of CwDs and 31 peers) participating in the ‘Obuntu bulamu’ study were interviewed at baseline and endline. Two focus group discussions were held with parents at the midline. Parents also participated in a consultative meeting about the intervention design at baseline, and two evaluation workshops held at midline and endline. Thematic data analysis of the interview and focus group data was conducted. Results: Findings showed parents found the group-based activities inspiring and said they built hope and confidence. Parents felt the intervention was acceptable, culturally appropriate, and supportive as it built on values and practices from their own traditions. Parents reported the intervention enhanced a sense of togetherness and belonging through the group meetings and follow-up activities. Parents also mentioned that the training helped them develop more positive attitudes towards CwD and disability inclusion. Parents felt that the invention increased a child’s participation and inclusion at home, school, and in communities. Conclusion: The Obuntu bulamu peer to peer support intervention is an acceptable, culturally appropriate intervention that has the potential to improve the inclusion of CwD. A larger randomized control trial is needed to evaluate the impact of the intervention model.Keywords: inclusion, participation, inclusive education, peer support, belonging, Ubuntu, ‘Obuntu bulamu’
Procedia PDF Downloads 1088760 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1498759 USTTB (UCRC) Financial Management, Strengths and Weaknesses
Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia
Abstract:
Background: Financial management of a scientific research center is a crucial element in achieving ambitious scientific goals. It can be a driving force for research success, but it also has shortcomings that are important to understand. This study focuses on the crucial aspects of financial management in the context of scientific research centers, more specifically the USTTB (UCRC) in Mali in terms of strengths and weaknesses. Methodology: This study concerns the case of the UCRC, one of the USTTB's research centers. It is a qualitative study based on years of experience in project management at the USTTB, and on analyses and interpretations of everyday activities. Result: It offers practical recommendations for improving the financial stability of research institutions, thereby contributing to their mission of promoting scientific research and innovation. Scientific research centers play a crucial role in the development of knowledge, and their effective operation largely depends on the appropriate management of their financial resources. It begins with an in-depth analysis of UCRC's typical financial structure, highlighting its types and sources of funding, followed by an analysis of the strengths and weaknesses of its current financial management system. Conclusion: Financial management of a scientific research center is essential to ensure the continuity of research activities, the development of innovative projects and the achievement of scientific objectives. Adaptive financial management focused on efficiency, diversification of funding and risk control. They are essential to meeting these challenges and fostering excellence in scientific research.Keywords: financial, management, strengths, weaknesses, recommendations
Procedia PDF Downloads 278758 Anti-Melanogenesis and Anti-Inflammatory Effects of Opuntia humifusa
Authors: Yonghwa Lee, Yoon Suk Kim, Yongsub Yi
Abstract:
This study was to confirm the effects of anti-melanogenesis and anti-inflammatory effects from Opuntia humifusa fruit and stem extracts. A potent anti-oxidant activity was shown from the leaf extract at IC50 value of 38.33±1.07 μg/mL and fruit extract at IC50 value of 40.23±2.21 μg/mL by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Also, phenolic contents were confirmed total phenolic assay by high performance liquid chromatography (HPLC). Fraction of taxifolin from leaf extract was identified using HPLC and gas chromatography/mass spectrometry. The extracts of Opuntia humifusa fruit and stem were confirmed about toxicity effect in B16 F1 by cell viability. Melanin contents were decreased. Opuntia humifusa fruit and stem extracts had a positive effect of melanin synthesis inhibition for skin whitening. In investigating the anti-inflammatory activities of Opuntia humifusa, the results of cell viability indicated that taxifolin did not show cytotoxicity on RAW264.7 cells at 500 μM of concentration. The results show that taxifolin inhibited lipopolysaccharide (LPS)-induced production of Nitrite oxide (NO). In addition, taxifolin indicated the inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) -α and interleukin (IL) -6 productions by cytokine assay and cyclooxygenase (COX)-2 expression by western blot analysis, meaning that taxifolin had a significant anti-inflammatory effect. Our results suggested that taxifolin from Opuntia humifusa has anti-melanogenesis and anti-inflammatory activities.Keywords: anti-melanogenesis, anti-inflammatory, Opuntia humifusa, taxifolin
Procedia PDF Downloads 3178757 Effects of External and Internal Focus of Attention in Motor Learning of Children with Cerebral Palsy
Authors: Morteza Pourazar, Fatemeh Mirakhori, Fazlolah Bagherzadeh, Rasool Hemayattalab
Abstract:
The purpose of study was to examine the effects of external and internal focus of attention in the motor learning of children with cerebral palsy. The study involved 30 boys (7 to 12 years old) with CP type 1 who practiced throwing beanbags. The participants were randomly assigned to the internal focus, external focus, and control groups, and performed six blocks of 10-trial with attentional focus reminders during a practice phase and no reminders during retention and transfer tests. Analysis of variance (ANOVA) with repeated measures on the last factor was used. The results show that significant main effects were found for time and group. However, the interaction of time and group was not significant. Retention scores were significantly higher for the external focus group. The external focus group performed better than other groups; however, the internal focus and control groups’ performance did not differ. The study concluded that motor skills in Spastic Hemiparetic Cerebral Palsy (SHCP) children could be enhanced by external attention.Keywords: cerebral palsy, external attention, internal attention, throwing task
Procedia PDF Downloads 3188756 Human Xanthine Oxidase Inhibitory Effect, in vivo Antioxidant Activity of Globularia alypum L. Extracts
Authors: N. Boussoualim, H. Trabsa, I. Krache, S. Aouachria, S. Boumerfeg, L. Arrar, A. Baghiani
Abstract:
The aim of this study consisted in evaluating the antioxidant in vivo properties, anti-hemolytic and XOR inhibitory effect of Globularia alypum L. (GA) extracts. GA was submitted to extraction and fractionation to give crude (CrE), chloroformique (ChE), ethyle acetate (EAE) and aqueos (AqE) extracts. Total polyphenols contents of GA extracts were determined; EAE is the most rich in polyphenols (157,74±5,27 mg GAE/mg of extract). GA Extracts inhibited XO in a concentration-dependent manner, the EAE showed the highest inhibitory properties on the XOR activity (IC50=0,083±0,001 mg/ml), followed by CrE and ChE. The antioxidant activities of the CrE, EAE, and AqE were tested by an in vivo assay in mice, the plasma ability to inhibit DPPH radical was measured, The CrE was found to exhibit the greatest scavenger activity with 48.41±2.763%, followed by AqE and EAE (40.54±7.51% and 41.79±1.654%, respectively). Total antioxidant capacity of red blood cells was measured, from the kinetics of hemolysis obtained. The calculated HT50 reveal an extension of time for half hemolysis in all treated groups compared with the control group. CrE increase significantly HT50 (112,8±2,427). The hemolysis is lagged, indicating that endogenous antioxidants in the erythrocytes can trap radicals to protect them against free-radical-induced hemolysis. Antimicrobial activities of the extracts were determined by the disc diffusion method. Test microorganisms were; 4 Gram positive, 7 gram negative bacteria, most active extracts were EAE and CrE. We deduce a great relationship between the effect on the extracts antibacterial effect and their contents in flavonoid.Keywords: Globularia alypum, Xanthine oxidoreductase, in vivo-antioxidant activity, hemolysis, polyphenol
Procedia PDF Downloads 3398755 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 428754 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 1138753 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 1368752 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1138751 Creative Application of Cognitive Linguistics and Communicative Methods to Eliminate Common Learners' Mistakes in Academic Essay Writing
Authors: Ekaterina Lukianchenko
Abstract:
This article sums up a six-year experience of teaching English as a foreign language to over 900 university students at MGIMO (Moscow University of International Relations, Russia), all of them native speakers of Russian aged 16 to 23. By combining modern communicative approach to teaching with cognitive linguistics theories, one can deal more effectively with deeply rooted mistakes which particular students have of which conventional methods have failed to eliminate. If language items are understood as concepts and frames, and classroom activities as meaningful parts of language competence development, this might help to solve such problems as incorrect use of words, unsuitable register, and confused tenses - as well as logical or structural mistakes, and even certain psychological issues concerning essay writing. Along with classic teaching methods, such classroom practice includes plenty of interaction between students - playing special classroom games aimed at eliminating particular mistakes, working in pairs and groups, integrating all skills in one class. The main conclusions that the author of the experiment makes consist in an assumption that academic essay writing classes demand a balanced plan. This should not only include writing as such, but additionally feature elements of listening, reading, speaking activities specifically chosen according to the skills and language students will need to write the particular type of essay.Keywords: academic essay writing, creative teaching, cognitive linguistics, competency-based approach, communicative language teaching, frame, concept
Procedia PDF Downloads 3008750 The Positive Impact of COVID-19 on the Level of Investments of U.S. Retail Investors: Evidence from a Quantitative Online Survey and Ordered Probit Analysis
Authors: Corina E. Niculaescu, Ivan Sangiorgi, Adrian R. Bell
Abstract:
The COVID-19 pandemic has been life-changing in many aspects of people’s daily and social lives, but has it also changed attitudes towards investments? This paper explores the effect of the COVID-19 pandemic on retail investors’ levels of investments in the U.S. during the first COVID-19 wave in summer 2020. This is an unprecedented health crisis, which could lead to changes in investment behavior, including irrational behavior in retail investors. As such, this study aims to inform policymakers of what happened to investment decisions during the COVID-19 pandemic so that they can protect retail investors during extreme events like a global health crisis. The study aims to answer two research questions. First, was the level of investments affected by the COVID-19 pandemic, and if so, why? Second, how were investments affected by retail investors’ personal experience with COVID-19? The research analysis is based on primary survey data collected on the Amazon Mechanical Turk platform from a representative sample of U.S. respondents. Responses were collected between the 15th of July and 28th of August 2020 from 1,148 U.S. retail investors who hold mutual fund investments and a savings account. The research explores whether being affected by COVID-19, change in the level of savings, and risk capacity can explain the change in the level of investments by using regression analysis. The dependent variable is changed in investments measured as decrease, no change, and increase. For this reason, the methodology used is ordered probit regression models. The results show that retail investors in the U.S. increased their investments during the first wave of COVID-19, which is unexpected as investors are usually more cautious in crisis times. Moreover, the study finds that those who were affected personally by COVID-19 (e.g., tested positive) were more likely to increase their investments, which is irrational behavior and contradicts expectations. An increase in the level of savings and risk capacity was also associated with increased investments. Overall, the findings show that having personal experience with a health crisis can have an impact on one’s investment decisions as well. Those findings are important for both retail investors and policymakers, especially now that online trading platforms have made trading easily accessible to everyone. There are risks and potential irrational behaviors associated with investment decisions during times of crisis, and it is important that retail investors are aware of them before making financial decisions.Keywords: COVID-19, financial decision-making, health crisis retail investors, survey
Procedia PDF Downloads 1958749 A Study of Native Speaker Teachers’ Competency and Achievement of Thai Students
Authors: Pimpisa Rattanadilok Na Phuket
Abstract:
This research study aims to examine: 1) teaching competency of the native English-speaking teacher (NEST) 2) the English language learning achievement of Thai students, and 3) students’ perceptions toward their NEST. The population considered in this research was a group of 39 undergraduate students of the academic year 2013. The tools consisted of a questionnaire employed to measure the level of competency of NEST, pre-test and post-test used to examine the students’ achievement on English pronunciation, and an interview used to discover how participants perceived their NEST. The data was statistically analysed as percentage, mean, standard deviation and One-sample-t-test. In addition, the data collected by interviews was qualitatively analyzed. The research study found that the level of teaching competency of native speaker teachers of English was mostly low, the English pronunciation achievement of students had increased significantly at the level of 0.5, and the students’ perception toward NEST is combined. The students perceived their NEST as an English expertise, but they felt that NEST had not recognized students' linguistic difficulty and cultural differences.Keywords: competency, native English-speaking teacher (NET), English teaching, learning achievement
Procedia PDF Downloads 3788748 Studies on the Teaching Pedagogy and Effectiveness for the Multi-Channel Storytelling for Social Media, Cinema, Game, and Streaming Platform: Case Studies of Squid Game
Authors: Chan Ka Lok Sobel
Abstract:
The rapid evolution of digital media platforms has given rise to new forms of narrative engagement, particularly through multi-channel storytelling. This research focuses on exploring the teaching pedagogy and effectiveness of multi-channel storytelling for social media, cinema, games, and streaming platforms. The study employs case studies of the popular series "Squid Game" to investigate the diverse pedagogical approaches and strategies used in teaching multi-channel storytelling. Through qualitative research methods, including interviews, surveys, and content analysis, the research assesses the effectiveness of these approaches in terms of student engagement, knowledge acquisition, critical thinking skills, and the development of digital literacy. The findings contribute to understanding best practices for incorporating multi-channel storytelling into educational contexts and enhancing learning outcomes in the digital media landscape.Keywords: digital literacy, game-based learning, artificial intelligence, animation production, educational technology
Procedia PDF Downloads 1218747 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 1178746 Mediating and Moderating Function of Corporate Governance on Firm Tax Planning and Firm Tax Disclosure Relationship
Authors: Mahfoudh Hussein Mgammal
Abstract:
The purpose of this paper is to investigate the moderating and mediating effect of corporate governance mechanisms proxy on the relationship of tax planning measured by effective tax rate components and tax disclosure. This paper tested the hypotheses by a 3-step hierarchical regression with 2010 to 2012 Malaysian-listed nonfinancial firms. We found companies positively value tax-planning activities. This indicates that tax planning is seen as a source of companies' wealth creation as the results show that there is an association between the tax disclosure and the extent of tax planning, and this relationship is highly significant. Examination of the implications of corporate governance mechanisms on the tax disclosure-tax planning association showed the lack of a significant coefficient related to any of the interactive variables. This makes it hard to understand the nature of the association. Finally, we further study the sensitivity of the results, the outcomes were also examined for the robustness and strength of the model specification utilizing OLS-effect estimators and the absence of tax planning related factors (GRTH, LEVE, and CAPNT). The findings of these tests display there is no effect on the tax planning-tax disclosure association. The outcomes of the annual regressions test show that the panel regressions results differ over time because there is a time difference impact on the associations, and the different models are not completely proportionate as a whole. Moreover, our paper lends some support to recent theory on the importance of taxes to corporate governance by demonstrating how the agency costs of tax planning allow certain shareholders to benefit from firm activities at the expense of others.Keywords: tax disclosure, tax planning, corporate governance, effective tax rate
Procedia PDF Downloads 1578745 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens
Authors: R. Tamborrino, F. Rinaudo
Abstract:
Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.Keywords: digital urban history, census, digitalisation, GIS, modelling, digital humanities
Procedia PDF Downloads 1918744 Behavioural Intention to Use Learning Management System (LMS) among Postgraduate Students: An Application of Utaut Model
Authors: Kamaludeen Samaila, Khashyaullah Abdulfattah, Fahimi Ahmad Bin Amir
Abstract:
The study was conducted to examine the relationship between selected factors (performance expectancy, effort expectancy, social influence and facilitating condition) and students’ intention to use the learning management system (LMS), as well as investigating the factors predicting students’ intention to use the LMS. The study was specifically conducted at the Faculty of Educational Study of University Putra Malaysia. Questionnaires were distributed to 277 respondents using a random sampling technique. SPSS Version 22 was employed in analyzing the data; the findings of this study indicated that performance expectancy (r = .69, p < .01), effort expectancy (r=.60, p < .01), social influence (r = .61, p < .01), and facilitating condition (r=.42, p < .01), were significantly related to students’ intention to use the LMS. In addition, the result also revealed that performance expectancy (β = .436, p < .05), social influence (β=.232, p < .05), and effort expectancy (β = .193, p < .05) were strong predictors of students’ intention to use the LMS. The analysis further indicated that (R2) is 0.054 which means that 54% of variation in the dependent variable is explained by the entire predictor variables entered into the regression model. Understanding the factors that affect students’ intention to use the LMS could help the lecturers, LMS managers and university management to develop the policies that may attract students to use the LMS.Keywords: LMS, postgraduate students, PutraBlas, students’ intention, UPM, UTAUT model
Procedia PDF Downloads 5168743 The Relationship between Human Pose and Intention to Fire a Handgun
Authors: Joshua van Staden, Dane Brown, Karen Bradshaw
Abstract:
Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.Keywords: feature engineering, human pose, machine learning, security
Procedia PDF Downloads 958742 Impacts of COVID-19 on Communal Based Natural Resources Management in Newtown, Bekezela Village, Eastern Cape, South Africa
Authors: James Donald Nyamahono, Kelvin Tinashe Pikirai
Abstract:
Communal based natural resource management (CBNRM) is regarded as one of the most significant methods for sustainable natural resource conservation. This is due to the fact that it entails the engagement of local communities as well as the use of indigenous knowledge and customary conservation. The emergence of COVID-19 had a devastating impact on this sector since it has resulted in the disbandment of all collective activities, such as group gatherings, including those with a good cause. This is supported by research, which demonstrates that throughout the era of full lockdowns, the coordination of diverse activities and the sustainability of various working groups were severely harmed. This study was undertaken in the CBNRM niche to examine how COVID-19 affected this sector. Data were gathered through focus group discussions with youths, women, and the elderly active in CBNRM in Newtown, Bekezela Village, Eastern Cape. The study concluded that the sustainability of indigenous knowledge in natural resource management was endangered due to the restricted movements and community participation in developmental initiatives. The study also revealed a 'environment-community divide,' since COVID-19 hindered local communities from holding their regular conservation meetings. The research, on the other hand, discovered that there were 'secret' gatherings in which local communities attempted to adopt Afrocentric ways in which the available natural resources would provide a remedy for COVID-19.Keywords: CBNRM, COVID-19, indigenous knowledge, South Africa
Procedia PDF Downloads 1018741 Identifying the Challenges of Subcontractors Management in Building Area Projects and Providing Solutions (Supply Chain Management Approach)
Authors: Hamideh Sadat Zekri, Seyed Mojtaba Hosseinalipour, Mohammadreza Hafezi
Abstract:
Nowadays, an organization cannot usually overcome all tasks singly due to the increasing complexity and vast expanse of projects, increment in uncertainty of activities, fast advances in technology, advent and influence of various factors in decision-making and implication of projects, and competitive atmosphere of different affairs. Thus, firms proceed to outsource the tasks to subcontractors. Nevertheless, large Iranian contracting companies suffer from extra consumed costs and time owing to conflicts between the activities of suppliers and subcontractors. The paucity of coordination in planning and execution, scarcity of coordination among suppliers, subcontractors, and the main contractor during the implementation of construction activities and also the lack of proper management of the aforesaid situation result in the growth of contradictions, number of claims, and legal issues in a project and consequently impose enormous expenses on those companies. Regarding the prosperity of supply chain management in other industries, its importance is increasingly getting appreciated in the field of construction. The ultimate aim of supply chain management is an effective delivery of the best value for customers, which is achievable by encouraging the members to interact and collaborate. In the present research, there was an effort to obtain a set of relevant challenges in the managing of subcontractors by identifying the main contractors and subcontractors and their role in the execution of projects and the supply chain management in the construction industry. Then, some of those challenges were selected in accordance with the views of industry professionals and academic experts. In the next step, a questionnaire was prepared and completed based on the analytic hierarchy process (AHP) and the challenges were prioritized. When it comes to subcontractors, the findings of the research demonstrate that difficulties in timely payments, alterations in approved drawings and the lack of rectification of job after completion by the subcontractor, paucity of a predetermined and legal process for qualifications of subcontractors, neglecting the supply chain processes in material procurement from producers, and delays in delivery of works by a subcontractor are the most significant problems. Finally, some solutions for encountering, eradicating, or reducing of mentioned problems are presented in accordance with previous studies and a survey from specialists.Keywords: main contractors, subcontractors, supply chain management, construction supply chain, analytic hierarchy process, solution
Procedia PDF Downloads 678740 The Current Use of Cell Phone in Education
Authors: Elham A. Alsadoon, Hamadah B. Alsadoon
Abstract:
Educators try to design learning environments that are preferred by their students. With the wide-spread adoption of cell phones surpassing any other technology, educators should not fail to invest in the power of such technology. This study aimed to explore the current use of cell phones in education among Saudi students in Saudi universities and how students perceive such use. Data was collected from 237 students at King Saud University. Descriptive analysis was used to analyze the data. A T-test for independent groups was used to examine whether there was a significant difference between males and females in their perception of using cell phones in education. Findings suggested that students have a positive attitude toward the use of cell phones in education. The most accepted use was for sending notification to students, which has already been experienced through the Twasel system provided by King Saud University. This electronic system allows instructors to easily send any SMS or email to their students. The use of cell phone applications came in the second rank of using cell phones in education. Students have already experienced the benefits of having these applications handy wherever they go. On the other hand, they did not perceive using cell phones for assessment as practical educational usage. No gender difference was detected in terms of students’ perceptions toward using cell phones in education.Keywords: cell phone, mobile learning, educational sciences, education
Procedia PDF Downloads 4178739 Urban Catalyst through Traditional Market Revitalization towards the MICE Tourism in Surakarta
Authors: Istijabatul Aliyah, Bambang Setioko, Rara Sugiarti
Abstract:
Surakarta is one of the cities which are formed with the concept of Javanese cosmology. As a traditional town of Java, Surakarta is known as ‘the paradise’ of traditional markets. Since its establishment, Surakarta is formed with Catur Gatra Tunggal or Four Single-Slot concept (palace, square, mosques, and markets). Current development in Surakarta downtown today indicates that traditional markets have improved themselves in both physical and non-physical aspects. The efforts start from the market façade revitalization, restoration and the overall development of market; up to social activities, competition between traders or large celebrations in the neighbourhood market. This research was conducted in Surakarta, which is aimed at: identifying the role of traditional market revitalization efforts in the development of a city. This study employs several methods of analysis, namely: 1) Spatial analysis for mapping the distribution of traditional markets in the city constellation, 2) Category-Based Analysis (CBA) to classify the revitalization of traditional markets that has an influence in the development of the city, and 3) Interactive Method of Analysis. The results of this research indicate that the presence of a constellation of traditional markets in Surakarta is dominated by the presence of Gede Market, not only as the oldest traditional market, but also as a center of economic and socio-cultural activities of the community. The role of traditional market revitalization in the development of a town is as an Urban Catalyst towards a MICE city in the sense that the revitalization effort, even done in a relatively short time and not yet covering the overall objects, is able to establish brand image of Surakarta as a city of culture which is friendly and ready to be MICE tourism city.Keywords: traditional market revitalization, urban catalyst, MICE tourism, Surakarta
Procedia PDF Downloads 3848738 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems
Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu
Abstract:
Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system
Procedia PDF Downloads 2998737 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 738736 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 118