Search results for: anticipate method
13714 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture
Authors: Juan Huang, Hugo Ninanya
Abstract:
Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis
Procedia PDF Downloads 20813713 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels
Authors: Niharika Kaushal, Minni Singh
Abstract:
Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals
Procedia PDF Downloads 9613712 Sequential and Combinatorial Pre-Treatment Strategy of Lignocellulose for the Enhanced Enzymatic Hydrolysis of Spent Coffee Waste
Authors: Rajeev Ravindran, Amit K. Jaiswal
Abstract:
Waste from the food-processing industry is produced in large amount and contains high levels of lignocellulose. Due to continuous accumulation throughout the year in large quantities, it creates a major environmental problem worldwide. The chemical composition of these wastes (up to 75% of its composition is contributed by polysaccharide) makes it inexpensive raw material for the production of value-added products such as biofuel, bio-solvents, nanocrystalline cellulose and enzymes. In order to use lignocellulose as the raw material for the microbial fermentation, the substrate is subjected to enzymatic treatment, which leads to the release of reducing sugars such as glucose and xylose. However, the inherent properties of lignocellulose such as presence of lignin, pectin, acetyl groups and the presence of crystalline cellulose contribute to recalcitrance. This leads to poor sugar yields upon enzymatic hydrolysis of lignocellulose. A pre-treatment method is generally applied before enzymatic treatment of lignocellulose that essentially removes recalcitrant components in biomass through structural breakdown. Present study is carried out to find out the best pre-treatment method for the maximum liberation of reducing sugars from spent coffee waste (SPW). SPW was subjected to a range of physical, chemical and physico-chemical pre-treatment followed by a sequential, combinatorial pre-treatment strategy is also applied on to attain maximum sugar yield by combining two or more pre-treatments. All the pre-treated samples were analysed for total reducing sugar followed by identification and quantification of individual sugar by HPLC coupled with RI detector. Besides, generation of any inhibitory compounds such furfural, hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity is also monitored. Results showed that ultrasound treatment (31.06 mg/L) proved to be the best pre-treatment method based on total reducing content followed by dilute acid hydrolysis (10.03 mg/L) while galactose was found to be the major monosaccharide present in the pre-treated SPW. Finally, the results obtained from the study were used to design a sequential lignocellulose pre-treatment protocol to decrease the formation of enzyme inhibitors and increase sugar yield on enzymatic hydrolysis by employing cellulase-hemicellulase consortium. Sequential, combinatorial treatment was found better in terms of total reducing yield and low content of the inhibitory compounds formation, which could be due to the fact that this mode of pre-treatment combines several mild treatment methods rather than formulating a single one. It eliminates the need for a detoxification step and potential application in the valorisation of lignocellulosic food waste.Keywords: lignocellulose, enzymatic hydrolysis, pre-treatment, ultrasound
Procedia PDF Downloads 36813711 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods
Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho
Abstract:
Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator
Procedia PDF Downloads 16213710 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method
Authors: Luh Eka Suryani, Purhadi
Abstract:
Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion
Procedia PDF Downloads 16413709 Optimal Operation of Bakhtiari and Roudbar Dam Using Differential Evolution Algorithms
Authors: Ramin Mansouri
Abstract:
Due to the contrast of rivers discharge regime with water demands, one of the best ways to use water resources is to regulate the natural flow of the rivers and supplying water needs to construct dams. Optimal utilization of reservoirs, consideration of multiple important goals together at the same is of very high importance. To study about analyzing this method, statistical data of Bakhtiari and Roudbar dam over 46 years (1955 until 2001) is used. Initially an appropriate objective function was specified and using DE algorithm, the rule curve was developed. In continue, operation policy using rule curves was compared to standard comparative operation policy. The proposed method distributed the lack to the whole year and lowest damage was inflicted to the system. The standard deviation of monthly shortfall of each year with the proposed algorithm was less deviated than the other two methods. The Results show that median values for the coefficients of F and Cr provide the optimum situation and cause DE algorithm not to be trapped in local optimum. The most optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. After finding the best combination of coefficients values F and CR, algorithms for solving the independent populations were examined. For this purpose, the population of 4, 25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). result indicates that the generation number 200 is suitable for optimizing. The increase in time per the number of population has almost a linear trend, which indicates the effect of population in the runtime algorithm. Hence specifying suitable population to obtain an optimal results is very important. Standard operation policy had better reversibility percentage, but inflicts severe vulnerability to the system. The results obtained in years of low rainfall had very good results compared to other comparative methods.Keywords: reservoirs, differential evolution, dam, Optimal operation
Procedia PDF Downloads 8113708 Impact of Ethnoscience-Based Teaching Approach: Thinking Relevance, Effectiveness and Learner Retention in Physics Concepts of Optics
Authors: Rose C.Anamezie, Mishack T. Gumbo
Abstract:
Physics learners’ poor retention, which culminates in poor achievement due to teaching approaches that are unrelated to learners’ in non-Western cultures, warranted the study. The tenet of this study was to determine the effectiveness of the ethnoscience-based teaching (EBT) approach on learners’ retention in the Physics concept of Optics in the Awka Education zone of Anambra State- Nigeria. Two research questions and three null hypotheses tested at a 0.05 level of significance guided the study. The design adopted for the study was Quasi-experimental. Specifically, a non-equivalent control group design was adopted. The population for the study was 4,825 SS2 Physics learners in the zone. 160 SS2 learners were sampled using purposive and random sampling. The experimental group was taught rectilinear propagation of light (RPL) using the EBT approach, while the control group was taught the same topic using the lecture method. The instrument for data collection was the 50 Physics Retention Test (PRT) which was validated by three experts and tested for reliability using Kuder-Richardson’s formula-20, which yielded coefficients of 0.81. The data were analysed using mean, standard deviation and analysis of co-variance (p< .05). The results showed higher retention for the use of the EBT approach than the lecture method, while there was no significant gender-based factor in the learners’ retention in Physics. It was recommended that the EBT approach, which bridged the gender gap in Physics retention, be adopted in secondary school teaching and learning since it could transform science teaching, enhance learners’ construction of new science concepts based on their existing knowledge and bridge the gap between Western science and learners’ worldviews.Keywords: Ethnoscience-based teaching, optics, rectilinear propagation of light, retention
Procedia PDF Downloads 8813707 Sea Protection: Using Marine Algae as a Natural Method of Absorbing Dye Textile Waste
Authors: Ariana Kilic, Serena Arapyan
Abstract:
Water pollution is a serious concern in all seas around the world and one major cause of it is dye textile wastes mixing with seawater. This common incident alters aquatic life, putting organisms’ lives in danger and deteriorating the water's nature. There is a significant need for a natural approach to reduce the amount of dye textile waste in seawater and ensure marine organisms' safety. Consequently, using marine algae is a viable solution since it can eliminate the excess waste by absorbing the dye. Also, marine algae are non-vascular that absorb water and nutrients, meaning that having them as absorbers is a natural process and no inorganic matters will be added to the seawater that could result in further pollution. To test the efficiency of this approach, the optical absorbance of the seawater samples was measured before and after the addition of marine algae by utilizing colorimetry. A colorimeter is used to find the concentration of a chemical compound in a solution by measuring the absorbance of the compound at a specific wavelength. Samples of seawater that have equal amounts of water were used and textile dye was added as the constant variables. The initial and final absorbances, the dependent variable, of the water were measured before and after the addition of marine algae, the independent variable, and observed. The lower the absorbance showed us that there is lower dye concentration and therefore, the marine algae had done its job by using and absorbing the dye. The same experiment was repeated with same amount of water but with different concentrations of dye in order to determine the maximum concentration of dye the marine algae can completely absorb. The diminished concentration of dye demonstrated that pollution caused by factories’ dye wastes could be prevented with the natural method of marine algae. The involvement of marine algae is an optimal strategy for having an organic solution to absorbing the dye wastes in seas and obstructing water pollution.Keywords: water pollution, dye textile waste, marine algae, absorbance, colorimetry
Procedia PDF Downloads 2513706 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide
Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz
Abstract:
In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide
Procedia PDF Downloads 16813705 Passive Voice in SLA: Armenian Learners’ Case Study
Authors: Emma Nemishalyan
Abstract:
It is believed that learners’ mother tongue (L1 hereafter) has a huge impact on their second language acquisition (L2 hereafter). This hypothesis has been exposed to both positive and negative criticism. Based on research results of a wide range of learners’ corpora (Chinese, Japanese, Spanish among others) the hypothesis has either been proved or disproved. However, no such study has been conducted on the Armenian learners. The aim of this paper is to understand the implication of the hypothesis on the Armenian learners’ corpus in terms of the use of the passive voice. To this end, the method of Contrastive Interlanguage Analysis (hereafter CIA) has been used on native speakers’ corpus (Louvain Corpus of Native English Essays (LOCNESS)) and Armenian learners’ corpus which has been compiled by me in compliance with International Corpus of Learner English (ICLE) guidelines. CIA compares the interlanguage (the language produced by learners) with the one produced by native speakers. With the help of this method, it is possible not only to highlight the mistakes that learners make, but also to underline the under or overuses. The choice of the grammar issue (passive voice) is conditioned by the fact that typologically Armenian and English are drastically different as they belong to different branches. Moreover, the passive voice is considered to be one of the most problematic grammar topics to be acquired by learners of the English language. Based on this difference, we hypothesized that Armenian learners would either overuse or underuse some types of the passive voice. With the help of Lancsbox software, we have identified the frequency rates of passive voice usage in LOCNESS and Armenian learners’ corpus to understand whether the latter have the same usage pattern of the passive voice as the native speakers. Secondly, we have identified the types of the passive voice used by the Armenian leaners trying to track down the reasons in their mother tongue. The results of the study showed that Armenian learners underused the passive voices in contrast to native speakers. Furthermore, the hypothesis that learners’ L1 has an impact on learners’ L2 acquisition and production was proved.Keywords: corpus linguistics, applied linguistics, second language acquisition, corpus compilation
Procedia PDF Downloads 11513704 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer
Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin
Abstract:
Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes
Procedia PDF Downloads 12113703 Bifurcations of a System of Rotor-Ball Bearings with Waviness and Squeeze Film Dampers
Authors: Sina Modares Ahmadi, Mohamad Reza Ghazavi, Mandana Sheikhzad
Abstract:
Squeeze film damper systems (SFD) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. These types of systems are frequently used in aircraft gas turbine engines. There are some structural parameters which are of great importance in designing these kinds of systems, such as oil film thickness, C, and outer race mass, mo. Moreover, there is a crucial parameter associated with manufacturing process, under the title of waviness. Geometric imperfections are often called waviness if its wavelength is much longer than Hertzian contact width which is a considerable source of vibration in ball bearings. In this paper, a system of a flexible rotor and two ball bearings with floating ring squeeze film dampers and consideration of waviness has been modeled and solved by a numerical integration method, namely Runge-Kutta method to investigate the dynamic response of the system. The results show that by increasing the number of wave lobes, which is due to inappropriate manufacturing, non- periodic and chaotic behavior increases. This result reveals the importance of manufacturing accuracy. Moreover, as long as C< 1.5×10-4 m, by increasing the oil film thickness, unwanted vibrations and non-periodic behavior of the system have been reduced, On the other hand, when C>1.5×10-4 m, increasing the outer oil film thickness results in the increasing chaotic and non-periodic responses. This result shows that although the presence of oil film results in reduction the non-periodic and chaotic behaviors, but the oil film has an optimal thickness. In addition, with increasing mo, the disc displacement amplitude increases. This result reveals the importance of utilizing light materials in manufacturing the squeeze film dampers.Keywords: squeeze-film damper, waviness, ball bearing, bifurcation
Procedia PDF Downloads 38913702 Retail of Organic Food in Poland
Authors: Joanna Smoluk-Sikorska, Władysława Łuczka
Abstract:
Organic farming is an important element of sustainable agriculture. It has been developing very dynamically in Poland, especially since Poland’s accession to the EU. Nevertheless, properly functioning organic market is a necessary condition justifying development of organic agriculture. Despite significant improvement, this market in Poland is still in the initial stage of growth. An important element of the market is distribution, especially retail, which offers specified product range to consumers. Therefore, there is a need to investigate retail outlets offering organic food in order to improve functioning of this part of the market. The inquiry research conducted in three types of outlets offering organic food, between 2011 and 2012 in the 8 largest Polish cities, shows that the majority of outlets offer cereals, processed fruit and vegetables as well as spices and the least shops – meat and sausages. The distributors mostly indicate unsatisfactory product range of suppliers as the reason for this situation. The main providers of the outlets are wholesalers, particularly in case of processed products, and in fresh products – organic farms. A very important distribution obstacle is dispersion of producers, which generates high transportation costs and what follows that, high price of organics. In the investigated shops, the most often used price calculation method is a cost method. The majority of the groceries and specialist shops apply margins between 21 and 40%. The margin in specialist outlets is the highest, in regard to the qualified service and advice. In turn, most retail networks declare the margin between 0 and 20%, which is consistent with low-price strategy applied in these shops. Some lacks in the product range of organics and in particular high prices cause that the demand volume is rather low. Therefore there is a need to support certain market actions, e.g. on-farm processing or promotion.Keywords: organic food, retail, product range, supply sources
Procedia PDF Downloads 30013701 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells
Authors: B. Samuel Raj, Solomon R. D. Jebakumar
Abstract:
Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell
Procedia PDF Downloads 35413700 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System
Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan
Abstract:
Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle
Procedia PDF Downloads 29813699 Study and Simulation of a Dynamic System Using Digital Twin
Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli
Abstract:
Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models
Procedia PDF Downloads 15313698 Improved Functions For Runoff Coefficients And Smart Design Of Ditches & Biofilters For Effective Flow detention
Authors: Thomas Larm, Anna Wahlsten
Abstract:
An international literature study has been carried out for comparison of commonly used methods for the dimensioning of transport systems and stormwater facilities for flow detention. The focus of the literature study regarding the calculation of design flow and detention has been the widely used Rational method and its underlying parameters. The impact of chosen design parameters such as return time, rain intensity, runoff coefficient, and climate factor have been studied. The parameters used in the calculations have been analyzed regarding how they can be calculated and within what limits they can be used. Data used within different countries have been specified, e.g., recommended rainfall return times, estimated runoff times, and climate factors used for different cases and time periods. The literature study concluded that the determination of runoff coefficients is the most uncertain parameter that also affects the calculated flow and required detention volume the most. Proposals have been developed for new runoff coefficients, including a new proposed method with equations for calculating runoff coefficients as a function of return time (years) and rain intensity (l/s/ha), respectively. Suggestions have been made that it is recommended not to limit the use of the Rational Method to a specific catchment size, contrary to what many design manuals recommend, with references to this. The proposed relationships between return time or rain intensity and runoff coefficients need further investigation and to include the quantification of uncertainties. Examples of parameters that have not been considered are the influence on the runoff coefficients of different dimensioning rain durations and the degree of water saturation of green areas, which will be investigated further. The influence of climate effects and design rain on the dimensioning of the stormwater facilities grassed ditches and biofilters (bio retention systems) has been studied, focusing on flow detention capacity. We have investigated how the calculated runoff coefficients regarding climate effect and the influence of changed (increased) return time affect the inflow to and dimensioning of the stormwater facilities. We have developed a smart design of ditches and biofilters that results in both high treatment and flow detention effects and compared these with the effect from dry and wet ponds. Studies of biofilters have generally before focused on treatment of pollutants, but their effect on flow volume and how its flow detention capability can improve is only rarely studied. For both the new type of stormwater ditches and biofilters, it is required to be able to simulate their performance in a model under larger design rains and future climate, as these conditions cannot be tested in the field. The stormwater model StormTac Web has been used on case studies. The results showed that the new smart design of ditches and biofilters had similar flow detention capacity as dry and wet ponds for the same facility area.Keywords: runoff coefficients, flow detention, smart design, biofilter, ditch
Procedia PDF Downloads 9213697 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 7213696 Efficient Study of Substrate Integrated Waveguide Devices
Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand
Abstract:
This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.Keywords: convergence study, HFSS, modal decomposition, SIW circuits, WCIP method
Procedia PDF Downloads 50113695 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems
Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar
Abstract:
Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation
Procedia PDF Downloads 12313694 Dynamic Analysis of Mono-Pile: Spectral Element Method
Authors: Rishab Das, Arnab Banerjee, Bappaditya Manna
Abstract:
Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data.Keywords: mono-pile, visco-elastic, impedance, LabView
Procedia PDF Downloads 12513693 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies
Authors: Muhammad Siddique, Volodymyr Lugovskyy
Abstract:
This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies
Procedia PDF Downloads 8313692 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12513691 A Rapid and Greener Analysis Approach Based on Carbonfiber Column System and MS Detection for Urine Metabolomic Study After Oral Administration of Food Supplements
Authors: Zakia Fatima, Liu Lu, Donghao Li
Abstract:
The analysis of biological fluid metabolites holds significant importance in various areas, such as medical research, food science, and public health. Investigating the levels and distribution of nutrients and their metabolites in biological samples allows researchers and healthcare professionals to determine nutritional status, find hypovitaminosis or hypervitaminosis, and monitor the effectiveness of interventions such as dietary supplementation. Moreover, analysis of nutrient metabolites provides insight into their metabolism, bioavailability, and physiological processes, aiding in the clarification of their health roles. Hence, the exploration of a distinct, efficient, eco-friendly, and simpler methodology is of great importance to evaluate the metabolic content of complex biological samples. In this work, a green and rapid analytical method based on an automated online two-dimensional microscale carbon fiber/activated carbon fiber fractionation system and time-of-flight mass spectrometry (2DμCFs-TOF-MS) was used to evaluate metabolites of urine samples after oral administration of food supplements. The automated 2DμCFs instrument consisted of a microcolumn system with bare carbon fibers and modified carbon fiber coatings. Carbon fibers and modified carbon fibers exhibit different surface characteristics and retain different compounds accordingly. Three kinds of mobile-phase solvents were used to elute the compounds of varied chemical heterogeneities. The 2DμCFs separation system has the ability to effectively separate different compounds based on their polarity and solubility characteristics. No complicated sample preparation method was used prior to analysis, which makes the strategy more eco-friendly, practical, and faster than traditional analysis methods. For optimum analysis results, mobile phase composition, flow rate, and sample diluent were optimized. Water-soluble vitamins, fat-soluble vitamins, and amino acids, as well as 22 vitamin metabolites and 11 vitamin metabolic pathway-related metabolites, were found in urine samples. All water-soluble vitamins except vitamin B12 and vitamin B9 were detected in urine samples. However, no fat-soluble vitamin was detected, and only one metabolite of Vitamin A was found. The comparison with a blank urine sample showed a considerable difference in metabolite content. For example, vitamin metabolites and three related metabolites were not detected in blank urine. The complete single-run screening was carried out in 5.5 minutes with the minimum consumption of toxic organic solvent (0.5 ml). The analytical method was evaluated in terms of greenness, with an analytical greenness (AGREE) score of 0.72. The method’s practicality has been investigated using the Blue Applicability Grade Index (BAGI) tool, obtaining a score of 77. The findings in this work illustrated that the 2DµCFs-TOF-MS approach could emerge as a fast, sustainable, practical, high-throughput, and promising analytical tool for screening and accurate detection of various metabolites, pharmaceuticals, and ingredients in dietary supplements as well as biological fluids.Keywords: metabolite analysis, sustainability, carbon fibers, urine.
Procedia PDF Downloads 3213690 Effective Water Purification by Impregnated Carbon Nanotubes
Authors: Raviteja Chintala
Abstract:
Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot
Procedia PDF Downloads 34413689 Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria
Authors: Nassim Belkacem, Amina Azzam, Dalila Haouchine, Kahina Bennacer, Samira Soufit
Abstract:
Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one.Keywords: Rosmarinus officinalis L., maceration, essential oil, antioxidant, antimicrobial activity
Procedia PDF Downloads 52513688 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 13513687 Analysis of Noise Environment and Acoustics Material in Residential Building
Authors: Heruanda Alviana Giska Barabah, Hilda Rasnia Hapsari
Abstract:
Acoustic phenomena create an acoustic interpretation condition that describes the characteristics of the environment. In urban areas, the tendency of heterogeneous and simultaneous human activity form a soundscape that is different from other regions, one of the characteristics of urban areas that developing the soundscape is the presence of vertical model houses or residential building. Activities both within the building and surrounding environment are able to make the soundscape with certain characteristics. The acoustics comfort of residential building becomes an important aspect, those demand lead the building features become more diverse. Initial steps in mapping acoustic conditions in a soundscape are important, this is the method to determine uncomfortable condition. Noise generated by road traffic, railway, and plane is an important consideration, especially for urban people, therefore the proper design of the building becomes very important as an effort to bring appropriate acoustics comfort. In this paper the authors developed noise mapping on the location of the residential building. Mapping done by taking some point referring to the noise source. The mapping result become the basis for modeling the acoustics wave interacted with the building model. Material selection is done based on literature study and modeling simulation using Insul by considering the absorption coefficient and Sound Transmission Class. The analysis of acoustics rays is ray tracing method using Comsol simulator software that can show the movement of acoustics rays and their interaction with a boundary. The result of this study can be used to consider boundary material in residential building as well as consideration for improving the acoustic quality in the acoustics zones that are formed.Keywords: residential building, noise, absorption coefficient, sound transmission class, ray tracing
Procedia PDF Downloads 25113686 Establishment of Reference Interval for Serum Protein Electrophoresis of Apparently Healthy Adults in Addis Ababa, Ethiopia
Authors: Demiraw Bikila, Tadesse Lejisa, Yosef Tolcha, Chala Bashea, Mehari Meles Tigist Getahun Genet Ashebir, Wossene Habtu, Feyissa Challa, Ousman Mohammed, Melkitu Kassaw, Adisu Kebede, Letebrhan G. Egzeabher, Endalkachew Befekadu, Mistire Wolde, Aster Tsegaye
Abstract:
Background: Even though several factors affect reference intervals (RIs), the company-derived values are currently in use in many laboratories worldwide. However, little or no data is available regarding serum protein RIs, mainly in resource-limited setting countries like Ethiopia. Objective: To establish a reference interval for serum protein electrophoresis of apparently healthy adults in Addis Ababa, Ethiopia. Method: A cross-sectional study was conducted on a total of 297 apparently healthy adults from April-October 2019 in four selected sub-cities (Akaki, Kirkos, Arada, Yeka) of Addis Ababa, Ethiopia. Laboratory analysis of collected samples was performed using Capillarys 2 Flex Piercing analyzer, while statistical analysis was done using SPSS version 23 and med-cal software. Mann-Whitney test was used to check Partitions. Non-parametric method of reference range establishment was performed as per CLSI guideline EP28A3C. Result: The established RIs were: Albumin 53.83-64.59%, 52.24-63.55%; Alpha-1 globulin 3.04-5.40%, 3.44-5.60%; Alpha-2 globulin 8.0-12.67%, 8.44-12.87%; and Beta-1 globulin 5.01-7.38%, 5.14-7.86%. Moreover, Albumin to globulin ratio was 1.16-1.8, 1.09-1.74 for males and females, respectively. The combined RIs for Beta-2 globulin and Gamma globulin were 2.54-4.90% and 12.40-21.66%, respectively. Conclusion: The established reference interval for serum protein fractions revealed gender-specific differences except for Beta-2 globulin and Gamma globulin.Keywords: serum protein electrophoresis, reference interval, Addis Ababa, Ethiopia
Procedia PDF Downloads 24413685 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach
Authors: M. Bahari Mehrabani, Hua-Peng Chen
Abstract:
Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling
Procedia PDF Downloads 241