Search results for: risk behaviors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7311

Search results for: risk behaviors

6801 Comparison of Food Products Contaminated by DDTs in South Africa and Mozambique

Authors: Lesa A. Thompson, Yoshinori Ikenaka, Victor Wepener, Mayumi Ishizuka

Abstract:

One method for controlling malaria in endemic regions is the killing of vector mosquitoes using pesticides such as DDT in indoor residual spraying (IRS). This study was carried out to investigate the presence of and human health risk due to DDT and its metabolites (collectively, DDTs) contaminating human food sources in areas where DDT is used for IRS. Free-range chicken products (meat and eggs) were collected from homesteads in KwaZulu-Natal Province in the northeast of South Africa, and fish meat samples from Maputo Bay in neighbouring Mozambique. Samples were analysed for DDTs (o,p’-DDT, p,p’-DDT, o,p’-DDD, p,p’-DDD, o,p’-DDE and p,p’-DDE) using a gas chromatograph with electron capture detector (GC-ECD). DDTs were detected in all food types, with the predominant congener being p,p’-DDE. The presence of p,p’-DDT confirmed recent release of DDT into the environment. By using concentration levels detected in foods and national consumption levels, the risk to human health through consumption of such food products was calculated. In order of risk level, these were: chicken eggs > chicken meat > fish meat. Human risk (carcinogenic) values greater than one suggest there is an increased health risk through consumption of these foods.

Keywords: DDT, food contamination, human health risk, Mozambique, South Africa

Procedia PDF Downloads 342
6800 Total Longitudinal Displacement (tLoD) of the Common Carotid Artery (CCA) Does Not Differ between Patients with Moderate or High Cardiovascular Risk (CV) and Patients after Acute Myocardial Infarction (AMI)

Authors: P. Serpytis, K. Azukaitis, U. Gargalskaite, R. Navickas, J. Badariene, V. Dzenkeviciute

Abstract:

Purpose: Total longitudinal displacement (tLoD) of the common carotid artery (CCA) wall is a novel ultrasound marker of vascular function that can be evaluated using modified speckle tracking techniques. Decreased CCA tLoD has already been shown to be associated with diabetes and was shown to predict one year cardiovascular outcome in patients with suspected coronary artery disease (CAD) . The aim of our study was to evaluate if CCA tLoD differ between patients with moderate or high cardiovascular (CV) risk and patients after recent acute myocardial infarction (AMI). Methods: 49 patients (54±6 years) with moderate or high CV risk and 42 patients (58±7 years) after recent AMI were included. All patients were non-diabetic. CCA tLoD was evaluated using GE EchoPAC speckle tracking software and expressed as mean of both sides. Data on systolic blood pressure, total and high density lipoprotein (HDL) cholesterol levels, high sensitivity C-reactive protein (hsCRP) level, smoking status and family history of early CV events was evaluated and assessed for association with CCA tLoD. Results: tLoD of CCA did not differ between patients with moderate or high CV risk and patients with very high CV risk after MI (0.265±0.128 mm vs. 0.237±0.103 mm, p>0.05). Lower tLoD was associated with lower HDL cholesterol levels (r=0.211, p=0.04) and male sex (0.228±0.1 vs. 0.297±0.134, p=0.01). Conclusions: tLoD of CCA did not differ between patients with moderate or high CV risk and patients with very high CV risk after AMI. However, lower CCA tLoD was significantly associated with low HDL cholesterol levels and male sex.

Keywords: total longitudinal displacement, carotid artery, cardiovascular risk, acute myocardial infarction

Procedia PDF Downloads 384
6799 A Development of a Conceptual Framework for Safety Culture and Safety Risk Assessment: The Case of Chinese International Construction Projects under the “New Belt and Road” Initiative in Africa

Authors: Bouba Oumarou Aboubakar, HongXia Li, Sardar Annes Farooq

Abstract:

The Belt and Road Initiative’s success strongly depends on the safety of all the million workers on construction projects sites. As the new BRI is directed toward Africa and meets a completely different culture from the Chinese project managers, maintaining low risk for workers risks shall be closely related to cultural sharing and mutual understanding. This is why this work introduces a cultural-wise safety management framework for Chinese Construction projects in Africa. The theoretical contribution of this paper is an improved risk assessment framework that integrates language, culture and difficulty of controlling risk factors into one approach. Practically, this study provides not only a useful tool for project safety management practitioners but the full understanding of all risks that may arise in the BRI projects in Africa.

Keywords: cultural-wise, safety culture, risk assessment, Chinese construction, BRI projects, Africa

Procedia PDF Downloads 107
6798 Correlation between Seismic Risk Insurance Indexes and Uninhabitability Indexes of Buildings in Morocco

Authors: Nabil Mekaoui, Nacer Jabour, Abdelhamid Allaoui, Abderahim Oulidi

Abstract:

The reliability of several insurance indexes of the seismic risk is evaluated and compared for an efficient seismic risk coverage of buildings in Morocco, thus, reducing the basic risk. A large database of earthquake ground motions is established from recent seismic events in Morocco and synthetic ground motions compatible with the design spectrum in order to conduct nonlinear time history analyses on three building models representative of the building stock in Morocco. The uninhabitability index is evaluated based on the simulated damage index, then correlated with preselected insurance indexes. Interestingly, the commonly used peak ground acceleration index showed poor correlation when compared with other indexes, such as spectral accelerations at low periods. Recommendations on the choice of suitable insurance indexes are formulated for efficient seismic risk coverage in Morocco.

Keywords: catastrophe modeling, damage, earthquake, reinsurance, seismic hazard, trigger index, vulnerability

Procedia PDF Downloads 69
6797 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 505
6796 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 155
6795 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain

Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel

Abstract:

The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.

Keywords: big data, sustainability, supply chain social sustainability, social risk, case study

Procedia PDF Downloads 408
6794 Planning Strategies for Urban Flood Mitigation through Different Case Studies of Best Practices across the World

Authors: Bismina Akbar, Smitha M. V.

Abstract:

Flooding is a global phenomenon that causes widespread devastation, economic damage, and loss of human lives. In the past twenty years, the number of reported flood events has increased significantly. Millions of people around the globe are at risk of flooding from coastal, dam breaks, groundwater, and urban surface water and wastewater sources. Climate change is one of the important causes for them since it affects, directly and indirectly, the river network. Although the contribution of climate change is undeniable, human contributions are there to increase the frequency of floods. There are different types of floods, such as Flash floods, Coastal floods, Urban floods, River (or fluvial) floods, and Ponding (or pluvial flooding). This study focuses on formulating mitigation strategies for urban flood risk reduction through analysis of different best practice case studies, including China, Japan, Indonesia, and Brazil. The mitigation measures suggest that apart from the structural and non-structural measures, environmental considerations like blue-green solutions are beneficial for flood risk reduction. And also, Risk-Informed Master plans are essential nowadays to take risk-based decision processes that enable more sustainability and resilience.

Keywords: hazard, mitigation, risk reduction, urban flood

Procedia PDF Downloads 77
6793 Understanding Primary School Students’ Beliefs Regarding the Adoption of Pro-Environmental Behaviors

Authors: Astrid de Leeuw, Pierre Valois

Abstract:

Environmental education is the key to enhancing or changing students’ ways of thinking and acting in order to create an environmentally robust future for all. The present study investigates the beliefs of 812 primary school students, which merit consideration when developing educational interventions. Results of multiple regression analyses reveal that educational interventions should focus on promoting students’ feelings of control over pro-environmental behaviors (PEB). For example, schools could provide recycling bins on the premises. Furthermore, it is critical to develop positive attitudes in students by stressing the various benefits of PEB for keeping our planet clean and protecting wildlife. Unfortunately, our results indicate that students believe that PEB is boring and annoying. Suggestions are offered for making PEB more interesting and relevant. Further research is needed to test the effectiveness of interventions based on the present results.

Keywords: pro-environmental behavior, primary school students, theory of planned behavior, beliefs, educational interventions

Procedia PDF Downloads 504
6792 Infection Risk of Fecal Coliform Contamination in Drinking Water Sources of Urban Slum Dwellers: Application of Quantitative Microbiological Risk Assessment

Authors: Sri Yusnita Irda Sari, Deni Kurniadi Sunjaya, Ardini Saptaningsih Raksanagara

Abstract:

Water is one of the fundamental basic needs for human life, particularly drinking water sources. Although water quality is getting better, fecal-contamination of water is still found around the world, especially in the slum area of mid-low income countries. Drinking water source contamination in urban slum dwellers increases the risk of water borne diseases. Low level of sanitation and poor drinking water supply known as risk factors for diarrhea, moreover bacteria-contaminated drinking water source is the main cause of diarrhea in developing countries. This study aimed to assess risk infection due to Fecal Coliform contamination in various drinking water sources in urban area by applying Quantitative Microbiological Risk Assessment (QMRA). A Cross-sectional survey was conducted in a period of August to October 2015. Water samples were taken by simple random sampling from households in Cikapundung river basin which was one of urban slum area in the center of Bandung city, Indonesia. About 379 water samples from 199 households and 15 common wells were tested. Half of the households used treated drinking water from water gallon mostly refill water gallon which was produced in drinking water refill station. Others used raw water sources which need treatment before consume as drinking water such as tap water, borehole, dug well and spring water source. Annual risk to get infection due to Fecal Coliform contamination from highest to lowest risk was dug well (1127.9 x 10-5), spring water (49.7 x 10-5), borehole (1.383 x 10-5) and tap water (1.121 x 10-5). Annual risk infection of refill drinking water was 1.577 x 10-5 which is comparable to borehole and tap water. Household water treatment and storage to make raw water sources drinkable is essential to prevent risk of water borne diseases. Strong regulation and intense monitoring of refill water gallon quality should be prioritized by the government; moreover, distribution of tap water should be more accessible and affordable especially in urban slum area.

Keywords: drinking water, quantitative microbiological risk assessment, slum, urban

Procedia PDF Downloads 281
6791 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 129
6790 The Nursing Profession in Algeria between Humane Treatment and Work Environment Problems - A Field Study

Authors: Bacha Zakaria

Abstract:

This study aimed to investigate the reality of humane treatment and work environment problems for nurses in public hospitals and their repercussions on the patients arriving there. In this curve, our field study was based on a sample of nurses in Algiers hospitals estimated at 100 nurses. The questionnaire prepared by the two researchers was applied face to face with the nurses, and after obtaining and analyzing the data, we concluded the most important results: The presence of many problems in the work environment, such as work pressures, lack of appreciation, verbal and physical violence, risk of infection, poor salary and incentives, working during fatigue, administrative problems etc. And accordingly, The embodiment of humane dealing with patients requires providing a humane work environment for nurses and dealing with them humanely so that they embody positive behaviors while dealing with patients.

Keywords: nursing, future, family-focused care, health equity

Procedia PDF Downloads 92
6789 Evaluation of a Risk Assessment Method for Fiber Emissions from Sprayed Asbestos-Containing Materials

Authors: Yukinori Fuse, Masato Kawaguchi

Abstract:

A quantitative risk assessment method was developed for fiber emissions from sprayed asbestos-containing materials (ACMs). In Japan, instead of being quantitative, these risk assessments have relied on the subjective judgment of skilled engineers, which may vary from one person to another. Therefore, this closed sampling method aims at avoiding any potential variability between assessments. This method was used to assess emissions from ACM sprayed in eleven buildings and the obtained results were compared with the subjective judgments of a skilled engineer. An approximate correlation tendency was found between both approaches. In spite of existing uncertainties, the closed sampling method is useful for public health protection. We firmly believe that this method may find application in the management and renovation decisions of buildings using friable and sprayed ACM.

Keywords: asbestos, renovation, risk assessment, maintenance

Procedia PDF Downloads 378
6788 A Qualitative Study on Exploring How the Home Environment Influences Eating and Physical Activity Habits of Low-Income Latino Children of Predominantly Immigrant Families

Authors: Ana Cristina Lindsay, Sherrie Wallington, Faith Lees, Mary Greaney

Abstract:

Purpose: Latino children in low-income families are at elevated risk of becoming overweight or obese. The purpose of this study was to examine low-income Latino parents’ beliefs, parenting styles and practices related to their children’s eating and physical activity behaviors while at home. Design and Methods: Qualitative study using focus group discussions with 33 low-income Latino parents of preschool children 2 to 5 years of age. Transcripts were analyzed using thematic analysis. Results: Data analyses revealed that most parents recognize the importance of healthy eating and physical activity for their children and themselves. However, daily life demands including conflicting schedules, long working hours, financial constraints, and neighborhood safety concerns, etc., impact parents’ ability to create a home environment supportive of these behaviors. Conclusions: This study provides information about how the home environment influences low-income Latino preschool children’s eating and physical activity habits. This information is useful for pediatric nurses in their health promotion and disease prevention efforts with low-income Latino families with young children, and for the development of home-based and parenting interventions to prevent and control childhood obesity among this population group. Practice Implications: Pediatric nurses can facilitate communication, provide education, and offer guidance to low-income Latino parents that support their children’s development of early healthy eating and physical activity habits, while taking into account daily life barriers faced by families. Moreover, nurses can play an important role in the integration and coordination of home-visitation to complement office-based visits and provide a continuum of care to low-income Latino families.

Keywords: home environment, Latino, obesity, parents, healthy eating, physical activity

Procedia PDF Downloads 287
6787 Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities

Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu

Abstract:

Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization).

Keywords: control, human factor, optimization, risk management, uncertainty

Procedia PDF Downloads 249
6786 The Impact of Structural Empowerment on Risk Management Practices: A Case Study of Saudi Arabia Construction Small and Medium-Sized Enterprises

Authors: S. Alyami, S. Mohammad

Abstract:

These Risk management practices have a significant impact on construction SMEs. The effective utilisation of these practices depends on culture change in order to optimise decision making for critical activities within construction projects. Thus, successful implementation of empowerment strategies would enhance operational employees to participate in effective decision making. However, there remain many barriers to individuals and organisations within empowerment strategies that require empirical investigation before the industry can benefit from their implementation. Gaps in understanding the relationship between employee empowerment and risk management practices still exist. This research paper aims to examine the impact of the structural empowerment on risk management practices in construction SMEs. The questionnaire has been distributed to participants (162 employees) that involve projects and civil engineers within a case study from Saudi construction SMEs. Partial least squares based structural equation modeling (PLS-SEM) was utilised to perform analysis. The results reveal a positive relationship between empowerment and risk management practices. The study shows how structural empowerment contributes to operational employees in risk management practices through involving activities such as decision making, self-efficiency, and autonomy. The findings of this study will contribute to close the current gaps in the construction SMEs context.

Keywords: construction SMEs, culture, decision making, empowerment, risk management

Procedia PDF Downloads 119
6785 Portfolio Management for Construction Company during Covid-19 Using AHP Technique

Authors: Sareh Rajabi, Salwa Bheiry

Abstract:

In general, Covid-19 created many financial and non-financial damages to the economy and community. Level and severity of covid-19 as pandemic case varies over the region and due to different types of the projects. Covid-19 virus emerged as one of the most imperative risk management factors word-wide recently. Therefore, as part of portfolio management assessment, it is essential to evaluate severity of such risk on the project and program in portfolio management level to avoid any risky portfolio. Covid-19 appeared very effectively in South America, part of Europe and Middle East. Such pandemic infection affected the whole universe, due to lock down, interruption in supply chain management, health and safety requirements, transportations and commercial impacts. Therefore, this research proposes Analytical Hierarchy Process (AHP) to analyze and assess such pandemic case like Covid-19 and its impacts on the construction projects. The AHP technique uses four sub-criteria: Health and safety, commercial risk, completion risk and contractual risk to evaluate the project and program. The result will provide the decision makers with information which project has higher or lower risk in case of Covid-19 and pandemic scenario. Therefore, the decision makers can have most feasible solution based on effective weighted criteria for project selection within their portfolio to match with the organization’s strategies.

Keywords: portfolio management, risk management, COVID-19, analytical hierarchy process technique

Procedia PDF Downloads 109
6784 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
6783 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model

Authors: Jaemoon Lim

Abstract:

To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.

Keywords: chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME

Procedia PDF Downloads 457
6782 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites

Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci

Abstract:

In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.

Keywords: magnesium matrix composite, pressure infiltration, SEM, wear

Procedia PDF Downloads 360
6781 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA

Procedia PDF Downloads 549
6780 Developing Improvements to Multi-Hazard Risk Assessments

Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson

Abstract:

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

Keywords: cascading hazards, disaster assessment, mullti-hazards, risk assessment

Procedia PDF Downloads 112
6779 The Examination of the Mediating Role of Leader-Member Exchange on the Association between Transformational Leadership and Innovative Behavior: A Study in Turkish Technological Organizations

Authors: Gultekin Gurcay

Abstract:

The objective of this study was to examine the relationship between transformational leadership and innovative work behavior and to evaluate the mediating role of leader-member exchange relationships (LMX) on the assumed relationship. This study has focused on the suggestion that LMX might emerge through transformational leadership behaviors and thus could mediate the relationship between transformational leadership and innovative behavior. A cross-sectional survey research has been conducted on the relationship these leadership approaches and their impact on organizational HRM-outcomes has been conducted on two organizations operating in the technical sector in Istanbul-Turkey. The results of the research have supported the hypotheses. Transformational leadership was positively related to the innovative behaviors and LMX emerged to mediate that relationship.

Keywords: innovative leadership, leader-member exchange, transformational leadership, Turkey

Procedia PDF Downloads 278
6778 Short and Long Term Effects of an Attachment-Based Intervention on Child Behaviors

Authors: Claire Baudry, Jessica Pearson, Laura-Emilie Savage, George Tarbulsy

Abstract:

Over the last fifty years, maternal sensitivity and child development among vulnerable families have been a priority for researchers. For this reason, attachment-based interventions have been implemented and been shown to be effective in enhancing child development. Most of the time, child outcomes are measured shortly after the intervention. Objectives: The goal of the study was to investigate the effects of an attachment-based intervention on child development shortly after the intervention ended and one-year post-intervention. Methods: Over the seventy-two mother-child dyads referred by Child Protective Services in the province of Québec, Canada, forty-two were included in this study: 24 dyads who received 6 to 8 intervention sessions and 18 dyads who did not. Intervention and none intervention dyads were matched for the following variables: duration of child protective services, the reason for involvement with child protection, age, sex, and family status. Internalizing and externalizing behaviors were measured 3 and 12 months after the end of the intervention when the average age of children were respectively 45 and 54 months old. Findings: Independent-sample t-tests were conducted to compare scores between the two groups and the two data collection times. In general, on differences observed between the two groups three months after the intervention ended, just a few of them were still present nine months later. Conclusions: This first set of analyses suggests that the effects of attachment-based intervention observed three months following the intervention are not lasting for most of them. Those results inform us of the importance of considering the possibility to offer more attachment-based intervention sessions for those highly vulnerable families.

Keywords: attachment-based intervention, child behaviors, child protective services, highly vulnerable families

Procedia PDF Downloads 135
6777 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation

Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang

Abstract:

With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.

Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior

Procedia PDF Downloads 780
6776 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
6775 Analysing the Degree of Climate Risk Perception and Response Strategies of Farm Household Typologies in Northern Ghana

Authors: David Ahiamadia, Ramilan Thiagarajah, Peter Tozer

Abstract:

In Sub Saharan Africa, farm typologies have been used as a practical way to address heterogeneity among farming systems which is mostly done by grouping farms into subsets with similar characteristics. Due to the complexity in farming systems among farm households, it is not possible to formulate policy recommendations for individual farmers. As a result, this study employs a multivariate statistical approach using Principal Component Analysis (PCA) coupled with cluster analysis to reduce heterogeneity in a 615-household data set from the Africa Rising Baseline Evaluation Survey for 25 farming communities in Northern Ghana. Variables selected for the study were mostly socio-economic, production potential, production intensity, production orientation, crop diversity, food security, resource endowments, and climate risk variables. To avoid making some individuals in the subpopulation worse off when aclimate risk intervention is broadly implemented, the findings of the study also account for diversity in climate risk perception among the different farm types identified and their response strategies towards climate risk. The climate risk variables used in this study involve the most severeclimate shock types perceived by the household, household response to climate shock type, and reason for crop failure (i.e., maize, rice, and groundnut). Eventually, four farm types, each with an adequate level of homogeneity in climate risk perception and response strategies, were identified. Farm type 1 and 3 were wealthy with a lower degree of climate risk perception compared to farm type 2 and 4. Also, relatively wealthy farmers used asset liquidation as a climate risk management strategy, whereas poor farmers resorted to engaging in spiritual activities such as prayers, sacrifices, and divine consultations.

Keywords: smallholder, households, climate risk, variables, typologies

Procedia PDF Downloads 88
6774 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults

Authors: A. Badran, M. Hollocks, H. Markus

Abstract:

Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.

Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging

Procedia PDF Downloads 470
6773 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli

Abstract:

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Keywords: cluster analysis, construction management, earned value, schedule

Procedia PDF Downloads 265
6772 Risk-Sharing Financing of Islamic Banks: Better Shielded against Interest Rate Risk

Authors: Mirzet SeHo, Alaa Alaabed, Mansur Masih

Abstract:

In theory, risk-sharing-based financing (RSF) is considered a corner stone of Islamic finance. It is argued to render Islamic banks more resilient to shocks. In practice, however, this feature of Islamic financial products is almost negligible. Instead, debt-based instruments, with conventional like features, have overwhelmed the nascent industry. In addition, the framework of present-day economic, regulatory and financial reality inevitably exposes Islamic banks in dual banking systems to problems of conventional banks. This includes, but is not limited to, interest rate risk. Empirical evidence has, thus far, confirmed such exposures, despite Islamic banks’ interest-free operations. This study applies system GMM in modeling the determinants of RSF, and finds that RSF is insensitive to changes in interest rates. Hence, our results provide support to the “stability” view of risk-sharing-based financing. This suggests RSF as the way forward for risk management at Islamic banks, in the absence of widely acceptable Shariah compliant hedging instruments. Further support to the stability view is given by evidence of counter-cyclicality. Unlike debt-based lending that inflates artificial asset bubbles through credit expansion during the upswing of business cycles, RSF is negatively related to GDP growth. Our results also imply a significantly strong relationship between risk-sharing deposits and RSF. However, the pass-through of these deposits to RSF is economically low. Only about 40% of risk-sharing deposits are channeled to risk-sharing financing. This raises questions on the validity of the industry’s claim that depositors accustomed to conventional banking shun away from risk sharing and signals potential for better balance sheet management at Islamic banks. Overall, our findings suggest that, on the one hand, Islamic banks can gain ‘independence’ from conventional banks and interest rates through risk-sharing products, the potential for which is enormous. On the other hand, RSF could enable policy makers to improve systemic stability and restrain excessive credit expansion through its countercyclical features.

Keywords: Islamic banks, risk-sharing, financing, interest rate, dynamic system GMM

Procedia PDF Downloads 316