Search results for: copper nanoparticle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1180

Search results for: copper nanoparticle

670 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media

Procedia PDF Downloads 282
669 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 214
668 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru

Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve

Abstract:

The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.

Keywords: mining companies, campesino community, water, socio-environmental conflict

Procedia PDF Downloads 175
667 Atypical Retinoid ST1926 Nanoparticle Formulation Development and Therapeutic Potential in Colorectal Cancer

Authors: Sara Assi, Berthe Hayar, Claudio Pisano, Nadine Darwiche, Walid Saad

Abstract:

Nanomedicine, the application of nanotechnology to medicine, is an emerging discipline that has gained significant attention in recent years. Current breakthroughs in nanomedicine have paved the way to develop effective drug delivery systems that can be used to target cancer. The use of nanotechnology provides effective drug delivery, enhanced stability, bioavailability, and permeability, thereby minimizing drug dosage and toxicity. As such, the use of nanoparticle (NP) formulations in drug delivery has been applied in various cancer models and have shown to improve the ability of drugs to reach specific targeted sites in a controlled manner. Cancer is one of the major causes of death worldwide; in particular, colorectal cancer (CRC) is the third most common type of cancer diagnosed amongst men and women and the second leading cause of cancer related deaths, highlighting the need for novel therapies. Retinoids, consisting of natural and synthetic derivatives, are a class of chemical compounds that have shown promise in preclinical and clinical cancer settings. However, retinoids are limited by their toxicity and resistance to treatment. To overcome this resistance, various synthetic retinoids have been developed, including the adamantyl retinoid ST1926, which is a potent anti-cancer agent. However, due to its limited bioavailability, the development of ST1926 has been restricted in phase I clinical trials. We have previously investigated the preclinical efficacy of ST1926 in CRC models. ST1926 displayed potent inhibitory and apoptotic effects in CRC cell lines by inducing early DNA damage and apoptosis. ST1926 significantly reduced the tumor doubling time and tumor burden in a xenograft CRC model. Therefore, we developed ST1926-NPs and assessed their efficacy in CRC models. ST1926-NPs were produced using Flash NanoPrecipitation with the amphiphilic diblock copolymer polystyrene-b-ethylene oxide and cholesterol as a co-stabilizer. ST1926 was formulated into NPs with a drug to polymer mass ratio of 1:2, providing a stable formulation for one week. The contin ST1926-NP diameter was 100 nm, with a polydispersity index of 0.245. Using the MTT cell viability assay, ST1926-NP exhibited potent anti-growth activities as naked ST1926 in HCT116 cells, at pharmacologically achievable concentrations. Future studies will be performed to study the anti-tumor activities and mechanism of action of ST1926-NPs in a xenograft mouse model and to detect the compound and its glucuroconjugated form in the plasma of mice. Ultimately, our studies will support the use of ST1926-NP formulations in enhancing the stability and bioavailability of ST1926 in CRC.

Keywords: nanoparticles, drug delivery, colorectal cancer, retinoids

Procedia PDF Downloads 77
666 Speciation of Iron(III) Oxide Nanoparticles and other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Authors: M. Paul Herring, Lavrent Khachatryan, Barry Dellinger

Abstract:

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1-MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron(III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by g-factors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77K after accumulation over a multitude of experiments. Additionally, a high valence Fe(IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe(IV)---O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Keywords: cryogenic trapping, EPFRs, dendrimer, Fe2O3 doped silica, soot

Procedia PDF Downloads 386
665 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters

Authors: L. Vivet, L. Benabou, O. Simon

Abstract:

With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.

Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging

Procedia PDF Downloads 78
664 Crustal Scale Seismic Surveys in Search for Gawler Craton Iron Oxide Cu-Au (IOCG) under Very Deep Cover

Authors: E. O. Okan, A. Kepic, P. Williams

Abstract:

Iron oxide copper gold (IOCG) deposits constitute important sources of copper and gold in Australia especially since the discovery of the supergiant Olympic Dam deposits in 1975. They are considered to be metasomatic expressions of large crustal-scale alteration events occasioned by intrusive actions and are associated with felsic igneous rocks in most cases, commonly potassic igneous magmatism, with the deposits ranging from ~2.2 –1.5 Ga in age. For the past two decades, geological, geochemical and potential methods have been used to identify the structures hosting these deposits follow up by drilling. Though these methods have largely been successful for shallow targets, at deeper depth due to low resolution they are limited to mapping only very large to gigantic deposits with sufficient contrast. As the search for ore-bodies under regolith cover continues due to depletion of the near surface deposits, there is a compelling need to develop new exploration technology to explore these deep seated ore-bodies within 1-4km which is the current mining depth range. Seismic reflection method represents this new technology as it offers a distinct advantage over all other geophysical techniques because of its great depth of penetration and superior spatial resolution maintained with depth. Further, in many different geological scenarios, it offers a greater ‘3D mapability’ of units within the stratigraphic boundary. Despite these superior attributes, no arguments for crustal scale seismic surveys have been proposed because there has not been a compelling argument of economic benefit to proceed with such work. For the seismic reflection method to be used at these scales (100’s to 1000’s of square km covered) the technical risks or the survey costs have to be reduced. In addition, as most IOCG deposits have large footprint due to its association with intrusions and large fault zones; we hypothesized that these deposits can be found by mainly looking for the seismic signatures of intrusions along prospective structures. In this study, we present two of such cases: - Olympic Dam and Vulcan iron-oxide copper-gold (IOCG) deposits all located in the Gawler craton, South Australia. Results from our 2D modelling experiments revealed that seismic reflection surveys using 20m geophones and 40m shot spacing as an exploration tool for locating IOCG deposit is possible even when hosted in very complex structures. The migrated sections were not only able to identify and trace various layers plus the complex structures but also show reflections around the edges of intrusive packages. The presences of such intrusions were clearly detected from 100m to 1000m depth range without losing its resolution. The modelled seismic images match the available real seismic data and have the hypothesized characteristics; thus, the seismic method seems to be a valid exploration tool to find IOCG deposits. We therefore propose that 2D seismic survey is viable for IOCG exploration as it can detect mineralised intrusive structures along known favourable corridors. This would help in reducing the exploration risk associated with locating undiscovered resources as well as conducting a life-of-mine study which will enable better development decisions at the very beginning.

Keywords: crustal scale, exploration, IOCG deposit, modelling, seismic surveys

Procedia PDF Downloads 308
663 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 536
662 Wastewater Treatment from Heavy Metals by Nanofiltration and Ion Exchange

Authors: G. G. Kagramanov, E. N. Farnosova, Linn Maung Maung

Abstract:

The technologies of ion exchange and nanofiltration can be used for treatment of wastewater containing copper and other heavy metal ions to decrease the environmental risks. Nanofiltration characteristics under water treatment of heavy metals have been studied. The influence of main technical process parameters - pressure, temperature, concentration and pH value of the initial solution on flux and rejection of nanofiltration membranes has been considered. And ion exchange capacities of resins in removal of heavy metal ions from wastewater have been determined.

Keywords: exchange capacity, heavy metals, ion exchange, membrane separation, nanofiltration

Procedia PDF Downloads 266
661 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.

Keywords: solar system, agricultural greenhouse, heating, storage, drying

Procedia PDF Downloads 66
660 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface

Procedia PDF Downloads 443
659 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili

Abstract:

The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.

Keywords: solar system, agricultural greenhouse, heating, storage

Procedia PDF Downloads 54
658 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii

Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan

Abstract:

Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.

Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle

Procedia PDF Downloads 427
657 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: nanoparticle, nanotube, oximes, precursor, supercritical CO2

Procedia PDF Downloads 330
656 Nano Gold and Silver for Control of Mosquitoes Manipulating Nanogeometries

Authors: Soam Prakash, Namita Soni

Abstract:

The synthesis of metallic nanoparticles is an active area of academic and more significantly, applied research in nanotechnology. Currently, nanoparticle research is an area of intense scientific interest. Silver (Ag) and Gold (Au) nanoparticles (NPs) have been the focus of fungi and plant based syntheses. Silver and gold nanoparticles are nanoparticles of silver and gold. These particles are of between 1 nm and 100 nm in size. Silver and gold have been use in the wide variety of potential applications in biomedical, optical, electronic field, treatment of burns, wounds, and several bacterial infections. There is a crucial need to produce new insecticides due to resistance and high-cost of organic insecticides which are more environmentally-friendly, safe, and target-specific. Synthesizing nanoparticles using plants and microorganisms can eliminate this problem by making the nanoparticles more biocompatible. Here we reviewed the mosquitocidal and antimicrobials activity of silver and gold nanoparticles using fungi, plants as well as bacteria.

Keywords: nano gold, nano silver, Malaria, Chikengunia, dengue control

Procedia PDF Downloads 411
655 Structural and Magnetic Properties of CoFe2-xNdxO4 Spinel Ferrite Nanoparticles

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this present work, CoFe2-xNdxO4 (0.0 ≤ x ≥0.1) spinel ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method. Powder X-ray diffraction patterns were revealed the formation of cubic spinel ferrite with the signature of NdFeO3 phase at higher Nd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range between 5-15 nm. Raman and Fourier Transform Infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at octahedral as well as a tetrahedral site in CoFe2-xNdxO4 nanoparticles. The change in magnetic properties with a variation of concentration of Nd3+ ions in cobalt ferrite nanoparticles was observed.

Keywords: nanoparticles, spinel ferrites, sol-gel auto-combustion method, CoFe2-xNdxO4

Procedia PDF Downloads 474
654 Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage

Authors: Dong Won Kim, Hye Ji Kim, Hyun Young Jung

Abstract:

Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures.

Keywords: ionic liquid, silica nanoparticle, energy storage, electrochemical properties

Procedia PDF Downloads 193
653 Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)

Authors: S. Yousefi Oderji, B. Chen

Abstract:

According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC.

Keywords: RPC, PP, flexural toughness, toughness index

Procedia PDF Downloads 316
652 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam

Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez

Abstract:

In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.

Keywords: kinetics, lignin, phenolic foam, thermal degradation

Procedia PDF Downloads 460
651 Magnetic Nanoparticles for Cancer Therapy

Authors: Sachinkumar Patil, Sonali Patil, Shitalkumar Patil

Abstract:

Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles.

Keywords: magnetic nanoparticles, synthesis, characterization, cancer therapy, hyperthermia, application

Procedia PDF Downloads 617
650 Continuous Synthesis of Nickel Nanoparticles by Hydrazine Reduction

Authors: Yong-Su Jo, Seung-Min Yang, Seok Hong Min, Tae Kwon Ha

Abstract:

The synthesis of nickel nanoparticles by the reduction of nickel chloride with hydrazine in an aqueous solution. The effect of hydrazine concentration on batch-processed particle characteristics was investigated using Field Emission Scanning Electron Microscopy (FESEM). Both average particle size and geometric standard deviation (GSD) were decreasing with increasing hydrazine concentration. The continuous synthesis of nickel nanoparticles by microemulsion method was also studied using FESEM and X-ray Diffraction (XRD). The average size and geometric standard deviation of continuous-processed particles were 87.4 nm and 1.16, respectively. X-ray diffraction revealed continuous-processed particles were pure nickel crystalline with a face-centered cubic (fcc) structure.

Keywords: nanoparticle, hydrazine reduction, continuous process, microemulsion method

Procedia PDF Downloads 432
649 Chronic Renal Failure Associated with Heavy Metal Contamination of Drinking Water in Hail, Kingdom of Saudi Arabia

Authors: Elsayed A. M. Shokr, A. Alhazemi, T. Naser, Talal A. Zuhair, Adel A. Zuhair, Ahmed N. Alshamary, Thamer A. Alanazi, Hosam A. Alanazi

Abstract:

The main threats to human health from heavy metals are associated with exposure to Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. is mainly via intake of drinking water being the most important source in most populations. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and chronic diseases such as renal failure, liver cirrhosis, and chronic anemia has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. Renal failure is related to contaminate drinking water with lead and cadmium, liver cirrhosis to copper and molybdenum, and chronic anemia to copper and cadmium. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via drinking water being a major source of methyl mercury exposure, and dental amalgam. During the last century lead, cadmium, zinc, iron and arsenic is mainly via intake of drinking water being the most important source in most populations. Long-term exposure to lead, cadmium, zinc, iron and arsenic in drinking-water is mainly related to primarily in the form of kidney damage. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas.

Keywords: heavy metals, liver functions, kidney functions and chronic renal failure, hail, renal, water

Procedia PDF Downloads 297
648 Selection and Identification of Some Spontaneous Plant Species Having the Ability to Grow Naturally on Crude Oil Contaminated Soil for a Possible Approach to Decontaminate and Rehabilitate an Industrial Area

Authors: Salima Agoun-Bahar, Ouzna Abrous-Belbachir, Souad Amelal

Abstract:

Industrial areas generally contain heavy metals; thus, negative consequences can appear in the medium and long term on the fauna and flora, but also on the food chain, which man constitutes the final link. The SONATRACH Company has become aware of the importance of environmental protection by setting up a rehabilitation program for polluted sites in order to avoid major ecological disasters and find both curative and preventive solutions. The aim of this work consists to study industrial pollution located around a crude oil storage tank in the Algiers refinery of Sidi R'cine and to select the plants which accumulate the most heavy metals for possible use in phytotechnology. Sampling of whole plants with their soil clod was realized around the pollution source at a depth of twenty centimeters, then transported to the laboratory to identify them. The quantification of heavy metals, lead, zinc, copper, and nickel was carried out by atomic absorption spectrophotometry with flame in the soil and at the level of the aerial and underground parts of the plants. Ten plant species were recorded in the polluted site, three of them belonging to the grass family with a dominance percentage higher than 50%, followed by three other species belonging to the Composite family represented by 12% and one species for each of the families Linaceae, Plantaginaceae, Papilionaceae, and Boraginaceae. Koeleria phleoïdes L. and Avena sterilis L. of the grass family seem to be the dominant plants, although they are quite far from the pollution source. Lead pollution of soils is the most pronounced for all stations, with values varying from 237.5 to 2682.5 µg.g⁻¹. Other peaks are observed for zinc (1177 µg.g⁻¹) and copper (635 µg.g⁻¹) at station 8 and nickel (1800 µg.g⁻¹) at station 10. Among the inventoried plants, some species accumulate a significant amount of metals: Trifolium sp and K.phleoides for lead and zinc, P.lanceolata and G.tomentosa for nickel, and A.clavatus for zinc. K.phloides is a very interesting species because it accumulates an important quantity of heavy metals, especially in its aerial part. This can be explained by its use of the phytoextraction technique, which will facilitate the recovery of the pollutants by the simple removal of shoots.

Keywords: heavy metals, industrial pollution, phytotechnology, rehabilitation

Procedia PDF Downloads 43
647 Design, Construction and Performance Evaluation of a HPGe Detector Shield

Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir

Abstract:

A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of the various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.

Keywords: HPGe shield, background count, personnel dose, efficiency curve

Procedia PDF Downloads 431
646 Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector

Authors: Reema Jain

Abstract:

Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid.

Keywords: nanofluids, nanoparticles, heat transfer, solar collector

Procedia PDF Downloads 297
645 Investigation of Some Flotation Parameters and the Role of Dispersants in the Flotation of Chalcopyrite

Authors: H. A. Taner, V. Önen

Abstract:

A suitable choice of flotation parameters and reagents have a strong effect on the effectiveness of flotation process. The objective of this paper is to give an overview of the flotation of chalcopyrite with the different conditions and dispersants. Flotation parameters such as grinding time, pH, type, and dosage of dispersant were investigated. In order to understand the interaction of some dispersants, sodium silicate, sodium hexametaphosphate and sodium polyphosphate were used. The optimum results were obtained at a pH of 11.5 and a grinding time of 10 minutes. A copper concentrate was produced assaying 29.85% CuFeS2 and 65.97% flotation recovery under optimum rougher flotation conditions with sodium silicate.

Keywords: chalcopyrite, dispersant, flotation, reagent

Procedia PDF Downloads 166
644 Rapid Green Synthesis and Characterization of Silver Nanoparticles Using Eclipta prostrata Leaf Extract

Authors: Siva Prasad Peddi

Abstract:

Silver nanoparticles were successfully synthesized from silver nitrate through a rapid green synthesis method using Eclipta prostrata leaf extract as a reducing cum stabilizing agent. The experimental procedure was readily conducted at room temperature and pressure, and could be easily scaled up. The silver nanoparticles thus obtained were characterized using UV-Visible Spectroscopy (UV-VIS) which yielded an absorption peak at 416 nm. The biomolecules responsible for capping of the bio-reduced silver nanoparticles synthesized using plant extract were successfully identified through FTIR analysis. It was evinced through Scanning Electron Microscope (SEM), and X-ray diffraction (XRD) analysis that the silver nanoparticles were crystalline in nature and spherical in shape. The average size of the particles obtained using Scherrer’s formula was 27.4 nm. The adopted technique for silver nanoparticle synthesis is suitable for large-scale production.

Keywords: silver nanoparticles, green synthesis, characterization, Eclipta prostrata

Procedia PDF Downloads 445
643 Chemical Treatment of Wastewater through Biosorption for the Removal of Toxic Metals

Authors: Shafiq Alam, Manjunathan Ulaganathan

Abstract:

Water/wastewater often contains heavy/toxic metals, such as lead, copper, zinc and arsenic as well as harmful elements, such as antimony, selenium and fluoride. It may also contains radioactive elements, such as cesium and strontium. If they are not removed from water/wastewater then the environment and human health can be negatively impacted. Extensive research has been carried out to remove such harmful metals/elements from water/wastewater through biosorption using biomaterials (bioadsorbents). This presentation will give an overview of the research on preparation of bioadsorbents from biomass wastes and their use for the removal of harmful metals/elements from aqueous media.

Keywords: biosorption, environmental, toxic metals, wastewater

Procedia PDF Downloads 257
642 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.

Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling

Procedia PDF Downloads 62
641 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles

Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III

Abstract:

Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.

Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography

Procedia PDF Downloads 305