Search results for: wireless mesh network (WMN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5604

Search results for: wireless mesh network (WMN)

384 Endotracheal Intubation Self-Confidence: Report of a Realistic Simulation Training

Authors: Cleto J. Sauer Jr., Rita C. Sauer, Chaider G. Andrade, Doris F. Rabelo

Abstract:

Introduction: Endotracheal Intubation (ETI) is a procedure for clinical management of patients with severe clinical presentation of COVID-19 disease. Realistic simulation (RS) is an active learning methodology utilized for clinical skill's improvement. To improve ETI skills of public health network's physicians from Recôncavo da Bahia region in Brazil, during COVID-19 outbreak, RS training was planned and carried out. Training scenario included the Nasco Lifeform realistic simulator, and three actions were simulated: ETI procedure, sedative drugs management, and bougie guide utilization. Training intervention occurred between May and June 2020, as an interinstitutional cooperation between the Health's Department of Bahia State and the Federal University from Recôncavo da Bahia. Objective: The main objective is to report the effects on participants' self-confidence perception for ETI procedure after RS based training. Methods: This is a descriptive study, with secondary data extracted from questionnaires applied throughout RS training. Priority workplace, time from last intubation, and knowledge about bougie were reported on a preparticipation questionnaire. Additionally, participants completed pre- and post-training qualitative self-assessment (10-point Likert scale) regarding self-confidence perception in performing each of simulated actions. Distribution analysis for qualitative data was performed with Wilcoxon Signed Rank Test, and self-confidence increase analysis in frequency contingency tables with Fisher's Exact Test. Results: 36 physicians participated of training, 25 (69%) from primary care setting, 25 (69%) performed ETI over a year ago, and only 4 (11%) had previous knowledge about the bougie guide utilization. There was an increase in self-confidence medians for all three simulated actions. Medians (variation) for self-confidence before and after training, for each simulated action were as follows: ETI [5 (1-9) vs. 8 (6-10) (p < 0.0001)]; Sedative drug management [5 (1-9) vs. 8 (4-10) (p < 0.0001)]; Bougie guide utilization [2.5 (1-7) vs. 8 (4-10) (p < 0.0001)]. Among those who performed ETI over a year ago (n = 25), an increase in self-confidence greater than 3 points for ETI was reported by 23 vs. 2 physicians (p = 0.0002), and by 21 vs. 4 (p = 0.03) for sedative drugs management. Conclusions: RS training contributed to self-confidence increase in performing ETI. Among participants who performed ETI over a year, there was a significant association between RS training and increase of more than 3 points in self-confidence, both for ETI and sedative drug management. Training with RS methodology is suitable for ETI confidence enhancement during COVID-19 outbreak.

Keywords: confidence, COVID-19, endotracheal intubation, realistic simulation

Procedia PDF Downloads 141
383 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 106
382 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows

Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman

Abstract:

The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.

Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer

Procedia PDF Downloads 127
381 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns

Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido

Abstract:

The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.

Keywords: leaching, organic amendments, phytostabilization, polluted soils

Procedia PDF Downloads 111
380 Best Practice for Post-Operative Surgical Site Infection Prevention

Authors: Scott Cavinder

Abstract:

Surgical site infections (SSI) are a known complication to any surgical procedure and are one of the most common nosocomial infections. Globally it is estimated 300 million surgical procedures take place annually, with an incidence of SSI’s estimated to be 11 of 100 surgical patients developing an infection within 30 days after surgery. The specific purpose of the project is to address the PICOT (Problem, Intervention, Comparison, Outcome, Time) question: In patients who have undergone cardiothoracic or vascular surgery (P), does implementation of a post-operative care bundle based on current EBP (I) as compared to current clinical agency practice standards (C) result in a decrease of SSI (O) over a 12-week period (T)? Synthesis of Supporting Evidence: A literature search of five databases, including citation chasing, was performed, which yielded fourteen pieces of evidence ranging from high to good quality. Four common themes were identified for the prevention of SSI’s including use and removal of surgical dressings; use of topical antibiotics and antiseptics; implementation of evidence-based care bundles, and implementation of surveillance through auditing and feedback. The Iowa Model was selected as the framework to help guide this project as it is a multiphase change process which encourages clinicians to recognize opportunities for improvement in healthcare practice. Practice/Implementation: The process for this project will include recruiting postsurgical participants who have undergone cardiovascular or thoracic surgery prior to discharge at a Northwest Indiana Hospital. The patients will receive education, verbal instruction, and return demonstration. The patients will be followed for 12 weeks, and wounds assessed utilizing the National Healthcare Safety Network//Centers for Disease Control (NHSN/CDC) assessment tool and compared to the SSI rate of 2021. Key stakeholders will include two cardiovascular surgeons, four physician assistants, two advance practice nurses, medical assistant and patients. Method of Evaluation: Chi Square analysis will be utilized to establish statistical significance and similarities between the two groups. Main Results/Outcomes: The proposed outcome is the prevention of SSIs in the post-op cardiothoracic and vascular patient. Implication/Recommendation(s): Implementation of standardized post operative care bundles in the prevention of SSI in cardiovascular and thoracic surgical patients.

Keywords: cardiovascular, evidence based practice, infection, post-operative, prevention, thoracic, surgery

Procedia PDF Downloads 83
379 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 171
378 Governance Models of Higher Education Institutions

Authors: Zoran Barac, Maja Martinovic

Abstract:

Higher Education Institutions (HEIs) are a special kind of organization, with its unique purpose and combination of actors. From the societal point of view, they are central institutions in the society that are involved in the activities of education, research, and innovation. At the same time, their societal function derives complex relationships between involved actors, ranging from students, faculty and administration, business community and corporate partners, government agencies, to the general public. HEIs are also particularly interesting as objects of governance research because of their unique public purpose and combination of stakeholders. Furthermore, they are the special type of institutions from an organizational viewpoint. HEIs are often described as “loosely coupled systems” or “organized anarchies“ that implies the challenging nature of their governance models. Governance models of HEIs describe roles, constellations, and modes of interaction of the involved actors in the process of strategic direction and holistic control of institutions, taking into account each particular context. Many governance models of the HEIs are primarily based on the balance of power among the involved actors. Besides the actors’ power and influence, leadership style and environmental contingency could impact the governance model of an HEI. Analyzing them through the frameworks of institutional and contingency theories, HEI governance models originate as outcomes of their institutional and contingency adaptation. HEIs tend to fit to institutional context comprised of formal and informal institutional rules. By fitting to institutional context, HEIs are converging to each other in terms of their structures, policies, and practices. On the other hand, contingency framework implies that there is no governance model that is suitable for all situations. Consequently, the contingency approach begins with identifying contingency variables that might impact a particular governance model. In order to be effective, the governance model should fit to contingency variables. While the institutional context creates converging forces on HEI governance actors and approaches, contingency variables are the causes of divergence of actors’ behavior and governance models. Finally, an HEI governance model is a balanced adaptation of the HEIs to the institutional context and contingency variables. It also encompasses roles, constellations, and modes of interaction of involved actors influenced by institutional and contingency pressures. Actors’ adaptation to the institutional context brings benefits of legitimacy and resources. On the other hand, the adaptation of the actors’ to the contingency variables brings high performance and effectiveness. HEI governance models outlined and analyzed in this paper are collegial, bureaucratic, entrepreneurial, network, professional, political, anarchical, cybernetic, trustee, stakeholder, and amalgam models.

Keywords: governance, governance models, higher education institutions, institutional context, situational context

Procedia PDF Downloads 337
377 Rheological Study of Chitosan/Montmorillonite Nanocomposites: The Effect of Chemical Crosslinking

Authors: K. Khouzami, J. Brassinne, C. Branca, E. Van Ruymbeke, B. Nysten, G. D’Angelo

Abstract:

The development of hybrid organic-inorganic nanocomposites has recently attracted great interest. Typically, polymer silicates represent an emerging class of polymeric nanocomposites that offer superior material properties compared to each compound alone. Among these materials, complexes based on silicate clay and polysaccharides are one of the most promising nanocomposites. The strong electrostatic interaction between chitosan and montmorillonite can induce what is called physical hydrogel, where the coordination bonds or physical crosslinks may associate and dissociate reversibly and in a short time. These mechanisms could be the main origin of the uniqueness of their rheological behavior. However, owing to their structure intrinsically heterogeneous and/or the lack of dissipated energy, they are usually brittle, possess a poor toughness and may not have sufficient mechanical strength. Consequently, the properties of these nanocomposites cannot respond to some requirements of many applications in several fields. To address the issue of weak mechanical properties, covalent chemical crosslink bonds can be introduced to the physical hydrogel. In this way, quite homogeneous dually crosslinked microstructures with high dissipated energy and enhanced mechanical strength can be engineered. In this work, we have prepared a series of chitosan-montmorillonite nanocomposites chemically crosslinked by addition of poly (ethylene glycol) diglycidyl ether. This study aims to provide a better understanding of the mechanical behavior of dually crosslinked chitosan-based nanocomposites by relating it to their microstructures. In these systems, the variety of microstructures is obtained by modifying the number of cross-links. Subsequently, a superior uniqueness of the rheological properties of chemically crosslinked chitosan-montmorillonite nanocomposites is achieved, especially at the highest percentage of clay. Their rheological behaviors depend on the clay/chitosan ratio and the crosslinking. All specimens exhibit a viscous rheological behavior over the frequency range investigated. The flow curves of the nanocomposites show a Newtonian plateau at very low shear rates accompanied by a quite complicated nonlinear decrease with increasing the shear rate. Crosslinking induces a shear thinning behavior revealing the formation of network-like structures. Fitting shear viscosity curves via Ostward-De Waele equation disclosed that crosslinking and clay addition strongly affect the pseudoplasticity of the nanocomposites for shear rates γ ̇>20.

Keywords: chitosan, crossliking, nanocomposites, rheological properties

Procedia PDF Downloads 148
376 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 219
375 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 34
374 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 75
373 Giant Cancer Cell Formation: A Link between Cell Survival and Morphological Changes in Cancer Cells

Authors: Rostyslav Horbay, Nick Korolis, Vahid Anvari, Rostyslav Stoika

Abstract:

Introduction: Giant cancer cells (GCC) are common in all types of cancer, especially after poor therapy. Some specific features of such cells include ~10-fold enlargement, drug resistance, and the ability to propagate similar daughter cells. We used murine NK/Ly lymphoma, an aggressive and fast growing lymphoma model that has already shown drastic changes in GCC comparing to parental cells (chromatin condensation, nuclear fragmentation, tighter OXPHOS/cellular respiration coupling, multidrug resistance). Materials and methods: In this study, we compared morpho-functional changes of GCC that predominantly show either a cytostatic or a cytotoxic effect after treatment with drugs. We studied the effect of a combined cytostatic/cytotoxic drug treatment to determine the correlation of drug efficiency and GCC formation. Doses of G1/S-specific drug paclitaxel/PTX (G2/M-specific, 50 mg/mouse), vinblastine/VBL (50 mg/mouse), and DNA-targeting agents doxorubicin/DOX (125 ng/mouse) and cisplatin/CP (225 ng/mouse) on C57 black mice. Several tests were chosen to estimate morphological and physiological state (propidium iodide, Rhodamine-123, DAPI, JC-1, Janus Green, Giemsa staining and other), which included cell integrity, nuclear fragmentation and chromatin condensation, mitochondrial activity, and others. A single and double factor ANOVA analysis were performed to determine correlation between the criteria of applied drugs and cytomorphological changes. Results: In all cases of treatment, several morphological changes were observed (intracellular vacuolization, membrane blebbing, and interconnected mitochondrial network). A lower gain in ascites (49.97% comparing to control group) and longest lifespan (22+9 days) after tumor injection was obtained with single VBL and single DOX injections. Such ascites contained the highest number of GCC (83.7%+9.2%), lowest cell count number (72.7+31.0 mln/ml), and a strong correlation coefficient between increased mitochondrial activity and percentage of giant NK/Ly cells. A high number of viable GCC (82.1+9.2%) was observed compared to the parental forms (15.4+11.9%) indicating that GCC are more drug resistant than the parental cells. All this indicates that the giant cell formation and its ability to obtain drug resistance is an expanding field in cancer research.

Keywords: ANOVA, cisplatin, doxorubicin, drug resistance, giant cancer cells, NK/Ly lymphoma, paclitaxel, vinblastine

Procedia PDF Downloads 217
372 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 137
371 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
370 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models

Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi

Abstract:

Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209

Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress

Procedia PDF Downloads 153
369 Analysis of the Homogeneous Turbulence Structure in Uniformly Sheared Bubbly Flow Using First and Second Order Turbulence Closures

Authors: Hela Ayeb Mrabtini, Ghazi Bellakhal, Jamel Chahed

Abstract:

The presence of the dispersed phase in gas-liquid bubbly flow considerably alters the liquid turbulence. The bubbles induce turbulent fluctuations that enhance the global liquid turbulence level and alter the mechanisms of turbulence. RANS modeling of uniformly sheared flows on an isolated sphere centered in a control volume is performed using first and second order turbulence closures. The sphere is placed in the production-dissipation equilibrium zone where the liquid velocity is set equal to the relative velocity of the bubbles. The void fraction is determined by the ratio between the sphere volume and the control volume. The analysis of the turbulence statistics on the control volume provides numerical results that are interpreted with regard to the effect of the bubbles wakes on the turbulence structure in uniformly sheared bubbly flow. We assumed for this purpose that at low void fraction where there is no hydrodynamic interaction between the bubbles, the single-phase flow simulation on an isolated sphere is representative on statistical average of a sphere network. The numerical simulations were firstly validated against the experimental data of bubbly homogeneous turbulence with constant shear and then extended to produce numerical results for a wide range of shear rates from 0 to 10 s^-1. These results are compared with our turbulence closure proposed for gas-liquid bubbly flows. In this closure, the turbulent stress tensor in the liquid is split into a turbulent dissipative part produced by the gradient of the mean velocity which also contains the turbulence generated in the bubble wakes and a pseudo-turbulent non-dissipative part induced by the bubbles displacements. Each part is determined by a specific transport equation. The simulations of uniformly sheared flows on an isolated sphere reproduce the mechanisms related to the turbulent part, and the numerical results are in perfect accordance with the modeling of the transport equation of the turbulent part. The reduction of second order turbulence closure provides a description of the modification of turbulence structure by the bubbles presence using a dimensionless number expressed in terms of two-time scales characterizing the turbulence induced by the shear and that induced by bubbles displacements. The numerical simulations carried out in the framework of a comprehensive analysis reproduce particularly the attenuation of the turbulent friction showed in the experimental results of bubbly homogeneous turbulence subjected to a constant shear.

Keywords: gas-liquid bubbly flows, homogeneous turbulence, turbulence closure, uniform shear

Procedia PDF Downloads 463
368 Criminal Law and Internet of Things: Challenges and Threats

Authors: Celina Nowak

Abstract:

The development of information and communication technologies (ICT) and a consequent growth of cyberspace have become a reality of modern societies. The newest addition to this complex structure has been Internet of Things which is due to the appearance of smart devices. IoT creates a new dimension of the network, as the communication is no longer the domain of just humans, but has also become possible between devices themselves. The possibility of communication between devices, devoid of human intervention and real-time supervision, generated new societal and legal challenges. Some of them may and certainly will eventually be connected to criminal law. Legislators both on national and international level have been struggling to cope with this technologically evolving environment in order to address new threats created by the ICT. There are legal instruments on cybercrime, however imperfect and not of universal scope, sometimes referring to specific types of prohibited behaviors undertaken by criminals, such as money laundering, sex offences. However, the criminal law seems largely not prepared to the challenges which may arise because of the development of IoT. This is largely due to the fact that criminal law, both on national and international level, is still based on the concept of perpetration of an offence by a human being. This is a traditional approach, historically and factually justified. Over time, some legal systems have developed or accepted the possibility of commission of an offence by a corporation, a legal person. This is in fact a legal fiction, as a legal person cannot commit an offence as such, it needs humans to actually behave in a certain way on its behalf. Yet, the legislators have come to understand that corporations have their own interests and may benefit from crime – and therefore need to be penalized. This realization however has not been welcome by all states and still give rise to doubts of ontological and theoretical nature in many legal systems. For this reason, in many legislations the liability of legal persons for commission of an offence has not been recognized as criminal responsibility. With the technological progress and the growing use of IoT the discussions referring to criminal responsibility of corporations seem rather inadequate. The world is now facing new challenges and new threats related to the ‘smart’ things. They will have to be eventually addressed by legislators if they want to, as they should, to keep up with the pace of technological and societal evolution. This will however require a reevaluation and possibly restructuring of the most fundamental notions of modern criminal law, such as perpetration, guilt, participation in crime. It remains unclear at this point what norms and legal concepts will be and may be established. The main goal of the research is to point out to the challenges ahead of the national and international legislators in the said context and to attempt to formulate some indications as to the directions of changes, having in mind serious threats related to privacy and security related to the use of IoT.

Keywords: criminal law, internet of things, privacy, security threats

Procedia PDF Downloads 164
367 Ecolabelling : Normative Power or Corporate Strategy? : A Study Case of Textile Company in Indonesia

Authors: Suci Lestari Yuana, Shofi Fatihatun Sholihah, Derarika Ensta Jesse

Abstract:

Textile is one of buyer-driven industry which rely on label trust from the consumers. Most of textile manufacturers produce textile and textile products based on consumer demands. The company’s policy is highly depend on the dynamic evolution of consumers behavior. Recently, ecofriendly has become one of the most important factor of western consumers to purchase the textile and textile product (TPT) from the company. In that sense, companies from developing countries are encouraged to follow western consumers values. Some examples of ecolabel certificate are ISO (International Standard Organisation), Lembaga Ekolabel Indonesia (Indonesian Ecolabel Instution) and Global Ecolabel Network (GEN). The submission of national company to international standard raised a critical question whether this is a reflection towards the legitimation of global norms into national policy or it is actually a practical strategy of the company to gain global consumer. By observing one of the prominent textile company in Indonesia, this research is aimed to discuss what kind of impetus factors that cause a company to use ecolabel and what is the meaning behind it. Whether it comes from normative power or the strategy of the company. This is a qualitative research that choose a company in Sukoharjo, Central Java, Indonesia as a case study in explaining the pratice of ecolabelling by textitle company. Some deep interview is conducted with the company in order to get to know the ecolabelling process. In addition, this research also collected some document which related to company’s ecolabelling process and its impact to company’s value. The finding of the project reflected issues that concerned several issues: (1) role of media as consumer information (2) role of government and non-government actors as normative agency (3) role of company in social responsibility (4) the ecofriendly consciousness as a value of the company. As we know that environmental norms that has been admitted internationally has changed the global industrial process. This environmental norms also pushed the companies around the world, especially the company in Sukoharjo, Central Java, Indonesia to follow the norm. The neglection toward the global norms will remained the company in isolated and unsustained market that will harm the continuity of the company. So, in buyer-driven industry, the characteristic of company-consumer relations has brought a fast dynamic evolution of norms and values. The creation of global norms and values is circulated by passing national territories or identities.

Keywords: ecolabeling, waste management, CSR, normative power

Procedia PDF Downloads 308
366 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 133
365 A Critical Analysis of the Creation of Geoparks in Brazil: Challenges and Possibilities

Authors: Isabella Maria Beil

Abstract:

The International Geosciences and Geoparks Programme (IGGP) were officially created in 2015 by the United Nations Educational, Scientific and Cultural Organization (UNESCO) to enhance the protection of the geological heritage and fill the gaps on the World Heritage Convention. According to UNESCO, a Global Geopark is an unified area where sites and landscapes of international geological significance are managed based on a concept of sustainable development. Tourism is seen as a main activity to develop new sources of revenue. Currently (November 2022), UNESCO recognized 177 Global Geoparks, of which more than 50% are in Europe, 40% in Asia, 6% in Latin America, and the remaining 4% are distributed between Africa and Anglo-Saxon America. This picture shows the existence of a much uneven geographical distribution of these areas across the planet. Currently, there are three Geoparks in Brazil; however, the first of them was accepted by the Global Geoparks Network in 2006 and, just fifteen years later, two other Brazilian Geoparks also obtained the UNESCO title. Therefore, this paper aims to provide an overview of the current geopark situation in Brazil and to identify the main challenges faced by the implementation of these areas in the country. To this end, the Brazilian history and its main characteristics regarding the development of geoparks over the years will be briefly presented. Then, the results obtained from interviews with those responsible for each of the current 29 aspiring geoparks in Brazil will be presented. Finally, the main challenges related to the implementation of Geoparks in the country will be listed. Among these challenges, the answers obtained through the interviews revealed conflicts and problems that pose hindrances both to the start of the development of a Geopark project and to its continuity and implementation. It is clear that the task of getting multiple social actors, or stakeholders, to engage with the Geopark, one of UNESCO’s guidelines, is one of its most complex aspects. Therefore, among the main challenges, stand out the difficulty of establishing solid partnerships, what directly reflects divergences between the different social actors and their goals. This difficulty in establishing partnerships happens for a number of reasons. One of them is that the investment in a Geopark project can be high and investors often expect a short-term financial return. In addition, political support from the public sector is often costly as well, since the possible results and positive influences of a Geopark in a given area will only be experienced during future mandates. These results demonstrate that the research on Geoparks goes far beyond the geological perspective linked to its origins, and is deeply embedded in political and economic issues.

Keywords: Brazil, geoparks, tourism, UNESCO

Procedia PDF Downloads 91
364 Automatic Moderation of Toxic Comments in the Face of Local Language Complexity in Senegal

Authors: Edouard Ngor Sarr, Abel Diatta, Serigne Mor Toure, Ousmane Sall, Lamine Faty

Abstract:

Thanks to Web 2, we are witnessing a form of democratization of the spoken word, an exponential increase in the number of users on the web, but also, and above all, the accumulation of a daily flow of content that is becoming, at times, uncontrollable. Added to this is the rise of a violent social fabric characterised by hateful and racial comments, insults, and other content that contravenes social rules and the platforms' terms of use. Consequently, managing and regulating this mass of new content is proving increasingly difficult, requiring substantial human, technical, and technological resources. Without regulation and with the complicity of anonymity, this toxic content can pollute discussions and make these online spaces highly conducive to abuse, which very often has serious consequences for certain internet users, ranging from anxiety to suicide, depression, or withdrawal. The toxicity of a comment is defined as anything that is rude, disrespectful, or likely to cause someone to leave a discussion or to take violent action against a person or a community. Two levels of measures are needed to deal with this deleterious situation. The first measures are being taken by governments through draft laws with a dual objective: (i) to punish the perpetrators of these abuses and (ii) to make online platforms accountable for the mistakes made by their users. The second measure comes from the platforms themselves. By assessing the content left by users, they can set up filters to block and/or delete content or decide to suspend the user in question for good. However, the speed of discussions and the volume of data involved mean that platforms are unable to properly monitor the moderation of content produced by Internet users. That's why they use human moderators, either through recruitment or outsourcing. Moderating comments on the web means assessing and monitoring users‘ comments on online platforms in order to strike the right balance between protection against abuse and users’ freedom of expression. It makes it possible to determine which publications and users are allowed to remain online and which are deleted or suspended, how authorised publications are displayed, and what actions accompany content deletions. In this study, we look at the problem of automatic moderation of toxic comments in the face of local African languages and, more specifically, on social network comments in Senegal. We review the state of the art, highlighting the different approaches, algorithms, and tools for moderating comments. We also study the issues and challenges of moderation in the face of web ecosystems with lesser-known languages, such as local languages.

Keywords: moderation, local languages, Senegal, toxic comments

Procedia PDF Downloads 12
363 A Comparative Study between Japan and the European Union on Software Vulnerability Public Policies

Authors: Stefano Fantin

Abstract:

The present analysis outcomes from the research undertaken in the course of the European-funded project EUNITY, which targets the gaps in research and development on cybersecurity and privacy between Europe and Japan. Under these auspices, the research presents a study on the policy approach of Japan, the EU and a number of Member States of the Union with regard to the handling and discovery of software vulnerabilities, with the aim of identifying methodological differences and similarities. This research builds upon a functional comparative analysis of both public policies and legal instruments from the identified jurisdictions. The result of this analysis is based on semi-structured interviews with EUNITY partners, as well as by the participation of the researcher to a recent report from the Center for EU Policy Study on software vulnerability. The European Union presents a rather fragmented legal framework on software vulnerabilities. The presence of a number of different legislations at the EU level (including Network and Information Security Directive, Critical Infrastructure Directive, Directive on the Attacks at Information Systems and the Proposal for a Cybersecurity Act) with no clear focus on such a subject makes it difficult for both national governments and end-users (software owners, researchers and private citizens) to gain a clear understanding of the Union’s approach. Additionally, the current data protection reform package (general data protection regulation), seems to create legal uncertainty around security research. To date, at the member states level, a few efforts towards transparent practices have been made, namely by the Netherlands, France, and Latvia. This research will explain what policy approach such countries have taken. Japan has started implementing a coordinated vulnerability disclosure policy in 2004. To date, two amendments can be registered on the framework (2014 and 2017). The framework is furthermore complemented by a series of instruments allowing researchers to disclose responsibly any new discovery. However, the policy has started to lose its efficiency due to a significant increase in reports made to the authority in charge. To conclude, the research conducted reveals two asymmetric policy approaches, time-wise and content-wise. The analysis therein will, therefore, conclude with a series of policy recommendations based on the lessons learned from both regions, towards a common approach to the security of European and Japanese markets, industries and citizens.

Keywords: cybersecurity, vulnerability, European Union, Japan

Procedia PDF Downloads 157
362 Transportation and Urban Land-Use System for the Sustainability of Cities, a Case Study of Muscat

Authors: Bader Eddin Al Asali, N. Srinivasa Reddy

Abstract:

Cities are dynamic in nature and are characterized by concentration of people, infrastructure, services and markets, which offer opportunities for production and consumption. Often growth and development in urban areas is not systematic, and is directed by number of factors like natural growth, land prices, housing availability, job locations-the central business district (CBD’s), transportation routes, distribution of resources, geographical boundaries, administrative policies, etc. One sided spatial and geographical development in cities leads to the unequal spatial distribution of population and jobs, resulting in high transportation activity. City development can be measured by the parameters such as urban size, urban form, urban shape, and urban structure. Urban Size is the city size and defined by the population of the city, and urban form is the location and size of the economic activity (CBD) over the geographical space. Urban shape is the geometrical shape of the city over which the distribution of population and economic activity occupied. And Urban Structure is the transport network within which the population and activity centers are connected by hierarchy of roads. Among the urban land-use systems transportation plays significant role and is one of the largest energy consuming sector. Transportation interaction among the land uses is measured in Passenger-Km and mean trip length, and is often used as a proxy for measurement of energy consumption in transportation sector. Among the trips generated in cities, work trips constitute more than 70 percent. Work trips are originated from the place of residence and destination to the place of employment. To understand the role of urban parameters on transportation interaction, theoretical cities of different size and urban specifications are generated through building block exercise using a specially developed interactive C++ programme and land use transportation modeling is carried. The land-use transportation modeling exercise helps in understanding the role of urban parameters and also to classify the cities for their urban form, structure, and shape. Muscat the capital city of Oman underwent rapid urbanization over the last four decades is taken as a case study for its classification. Also, a pilot survey is carried to capture urban travel characteristics. Analysis of land-use transportation modeling with field data classified Muscat as a linear city with polycentric CBD. Conclusions are drawn suggestion are given for policy making for the sustainability of Muscat City.

Keywords: land-use transportation, transportation modeling urban form, urban structure, urban rule parameters

Procedia PDF Downloads 270
361 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 239
360 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 174
359 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells

Authors: Jae-Hyeon Kim, Michael Lee

Abstract:

Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.

Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy

Procedia PDF Downloads 327
358 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 98
357 Application of Improved Semantic Communication Technology in Remote Sensing Data Transmission

Authors: Tingwei Shu, Dong Zhou, Chengjun Guo

Abstract:

Semantic communication is an emerging form of communication that realize intelligent communication by extracting semantic information of data at the source and transmitting it, and recovering the data at the receiving end. It can effectively solve the problem of data transmission under the situation of large data volume, low SNR and restricted bandwidth. With the development of Deep Learning, semantic communication further matures and is gradually applied in the fields of the Internet of Things, Uumanned Air Vehicle cluster communication, remote sensing scenarios, etc. We propose an improved semantic communication system for the situation where the data volume is huge and the spectrum resources are limited during the transmission of remote sensing images. At the transmitting, we need to extract the semantic information of remote sensing images, but there are some problems. The traditional semantic communication system based on Convolutional Neural Network cannot take into account the global semantic information and local semantic information of the image, which results in less-than-ideal image recovery at the receiving end. Therefore, we adopt the improved vision-Transformer-based structure as the semantic encoder instead of the mainstream one using CNN to extract the image semantic features. In this paper, we first perform pre-processing operations on remote sensing images to improve the resolution of the images in order to obtain images with more semantic information. We use wavelet transform to decompose the image into high-frequency and low-frequency components, perform bilinear interpolation on the high-frequency components and bicubic interpolation on the low-frequency components, and finally perform wavelet inverse transform to obtain the preprocessed image. We adopt the improved Vision-Transformer structure as the semantic coder to extract and transmit the semantic information of remote sensing images. The Vision-Transformer structure can better train the huge data volume and extract better image semantic features, and adopt the multi-layer self-attention mechanism to better capture the correlation between semantic features and reduce redundant features. Secondly, to improve the coding efficiency, we reduce the quadratic complexity of the self-attentive mechanism itself to linear so as to improve the image data processing speed of the model. We conducted experimental simulations on the RSOD dataset and compared the designed system with a semantic communication system based on CNN and image coding methods such as BGP and JPEG to verify that the method can effectively alleviate the problem of excessive data volume and improve the performance of image data communication.

Keywords: semantic communication, transformer, wavelet transform, data processing

Procedia PDF Downloads 79
356 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong

Abstract:

This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.

Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 240
355 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems

Authors: M. Beheshti, S. Saegrov, T. M. Muthanna

Abstract:

Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.

Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management

Procedia PDF Downloads 335