Search results for: learning assessment
7112 Implementing a Plurilingual Approach to ELF in Primary School: An International Comparative Study
Authors: A. Chabert
Abstract:
The present paper is motivated by the current influence of communicative approaches in language policies around the globe (especially through the Common European Framework of Reference), along with the exponential spread of English as a Lingua Franca worldwide. This study focuses on English language learning and teaching in the last year of primary education in Spain (in the bilingual Valencian region), Norway (in the Trondelag region), and China (in the Hunan region) and proposes a plurilingual communicative approach to ELT in line with ELF awareness and the current retheorisation of ELF within multilingualism (Jenkins, 2018). This study, interdisciplinary in nature, attempts to find a convergence point among English Language Teaching, English as a Lingua Franca, Language Ecology and Multilingualism, breaking with the boundaries that separate languages in language teaching and acknowledging English as international communication, while protecting the mother tongue and language diversity within multilingualism. Our experiment included over 400 students across Spain, Norway, and China, and the outcomes obtained demonstrate that despite the different factors involved in different cultures and contexts, a plurilingual approach to English learning improved English scores by 20% in each of the contexts. Through our study, we reflect on the underestimated value of the mother tongue in ELT, as well as the need for a sustainable ELF perspective in education worldwide.Keywords: English as a Lingua Franca, English language teaching, language ecology, multilingualism
Procedia PDF Downloads 1367111 Problem-Based Learning for Hospitality Students. The Case of Madrid Luxury Hotels and the Recovery after the Covid Pandemic
Authors: Caridad Maylin-Aguilar, Beatriz Duarte-Monedero
Abstract:
Problem-based learning (PBL) is a useful tool for adult and practice oriented audiences, as University students. As a consequence of the huge disruption caused by the COVID pandemic in the hospitality industry, hotels of all categories closed down in Spain from March 2020. Since that moment, the luxury segment was blooming with optimistic prospects for new openings. Hence, Hospitality students were expecting a positive situation in terms of employment and career development. By the beginning of the 2020-21 academic year, these expectations were seriously harmed. By October 2020, only 9 of the 32 hotels in the luxury segment were opened with an occupation rate of 9%. Shortly after, the evidence of a second wave affecting especially Spain and the homelands of incoming visitors bitterly smashed all forecasts. In accordance with the situation, a team of four professors and practitioners, from four different subject areas, developed a real case, inspired in one of these hotels, the 5-stars Emperatriz by Barceló. Students in their 2nd course were provided with real information as marketing plans, profit and losses and operational accounts, employees profiles and employment costs. The challenge for them was to act as consultants, identifying potential courses of action, related to best, base and worst case. In order to do that, they were organized in teams and supported by 4th course students. Each professor deployed the problem in their subject; thus, research on the customers behavior and feelings were necessary to review, as part of the marketing plan, if the current offering of the hotel was clear enough to guarantee and to communicate a safe environment, as well as the ranking of other basic, supporting and facilitating services. Also, continuous monitoring of competitors’ activity was necessary to understand what was the behavior of the open outlets. The actions designed after the diagnose were ranked in accordance with their impact and feasibility in terms of time and resources. Also they must be actionable by the current staff of the hotel and their managers and a vision of internal marketing was appreciated. After a process of refinement, seven teams presented their conclusions to Emperatriz general manager and the rest of professors. Four main ideas were chosen, and all the teams, irrespectively of authorship, were asked to develop them to the state of a minimum viable product, with estimations of impacts and costs. As the process continues, students are nowadays accompanying the hotel and their staff in the prudent reopening of facilities, almost one year after the closure. From a professor’s point of view, key learnings were 1.- When facing a real problem, a holistic view is needed. Therefore, the vision of subjects as silos collapses, 2- When educating new professionals, providing them with the resilience and resistance necessaries to deal with a problem is always mandatory, but now seems more relevant and 3.- collaborative work and contact with real practitioners in such an uncertain and changing environment is a challenge, but it is worth when considering the learning result and its potential.Keywords: problem-based learning, hospitality recovery, collaborative learning, resilience
Procedia PDF Downloads 1877110 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 1237109 Life Cycle Assessment of a Parabolic Solar Cooker
Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize
Abstract:
Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.Keywords: life cycle assessement, solar concentration, cooking, sustainability
Procedia PDF Downloads 1907108 Peer-Assisted Learning of Ebm in, a UK Medical School: Evaluation of the NICE Evidence Search Student Champion Scheme
Authors: Emily Jin, Harry Sharples, Anne Weist
Abstract:
Introduction: NICE Evidence Search Student Champion Scheme is a peer-assisted learning scheme that aims to improve the routine use of evidence-based information by future health and social care staff. The focus is on the NICE evidence search portal that provides selected information from more than 800 reliable health, social care, and medicines sources, including up-to-date guidelines and information for the public. This paper aims to evaluate the effectiveness of the scheme when implemented in Liverpool School of Medicine and to understand the experiences of those attending. Methods: Twelve student champions were recruited and trained in February 2020 as peer tutors during a workshop facilitated by NICE. Cascade sessions were then organised and delivered on an optional basis for students, in small groups of < 10 to approximately 70 attendees. Surveys were acquired immediately before and 8-12 weeks after cascade sessions (n=47 and 45 respectively). Data from these surveys facilitated the analysis of the scheme. Results: Surveys demonstrated 74% of all attendees frequently searched for health and social care information online as a part of their studies. However, only 15% of attendees reported having prior formal training on searching for health information, despite receiving such training earlier on in the curriculum. After attending cascade sessions, students reported a 58% increase in confidence when searching for information using evidence search, from a pre-session a baseline of 36%. Conclusion: NICE Evidence Search Student Champion Scheme provided clear benefits for attending students, increasing confidence in searching for peer-reviewed, mainly secondary sources of health information. The lack of reported training represents the unmet need that the champion scheme satisfies, and this likely benefits student champions as well as attendees. Increasing confidence in searching for healthcare information online may support future evidence-based decision-making.Keywords: evidence-based medicine, NICE, medical education, medical school, peer-assisted learning
Procedia PDF Downloads 1367107 Disadvantages and Drawbacks of Concrete Blocks and Fix Their Defects
Authors: Ehsan Sadie
Abstract:
Today, the cost of repair and maintenance of structures is very important and by studying the behavior of reinforced concrete structures Will become specified several factors such as : Design and calculation errors, lack of proper implementation of structural changes, the damage caused by the introduction of random loads, concrete corrosion and environmental conditions reduce durability of the structures . Meanwhile building codes alteration also cause changes in the assessment and review of the design and structure rather if necessary will be improved and strengthened in the future.Keywords: concrete building , expandable cement, honeycombed surface , reinforcement corrosion
Procedia PDF Downloads 4467106 Newly-Rediscovered Manuscripts Talking about Seventeenth-Century French Harpsichord Pedagogy
Authors: David Chung
Abstract:
The development of seventeenth-century French harpsichord music is enigmatic in several respects. Although little is known about the formation of this style before 1650 (we have names of composers, but no surviving music), the style has attained a high degree of refinement and sophistication in the music of the earliest known masters (e.g. Chambonnières, Louis Couperin and D’Anglebert). In fact, how the seventeenth-century musicians acquired the skills of their art remains largely steeped in mystery, as the earliest major treatise on French keyboard pedagogy was not published until 1702 by Saint Lambert. This study fills this lacuna by surveying some twenty recently-rediscovered manuscripts, which offer ample materials for revisiting key issues pertaining to seventeenth-century harpsichord pedagogy. By analyzing the musical contents, the verbal information and explicit notation (such as written-out ornaments and rhythmic effects), this study provides a rich picture of the process of learning at the time, with engaging details of performance nuances often lacking in tutors and treatises. Of even greater significance, that creative skills (such as continuo and ornamentation) were taught alongside fundamental knowledge (solfèges, note values, etc.) at the earliest stage of learning offers fresh challenge for modern pedagogues to rethink how harpsichord pedagogy can be revamped to cater for our own pedagogical and aesthetic needs.Keywords: French, harpsichord, pedagogy, seventeenth century
Procedia PDF Downloads 2617105 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs
Authors: Mitzi S. Brammer
Abstract:
Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.Keywords: inclusion, higher education, pedagogy, equity, diversity
Procedia PDF Downloads 697104 Experiences and Views of Foundation Phase Teachers When Teaching English First Additional Language in Rural Schools
Authors: Rendani Mercy Makhwathana
Abstract:
This paper intends to explore the experiences and views of Foundation Phase teachers when teaching English First Additional Language in rural public schools. Teachers all over the world are pillars of any education system. Consequently, any education transformation should start with teachers as critical role players in the education system. As a result, teachers’ experiences and views are worth consideration, for they impact on learners learning and the wellbeing of education in general. An exploratory qualitative approach with the use of phenomenological research design was used in this paper. The population for this paper comprised all Foundation Phase teachers in the district. Purposive sampling technique was used to select a sample of 15 Foundation Phase teachers from five rural-based schools. Data was collected through classroom observation and individual face-to-face interviews. Data were categorised, analysed and interpreted. The findings revealed that from time-to-time teachers experiences one or more challenging situations, learners’ low participation in the classroom to lack of resources. This paper recommends that teachers should be provided with relevant resources and support to effectively teach English First Additional Language.Keywords: the education system, first additional language, foundation phase, intermediate phase, language of learning and teaching, medium of instruction, teacher professional development
Procedia PDF Downloads 987103 The Effects of Consistently Reading Whole Novels on the Reading Comprehension of Adolescents with Developmental Disabilities
Authors: Pierre Brocas, Konstantinos Rizos
Abstract:
This study was conducted to test the effects of introducing a consistent pace and volume of reading whole narratives on adolescents' reading comprehension with a diagnosis of autism spectrum disorder (ASD). The study was inspired by previous studies conducted on poorer adolescent readers in English schools. The setting was a Free Special Education Needs school in England. Nine male and one female student, between 11-13 years old, across two classrooms participated in the study. All students had a diagnosis of ASD, and all were classified as advanced learners. The classroom teachers introduced reading a whole challenging novel in 12 weeks with consistency as the independent variable. The study used a before-and-after design of testing the participants’ reading comprehension using standardised tests. The participants made a remarkable 1.8 years’ mean progress on the standardised tests of reading comprehension, with three participants making 4+ years progress. The researchers hypothesise that reading novels aloud and at a fast pace in each lesson, that are challenging but appropriate to the participants’ learning level, may have a beneficial effect on the reading comprehension of adolescents with learning difficulties, giving them a more engaged uninterrupted reading experience over a sustained period. However, more studies need to be conducted to test the independent variable across a bigger and more diverse population with a stronger design.Keywords: autism, reading comprehension, developmental disabilities, narratives
Procedia PDF Downloads 2037102 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1067101 Assessment of Agricultural Damage under Different Simulated Flood Conditions
Authors: M. N. Kadir, M. M. H. Oliver, T. Naher
Abstract:
The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding.Keywords: agricultural damage, Delft-3d, flood management, land cover map
Procedia PDF Downloads 1057100 Impact Of Flipped Classroom Model On English as a Foreign Language Learners' Grammar Achievement: Not Only Inversion But Also Integration
Authors: Cem Bulut, Zeynep B. Kocoglu
Abstract:
Flipped classroom (FC) method has gained popularity, specifically in higher education, in recent years with the idea that it is possible to use the time spent in classrooms more effectively by simply flipping the passive lecturing parts with the homework exercises. Accordingly, the present study aims to investigate whether using FC method is more effective than the non-flipped method in teaching grammar to English as a Foreign Language (EFL) learners. An experimental research was conducted with the participants of two intact classes having A2 level English courses (N=39 in total) in a vocational school in Kocaeli, Turkey. Results from the post-test indicated that the flipped group achieved higher scores than the non-flipped group did. Additionally, independent samples t-test analysis in SPSS revealed that the difference between two groups was statistically significant. On the other hand, even if the factors that lie beneath this improvement are likely to be attributed to the teaching method, which is also supported by the answers given to the FC perception survey and interview, participants in both groups developed statistically significant positive attitudes towards learning grammar regardless of the method used. In that sense, this result was considered to be related to the level of the course, which was quite low in English level. In sum, the present study provides additional findings to the literature for FC methodology from a different perspective.Keywords: flipped classroom, learning management system, English as a foreign language
Procedia PDF Downloads 1257099 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware
Authors: Subham Ghosh, Banani Basu, Marami Das
Abstract:
Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease
Procedia PDF Downloads 167098 Effect of Perioperative Protocol of Care on Clinical Outcomes among Patients Undergoing Coronary Artery Bypass Graft
Authors: Manal Ahmed, Amal Shehata, Shereen Deeb
Abstract:
The study's purpose was to determine the effect of the perioperative protocol of care on clinical outcomes among patients undergoing coronary artery bypass graft. Subjects: A sample of 100 adult patients who were planned for coronary artery bypass graft, were selected and divided alternatively and randomly into two equal groups (50 study -50 control).The study was carried out at National heart Institute in Cairo and open heart surgical intensive care unit in Shebin El-Kom Teaching Hospital. Instruments: Four instruments were used for data collection: Interviewing questionnaire, dyspnea analogue scale, Biophysiological measurement instrument, and Compliance assessment sheet. Results: There were statistically significant differences between both groups regarding most respiratory system assessment findings at discharge. More than two-thirds of the study group of the current study had a continuous and regular commitment to diet regimen, which ranked first followed by the compliance of daily living activities then quitting smoking. Conclusions: The perioperative protocol of care has a significant improving effect on respiratory findings, dyspnea degree, duration of mechanical ventilation, length of hospital stay, compliance to diet, therapeutic regimen, daily living activities, and quit smoking among study group undergoing CABG. Recommendations: Perioperative protocol of care should be carried out for CABG patients at open-heart surgical units as well as an illustrative colored booklet about CAD, CABG and perioperative care should be available and distributed to all CABG patients.Keywords: perioperative, effect, clinical outcomes, coronary artery, bypass graft, protocol of care
Procedia PDF Downloads 1417097 Early Childhood Teacher Turnover in an Early Head Start Setting: A Qualitative Examination
Authors: Jennifer Sturgeon
Abstract:
Stable relationships provide a predictable and trusting environment and are essential for early development, but high teacher turnover rates in childcare settings make it challenging for infants and toddlers to form stable relationships with their teachers. This can have an adverse effect on development and learning. The qualitative study discussed in this article draws from the experiences of early Head Start teachers and administrators to describe both the impact of teacher turnover and the motivational factors that contribute to teacher retention. A case study approach was used and included classroom observations, a review of exit interviews, and perceptions from focus groups of early Head Start staff in an urban early Head Start childcare center. Emerging from the case study was the discovery that teacher turnover has an impact on the social-emotional development of toddlers, particularly in self-regulation. Additional key findings that emerged include teacher turnover leading to negative effects on learning, a decrease in preschool preparation, and increased chaos in the classroom and center. Motivational factors that contributed to teacher retention included positive leadership, the mission to make a difference, and fair compensation.Keywords: early childhood, teacher turnover, continuity of care, early head start
Procedia PDF Downloads 737096 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 4017095 Task-Based Teaching for Developing Communication Skills in Second Language Learners
Authors: Geeta Goyal
Abstract:
Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.Keywords: communication skills, English, second language, task-based teaching
Procedia PDF Downloads 927094 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1757093 Insulin Resistance in Patients with Chronic Hepatitis C Virus Infection: Upper Egypt Experience
Authors: Ali Kassem
Abstract:
Background: In the last few years, factors such as insulin resistance (IR) and hepatic steatosis have been linked to progression of hepatic fibrosis.Patients with chronic liver disease, and cirrhosis in particular, are known to be prone to IR. However, chronic HCV (hepatitis C) infection may induce IR, regardless of the presence of liver cirrhosis. Our aims are to study insulin resistance (IR) assessed by HOMA-IR (Homeostatic Model Assessment Insulin Resistance) as a possible risk factor in disease progression in cirrhotic patients and to evaluate the role of IR in hepatic fibrosis progression. The correlations of HOMA-IR values to laboratory, virological and histopathological parameters of chronic HCV are also examined. Methods: The study included 50 people divided into 30 adult chronic hepatitis C patients diagnosed by PCR (polymerase chain reaction) within previous 6 months and 20 healthy controls. The functional and morphological status of the liver were evaluated by ultrasonography and laboratory investigations including liver function tests and by liver biopsy. Fasting blood glucose and fasting insulin levels were measured and body mass index and insulin resistance were calculated. Patients having HOMA-IR >2.5 were labeled as insulin resistant. Results: Chronic hepatitis C patients with IR showed significantly higher mean values of BMI (body mass index) and fasting insulin than those without IR (P < 0.000). Patients with IR were more likely to have steatosis (p = 0.006), higher necroinflammatory activity (p = 0.05). No significant differences were found between the two groups regarding hepatic fibrosis. Conclusion: HOMA-IR measurement could represent a novel marker to identify the cirrhotic patients at greater risk for the progression of liver disease. As IR is a potentially modifiable risk factor, these findings may have important prognostic and therapeutic implications. Assessment of IR by HOMA-IR and improving insulin sensitivity are recommended in patients with HCV and related chronic liver disease.Keywords: hepatic fibrosis, hepatitis C virus infection, hepatic steatosis, insulin resistance
Procedia PDF Downloads 1567092 Efficacy of CAM Methods for Pain Reduction in Acute Non-specific Lower Back Pain
Authors: John Gaber
Abstract:
Objectives: Complementary and alternative medicine (CAM) is a medicine or health practice that is used alongside conventional practice. Nowadays, CAM is commonly used in North America and other countries, and there is a need for more scientific study to understand its efficacy in different clinical cases. This retrospective study explores the effectiveness and recovery time of CAMs such as cupping, acupuncture, and sotai to treat cases of non-specific low back pain (ANLBP). Methods: We assessed the effectiveness of acupuncture, cupping, and sotai methods on pain and for the treatment of ANLBP. We have compared the magnitude of pain relief using a pain scale assessment method to compare the efficacy of each treatment. The Face Pain Scale assessment was conducted before and 24 hours post-treatment. This retrospective study analyzed 40 patients and categorized them according to the treatment they received. The study included the control group, and the three intervention groups, each with ten patients. Each of the three intervention groups received one of the intervention methods. The first group received the cupping treatment, where cups were placed on the lower back of both sides on points: BL23, BL25, BL26, BL54, BL37, BL40, and BL57. After vacuuming, the cups will stay for 10-15 minutes under infrared light (IR) heating. IR heating is applied by an infrared heat lamp. The second group received the acupuncture treatment, placing needles on points: BL23, BL25, BL26, BL52BL54, GB30, BL37, BL40, BL57, BL59, BL60, and KI3. The needles will be simulated with IR light. The final group received the sotai treatment, a Japanese form of structural realignment that relieves pain, balance, and mobility -moving the body naturally and spontaneously towards a comfortable direction by focusing on the inner feeling and synchronizing with the patient’s breathing. The SPSS statistical software was used to analyze the data using repeated-measures ANOVA. The data collected demonstrates the change in the FPS assessment method value over the course of treatment. p<0.05 was considered statistically significant. Results: In the cupping, acupuncture, and sotai therapy groups, the mean of the FPS value reduced from 8.7±1.2, 8.8±1.2, 9.0±0.8 before the intervention to 3.5±1.4, 4.3±1.4, 3.3±1.3, 24 hours after the intervention, respectively. The data collected shows that the CAM methods included in this study all show improvements in pain relief 24 hours after treatment. Conclusion: Complementary and alternative medicine were developed to treat injuries and illnesses with the whole body in mind, designed to be used in addition to standard treatments. The data above shows that the use of these treatments can have a pain-relieving effect, but more research should be done on the matter, as finding CAM methods that are efficacious is crucial in the landscape of health sciences.Keywords: acupuncture, cupping, alternative medicine, rehabilitation, acute injury
Procedia PDF Downloads 597091 Uterine Cervical Cancer; Early Treatment Assessment with T2- And Diffusion-Weighted MRI
Authors: Susanne Fridsten, Kristina Hellman, Anders Sundin, Lennart Blomqvist
Abstract:
Background: Patients diagnosed with locally advanced cervical carcinoma are treated with definitive concomitant chemo-radiotherapy. Treatment failure occurs in 30-50% of patients with very poor prognoses. The treatment is standardized with risk for both over-and undertreatment. Consequently, there is a great need for biomarkers able to predict therapy outcomes to allow for individualized treatment. Aim: To explore the role of T2- and diffusion-weighted magnetic resonance imaging (MRI) for early prediction of therapy outcome and the optimal time point for assessment. Methods: A pilot study including 15 patients with cervical carcinoma stage IIB-IIIB (FIGO 2009) undergoing definitive chemoradiotherapy. All patients underwent MRI four times, at baseline, 3 weeks, 5 weeks, and 12 weeks after treatment started. Tumour size, size change (∆size), visibility on diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) and change of ADC (∆ADC) at the different time points were recorded. Results: 7/15 patients relapsed during the study period, referred to as "poor prognosis", PP, and the remaining eight patients are referred to "good prognosis", GP. The tumor size was larger at all time points for PP than for GP. The ∆size between any of the four-time points was the same for PP and GP patients. The sensitivity and specificity to predict prognostic group depending on a remaining tumor on DWI were highest at 5 weeks and 83% (5/6) and 63% (5/8), respectively. The combination of tumor size at baseline and remaining tumor on DWI at 5 weeks in ROC analysis reached an area under the curve (AUC) of 0.83. After 12 weeks, no remaining tumor was seen on DWI among patients with GP, as opposed to 2/7 PP patients. Adding ADC to the tumor size measurements did not improve the predictive value at any time point. Conclusion: A large tumor at baseline MRI combined with a remaining tumor on DWI at 5 weeks predicted a poor prognosis.Keywords: chemoradiotherapy, diffusion-weighted imaging, magnetic resonance imaging, uterine cervical carcinoma
Procedia PDF Downloads 1487090 How Teachers Comprehend and Support Children's Needs to Be Scientists
Authors: Anita Yus
Abstract:
Several Elementary Schools (SD) ‘favored’ by parents, especially those live in big cities in Indonesia, implicitly demand each child enrolled in the first grade of SD to be able to read, write and calculate. This condition urges the parents to push the teachers in PAUD (Kindergarten) to train their children to read, write, and calculate so they have a set of knowledge. According to Piaget, each child is capable of acquiring knowledge when he is given the opportunity to interact with his environment (things, people, and atmosphere). Teachers can make the interaction occur. There are several learning approaches suitable for the characteristics and needs of child’s growth. This paper talks about a research result conducted to investigate how twelve teachers of early childhood program comprehend the constructivist theory of Piaget, and how they inquire, how the children acquire and construct a number of knowledge through occurred interactions. This is a qualitative research with an observation method followed up by a focus group discussion (FGD). The research result shows that there is a reciprocal interaction between the behaviors of teachers and children affected by the size of the classroom and learning source, teaching experiences, education background, teachers’ attitude and motivation, as well as the way the teachers interpret and support the children’s needs. The teachers involved in this research came up with varied perspective on how knowledge acquired by children at first and how they construct it. This research brings a new perspective in understanding children as scientists.Keywords: constructivist approach, young children as a scientist, teacher practice, teacher education
Procedia PDF Downloads 2527089 Brain-Computer Interface System for Lower Extremity Rehabilitation of Chronic Stroke Patients
Authors: Marc Sebastián-Romagosa, Woosang Cho, Rupert Ortner, Christy Li, Christoph Guger
Abstract:
Neurorehabilitation based on Brain-Computer Interfaces (BCIs) shows important rehabilitation effects for patients after stroke. Previous studies have shown improvements for patients that are in a chronic stage and/or have severe hemiparesis and are particularly challenging for conventional rehabilitation techniques. For this publication, seven stroke patients in the chronic phase with hemiparesis in the lower extremity were recruited. All of them participated in 25 BCI sessions about 3 times a week. The BCI system was based on the Motor Imagery (MI) of the paretic ankle dorsiflexion and healthy wrist dorsiflexion with Functional Electrical Stimulation (FES) and avatar feedback. Assessments were conducted to assess the changes in motor improvement before, after and during the rehabilitation training. Our primary measures used for the assessment were the 10-meters walking test (10MWT), Range of Motion (ROM) of the ankle dorsiflexion and Timed Up and Go (TUG). Results show a significant increase in the gait speed in the primary measure 10MWT fast velocity of 0.18 m/s IQR = [0.12 to 0.2], P = 0.016. The speed in the TUG was also significantly increased by 0.1 m/s IQR = [0.09 to 0.11], P = 0.031. The active ROM assessment increased 4.65º, and IQR = [ 1.67 - 7.4], after rehabilitation training, P = 0.029. These functional improvements persisted at least one month after the end of the therapy. These outcomes show the feasibility of this BCI approach for chronic stroke patients and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tools for stroke patients. However, the results are from only seven chronic stroke patients, so the authors believe that this approach should be further validated in broader randomized controlled studies involving more patients. MI and FES-based non-invasive BCIs are showing improvement in the gait rehabilitation of patients in the chronic stage after stroke. This could have an impact on the rehabilitation techniques used for these patients, especially when they are severely impaired and their mobility is limited.Keywords: neuroscience, brain computer interfaces, rehabilitat, stroke
Procedia PDF Downloads 957088 Assessment of Seeding and Weeding Field Robot Performance
Authors: Victor Bloch, Eerikki Kaila, Reetta Palva
Abstract:
Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.Keywords: agricultural robot, field robot, plant detection, robot performance
Procedia PDF Downloads 907087 Proposed Organizational Development Interventions in Managing Occupational Stressors for Business Schools in Batangas City
Authors: Marlon P. Perez
Abstract:
The study intended to determine the level of occupational stress that was experienced by faculty members of private and public business schools in Batangas City with the end in view of proposing organizational development interventions in managing occupational stressors. Stressors such as factors intrinsic to the job, role in the organization, relationships at work, career development and organizational structure and climate were used as determinants of occupational stress level. Descriptive method of research was used as its research design. There were only 64 full-time faculty members coming from private and public business schools in Batangas City – University of Batangas, Lyceum of the Philippines University-Batangas, Golden Gate Colleges, Batangas State University and Colegio ng Lungsod ng Batangas. Survey questionnaire was used as data gathering instrument. It was found out that all occupational stressors were assessed stressful when grouped according to its classification of tertiary schools while response of subject respondents differs on their assessment of occupational stressors. Age variable has become significantly related to respondents’ assessments on factors intrinsic to the job and career development; however, it was not significantly related to role in the organization, relationships at work and organizational structure and climate. On the other hand, gender, marital status, highest educational attainment, employment status, length of service, area of specialization and classification of tertiary school were revealed to be not significantly related to all occupational stressors. Various organizational development interventions have been proposed to manage the occupational stressors that are experienced by business faculty members in the institution.Keywords: occupational stress, business school, organizational development, intervention, stressors, faculty members, assessment, manage
Procedia PDF Downloads 4347086 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India
Authors: Priyanka Mondal, Santosh K. Sarkar
Abstract:
The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.Keywords: pollution assessment, sediment contamination, sediment quality, trace elements
Procedia PDF Downloads 2607085 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 567084 Examining Cross-Cultural Inclusive Practices for Students with Intellectual & Developmental Disabilities (IDD)
Authors: Adriana Rivera Vega, Micheal McCaurhty, Christina Cipriano
Abstract:
The world is becoming increasingly more diverse- ethnically, racially, and socially. Additionally, racial/ethnic minority students with intellectual and developmental disabilities (IDD) tend to be disproportionately represented in more restrictive special education classrooms than in general education classrooms. Inclusive practices play a significant role in the lives of individuals with IDD). A student's cultural identity also plays a salient role in teaching, learning, and student outcomes. It is, however, unclear whether and how the cultural identities of students with IDD are reflected in terminology, definitions, and practices related to inclusive education. As a part of a larger scoping review investigating inclusive practices for youth with IDD, this secondary study examines one facet of inclusion: cultural identity. Previous research suggests that students with IDD benefit from interventions based on their cultural background. A review of the limited peer-reviewed and grey literature on this subject revealed that the terminology, definitions, and practices around inclusive education tend to overlook students’ cultural identity in the teaching and learning processes for this population. Implications for future research are presented and recommendations for inclusive-based theoretical frameworks and inclusive practices using a cultural identity perspective are discussed.Keywords: education, Psychology, policy, Multicultural Psychology
Procedia PDF Downloads 157083 Ground Track Assessment Using Electrical Resistivity Tomography Application
Authors: Noryani Natasha Yahaya, Anas Ibrahim, Juraidah Ahmad, Azura Ahmad, Mohd Ikmal Fazlan Rosli, Zailan Ramli, Muhd Sidek Muhd Norhasri
Abstract:
The subgrade formation is an important element of the railway structure which holds overall track stability. Conventional track maintenance involves many substructure component replacements, as well as track re-ballasting on a regular basis is partially contributed to the embankment's long-term settlement problem. For subgrade long-term stability analysis, the geophysical method is commonly being used to diagnose those hidden sources/mechanisms of track deterioration problems that the normal visual method is unable to detect. Electrical resistivity tomography (ERT) is one of the applicable geophysical tools that are helpful in railway subgrade inspection/track monitoring due to its flexibility and reliability of the analysis. The ERT was conducted at KM 23.0 of Pinang Tunggal track to investigate the subgrade of railway track through the characterization/mapping on track formation profiling which was directly generated using 2D analysis of Res2dinv software. The profiles will allow examination of the presence and spatial extent of a significant subgrade layer and screening of any poor contact of soil boundary. Based on the finding, there is a mix/interpretation/intermixing of an interlayer between the sub-ballast and the sand. Although the embankment track considered here is at no immediate risk of settlement effect or any failure, the regular monitoring of track’s location will allow early correction maintenance if necessary. The developed data of track formation clearly shows the similarity of the side view with the assessed track. The data visualization in the 2D section of the track embankment agreed well with the initial assumption based on the main element structure general side view.Keywords: ground track, assessment, resistivity, geophysical railway, method
Procedia PDF Downloads 164