Search results for: boundary layer interaction
2185 Response of First Bachelor of Medicine, Bachelor of Surgery (MBBS) Students to Integrated Learning Program
Authors: Raveendranath Veeramani, Parkash Chand, H. Y. Suma, A. Umamageswari
Abstract:
Background and Aims: The aim of this study was to evaluate students’ perception of Integrated Learning Program[ILP]. Settings and Design: A questionnaire was used to survey and evaluate the perceptions of 1styear MBBS students at the Department of Anatomy at our medical college in India. Materials and Methods: The first MBBS Students of Anatomy were involved in the ILP on the Liver and extra hepatic biliary apparatus integrating the Departments of Anatomy, Biochemistry and Hepato-biliary Surgery. The evaluation of the ILP was done by two sets of short questionnaire that had ten items using the Likert five-point grading scale. The data involved both the students’ responses and their grading. Results: A majority of students felt that the ILP was better in as compared to the traditional lecture method of teaching.The integrated teaching method was better at fulfilling learning objectives (128 students, 83%), enabled better understanding (students, 94%), were more interesting (140 students, 90%), ensured that they could score better in exams (115 students, 77%) and involved greater interaction (100 students, 66%), as compared to traditional teaching methods. Most of the students (142 students, 95%) opined that more such sessions should be organized in the future. Conclusions: Responses from students show that the integrated learning session should be incorporated even at first phase of MBBS for selected topics so as to create interest in the medical sciences at the entry level and to make them understand the importance of basic science.Keywords: integrated learning, students response, vertical integration, horizontal integration
Procedia PDF Downloads 2012184 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 842183 Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs.Keywords: silicon quantum dots, silver nanoparticles (AgNPs), luminescence, plasmon
Procedia PDF Downloads 3782182 Bioavailability of Iron in Some Selected Fiji Foods using In vitro Technique
Authors: Poonam Singh, Surendra Prasad, William Aalbersberg
Abstract:
Iron the most essential trace element in human nutrition. Its deficiency has serious health consequences and is a major public health threat worldwide. The common deficiencies in Fiji population reported are of Fe, Ca and Zn. It has also been reported that 40% of women in Fiji are iron deficient. Therefore, we have been studying the bioavailability of iron in commonly consumed Fiji foods. To study the bioavailability it is essential to assess the iron contents in raw foods. This paper reports the iron contents and its bioavailability in commonly consumed foods by multicultural population of Fiji. The food samples (rice, breads, wheat flour and breakfast cereals) were analyzed by atomic absorption spectrophotometer for total iron and its bioavailability. The white rice had the lowest total iron 0.10±0.03 mg/100g but had high bioavailability of 160.60±0.03%. The brown rice had 0.20±0.03 mg/100g total iron content but 85.00±0.03% bioavailable. The white and brown breads showed the highest iron bioavailability as 428.30±0.11 and 269.35 ±0.02%, respectively. The Weetabix and the rolled oats had the iron contents 2.89±0.27 and 1.24.±0.03 mg/100g with bioavailability of 14.19±0.04 and 12.10±0.03%, respectively. The most commonly consumed normal wheat flour had 0.65±0.00 mg/100g iron while the whole meal and the Roti flours had 2.35±0.20 and 0.62±0.17 mg/100g iron showing bioavailability of 55.38±0.05, 16.67±0.08 and 12.90±0.00%, respectively. The low bioavailability of iron in certain foods may be due to the presence of phytates/oxalates, processing/storage conditions, cooking method or interaction with other minerals present in the food samples.Keywords: iron, bioavailability, Fiji foods, in vitro technique, human nutrition
Procedia PDF Downloads 5292181 Highly Selective Conversion of CO2 to CO on Cu Nanoparticles
Authors: Rauf Razzaq, Kaiwu Dong, Muhammad Sharif, Ralf Jackstell, Matthias Beller
Abstract:
Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry.Keywords: CO2 reduction, methanol, slurry reactor, synthesis gas
Procedia PDF Downloads 3272180 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production
Authors: N. Laosiripojana, P. Tepamatr
Abstract:
The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.Keywords: bismuth, platinum, water gas shift, ceria
Procedia PDF Downloads 3482179 Impact of Schools' Open and Semi-Open Spaces on Student's Studying Behavior
Authors: Chaithanya Pothuganti
Abstract:
Open and semi-open spaces in educational buildings like corridors, mid landings, seating spaces, lobby, courtyards are traditionally have been the places of social communion and interaction which helps in promoting the knowledge, performance, activeness, and motivation in students. Factors like availability of land, commercialization, of educational facilities, especially in e-techno and smart schools, led to closed classrooms to accommodate students thereby lack quality open and semi-open spaces. This insufficient attention towards open space design which is a means of informal learning misses an opportunity to encourage the student’s skill development, behavior and learning skills. The core objective of this paper is to find the level of impact on student learning behavior and to identify the suitable proportions and configuration of spaces that shape the schools. In order to achieve this, different types of open spaces in schools and their impact on student’s performance in various existing models are analysed using case studies to draw some design principles. The study is limited to indoor open spaces like corridors, break out spaces and courtyards. The expected outcome of the paper is to suggest better design considerations for the development of semi-open and open spaces which functions as an element for informal learnings. Its focus is to provide further thinking on designing and development of open spaces in educational buildings.Keywords: configuration of spaces and proportions, informal learning, open spaces, schools, student’s behavior
Procedia PDF Downloads 3092178 Virtual Science Laboratory (ViSLab): The Effects of Visual Signalling Principles towards Students with Different Spatial Ability
Authors: Ai Chin Wong, Wan Ahmad Jaafar Wan Yahaya, Balakrishnan Muniandy
Abstract:
This study aims to explore the impact of Virtual Reality (VR) using visual signaling principles in learning about the science laboratory safety guide; this study involves students with different spatial ability. There are two types of science laboratory safety lessons, which are Virtual Reality with Signaling (VRS) and Virtual Reality Non Signaling (VRNS). This research has adopted a 2 x 2 quasi-experimental factorial design. There are two types of variables involved in this research. The two modes of courseware form the independent variables with the spatial ability as the moderator variable. The dependent variable is the students’ performance. This study sample consisted of 141 students. Descriptive and inferential statistics were conducted to analyze the collected data. The major effects and the interaction effects of the independent variables on the independent variable were explored using the Analyses of Covariance (ANCOVA). Based on the findings of this research, the results exhibited low spatial ability students in VRS outperformed their counterparts in VRNS. However, there was no significant difference in students with high spatial ability using VRS and VRNS. Effective learning in students with different spatial ability can be boosted by implementing the Virtual Reality with Signaling (VRS) in the design as well as the development of Virtual Science Laboratory (ViSLab).Keywords: spatial ability, science laboratory safety, visual signaling principles, virtual reality
Procedia PDF Downloads 2572177 Analysis of Lift Force in Hydrodynamic Transport of a Finite Sized Particle in Inertial Microfluidics with a Rectangular Microchannel
Authors: Xinghui Wu, Chun Yang
Abstract:
Inertial microfluidics is a competitive fluidic method with applications in separation of particles, cells and bacteria. In contrast to traditional microfluidic devices with low Reynolds number, inertial microfluidics works in the intermediate Re number range which brings about several intriguing inertial effects on particle separation/focusing to meet the throughput requirement in the real-world. Geometric modifications to make channels become irregular shapes can leverage fluid inertia to create complex secondary flow for adjusting the particle equilibrium positions and thus enhance the separation resolution and throughput. Although inertial microfluidics has been extensively studied by experiments, our current understanding of its mechanisms is poor, making it extremely difficult to build rational-design guidelines for the particle focusing locations, especially for irregularly shaped microfluidic channels. Inertial particle microfluidics in irregularly shaped channels were investigated in our group. There are several fundamental issues that require us to address. One of them is about the balance between the inertial lift forces and the secondary drag forces. Also, it is critical to quantitatively describe the dependence of the life forces on particle-particle interactions in irregularly shaped channels, such as a rectangular one. To provide physical insights into the inertial microfluidics in channels of irregular shapes, in this work the immersed boundary-lattice Boltzmann method (IB-LBM) was introduced and validated to explore the transport characteristics and the underlying mechanisms of an inertial focusing single particle in a rectangular microchannel. The transport dynamics of a finitesized particle were investigated over wide ranges of Reynolds number (20 < Re < 500) and particle size. The results show that the inner equilibrium positions are more difficult to occur in the rectangular channel, which can be explained by the secondary flow caused by the presence of a finite-sized particle. Furthermore, force decoupling analysis was utilized to study the effect of each type of lift force on the inertia migration, and a theoretical model for the lateral lift force of a finite-sized particle in the rectangular channel was established. Such theoretical model can be used to provide theoretical guidance for the design and operation of inertial microfluidics.Keywords: inertial microfluidics, particle focuse, life force, IB-LBM
Procedia PDF Downloads 712176 Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds
Authors: Boutemak Khalida, Dahmani Siham
Abstract:
Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries.Keywords: Lepidium sativum L., cellulase, enzymatic pretreatment, antibacterial activity.
Procedia PDF Downloads 4612175 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment
Authors: U. Yerlikaya, R. T. Balkan
Abstract:
In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds
Procedia PDF Downloads 1392174 Rare-Earth Ions Doped Zirconium Oxide Layers for Optical and Photovoltaic Applications
Authors: Sylwia Gieraltowska, Lukasz Wachnicki, Bartlomiej S. Witkowski, Marek Godlewski
Abstract:
Oxide layers doped with rare-earth (RE) ions in optimized way can absorb short (ultraviolet light), which will be converted to visible light by so-called down-conversion. Down-conversion mechanisms are usually exploited to modify the incident solar spectrum. In down conversion, multiple low-energy photons are generated to exploit the energy of one incident high-energy photon. These RE-doped oxide materials have attracted a great deal of attention from researchers because of their potential for optical manipulation in optical devices (detectors, temperature sensors, and compact solid-state lasers, light-emitting diodes), bio-analysis, medical therapy, display technologies, and light harvesting (such as in photovoltaic cells). The zirconium dioxide (ZrO2) doped RE ions (Eu, Tb, Ce) multilayer structures were tested as active layers, which can convert short wave emission to light in the visible range (the down-conversion mechanism). For these applications original approach of deposition ZrO2 layers using the Atomic Layer Deposition (ALD) method and doping these layers with RE ions using the spin-coating technique was used. ALD films are deposited at relatively low temperature (well below 250°C). This can be an effective method to achieve the white-light emission and to improve on this way light conversion efficiency, by an extension of absorbed spectral range by a solar cell material. Photoluminescence (PL), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) measurement are analyzed. The research was financially supported by the National Science Centre (decision No. DEC-2012/06/A/ST7/00398 and DEC- 2013/09/N/ST5/00901).Keywords: ALD, oxide layers, photovoltaics, thin films
Procedia PDF Downloads 2692173 Perceived Organizational Justice, Trust and Employee Engagement in Bank Managers
Authors: Seemal Mazhar Khan, Tahira Mubashar
Abstract:
The present research aimed to investigate the relationship in perceived organizational justice, organizational trust and employee engagement in bank employees. It was hypothesized: there is likely to be a relationship in perceived organizational justices, organizational trust and employee engagement; perceived organizational justice and organizational trust are likely to predict employee engagement; there is likely to be effect of bank type and designation on perceived organizational justice, organizational trust and employee engagement. The sample consisted of 150 bank employees (50 from government, 50 from private and 50 from privatized banks) selected from different banks in Lahore, Pakistan. Correlational research design was used to conduct this study. Perceived Organizational Justices Questionnaire, Organizational Trust Questionnaire and Employee Engagement Scale were used for assessment. Pearson product moment correlation, hierarchical regression and multivariate analysis of covariance were applied. Results showed a positive significant relationship in perceived organizational justice and organizational engagement and there were also a positive significant relation between organizational trust and job and organizational engagement. Results showed that organizational trust predicts organizational engagement after controlling the effect of age, marital status and socio-economic status and there is a significant interaction effect of bank type and designation level on organizational trust in bank employees. The findings of the research can serve as a platform for the awareness of important antecedents of employee engagement and organizations can inculcate trust for better and improved engagement of its employees, thereby, enhancing the productivity of their employees.Keywords: bank employees, organizational engagement, perceived organizational justice, trust
Procedia PDF Downloads 3982172 Street Begging and Its Psychosocial Social Effects in Ibadan Metropolis, Oyo State, Nigeria
Authors: Temitope M. Ojo, Titilayo A. Benson
Abstract:
This study investigated street begging and its psychosocial effect in Ibadan Metropolis, Oyo State, Nigeria. In carrying out this study, four research questions were used. The instrument used for data collection was a face-to-face and self-developed questionnaire. The results revealed there is high awareness level on the causes of street begging among the respondents, who also mentioned several factors contributing to street begging. However, respondents disagreed that lack of education is a factor contributing to street begging in Nigeria. The psycho-social effects of street begging, as identified by the respondents, are development of inferiority complex, lack of social interaction, loss of self-respect and dignity, increased mindset of poverty and loss of self-confident. Solution to street begging as identified by the respondents also includes provision of rehabilitation centers, provision of food for students in Islamic schools and monthly survival allowance. Specific policies and other legislative frameworks are needed in terms of age, sex, disability, and family-related issues, to effectively address the begging problem. Therefore, it is recommended that policy planners must adopt multi-faceted, multi-targeted, and multi-tiered approaches if they are to have any impact on the lives of street beggars in all four categories. In this regard, both preventative and responsive interventions are needed instead of rehabilitative solutions for each category of street beggars.Keywords: beggars, begging, psycho-social effect, respondents, street begging
Procedia PDF Downloads 1852171 The Impact of Built Environment Design on Users’ Psychology to Foster Pro-Environmental Behavior in University Open Spaces
Authors: Rehab Mahmoud El Sayed, Toka Fahmy Nasr, Dalia M. Rasmi
Abstract:
Environmental psychology studies the interaction between the user and the environment. This field is crucial in understanding how the built environment affects human behaviour, moods and feelings. Studying and understanding the aspects and influences of environmental psychology is a crucial key to investigating how the design can influence human behaviour to be environmentally friendly. This is known as pro-environmental behaviour where human actions are sustainable and impacts the environment positively. Accordingly, this paper aims to explore the impact of built environment design on environmental psychology to foster pro-environmental behaviour in university campus open spaces. In order to achieve this, an exploratory research method was conducted where a detailed study of the influences of environmental psychology was done and clarified its elements. Moreover, investigating the impact of design elements on human psychology took place. Besides, an empirical study of the outdoor spaces of the British University in Egypt occurred and a survey for students and staff was distributed. The research concluded that the four main psychological aspects are mostly influenced by the following design elements colours, lighting and thermal comfort respectively. Additionally, focusing on these design elements in the design process will create a sustainable environment. As a consequence, the pro-environmental behaviour of the user will be fostered.Keywords: environmental psychology, pro-environmental behavior, sustainable environment, psychological influences
Procedia PDF Downloads 842170 Domain-Specific Languages Evaluation: A Literature Review and Experience Report
Authors: Sofia Meacham
Abstract:
In this abstract paper, the Domain-Specific Languages (DSL) evaluation will be presented based on existing literature and years of experience developing DSLs for several domains. The domains we worked on ranged from AI, business applications, and finances/accounting to health. In general, DSLs have been utilised in many domains to provide tailored and efficient solutions to address specific problems. Although they are a reputable method among highly technical circles and have also been used by non-technical experts with success, according to our knowledge, there isn’t a commonly accepted method for evaluating them. There are some methods that define criteria that are adaptations from the general software engineering quality criteria. Other literature focuses on the DSL usability aspect of evaluation and applies methods such as Human-Computer Interaction (HCI) and goal modeling. All these approaches are either hard to introduce, such as the goal modeling, or seem to ignore the domain-specific focus of the DSLs. From our experience, the DSLs have domain-specificity in their core, and consequently, the methods to evaluate them should also include domain-specific criteria in their core. The domain-specific criteria would require synergy between the domain experts and the DSL developers in the same way that DSLs cannot be developed without domain-experts involvement. Methods from agile and other software engineering practices, such as co-creation workshops, should be further emphasised and explored to facilitate this direction. Concluding, our latest experience and plans for DSLs evaluation will be presented and open for discussion.Keywords: domain-specific languages, DSL evaluation, DSL usability, DSL quality metrics
Procedia PDF Downloads 1032169 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region
Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang
Abstract:
During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.Keywords: cross section, neutron transport, numerical simulation, on-the-fly
Procedia PDF Downloads 1972168 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach
Authors: Mustapha Sadouk
Abstract:
This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material
Procedia PDF Downloads 862167 DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease
Authors: Rasha M. Hussein, Reem M. Hashem, Laila A. Rashed
Abstract:
Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism.Keywords: Aβ, Alzheimer’s disease, chaperone, DNAJB6, aggregation
Procedia PDF Downloads 5122166 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 2222165 Presenting a Model Of Empowering New Knowledge-based Companies In Iran Insurance Industry
Authors: Pedram Saadati, Zahra Nazari
Abstract:
In the last decade, the role and importance of knowledge-based technological businesses in the insurance industry has greatly increased, and due to the weakness of previous studies in Iran, the current research deals with the design of the InsurTech empowerment model. In order to obtain the conceptual model of the research, a hybrid framework has been used. The statistical population of the research in the qualitative part were experts, and in the quantitative part, the InsurTech activists. The tools of data collection in the qualitative part were in-depth and semi-structured interviews and structured self-interaction matrix, and in the quantitative part, a researcher-made questionnaire. In the qualitative part, 55 indicators, 20 components and 8 concepts (dimensions) were obtained by the content analysis method, then the relationships of the concepts with each other and the levels of the components were investigated. In the quantitative part, the information was analyzed using the descriptive analytical method in the way of path analysis and confirmatory factor analysis. The proposed model consists of eight dimensions of supporter capability, supervisor of insurance innovation ecosystem, managerial, financial, technological, marketing, opportunity identification, innovative InsurTech capabilities. The results of statistical tests in identifying the relationships of the concepts with each other have been examined in detail and suggestions have been presented in the conclusion section.Keywords: insurTech, knowledge-base, empowerment model, factor analysis, insurance
Procedia PDF Downloads 462164 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 5082163 RACK1 Integrates Light and Brassinosteroid Signaling to Coordinate Cell Division During Root Soil Penetration
Authors: Liang Jiansheng, Zhu Wei
Abstract:
Light and brassinosteroids are essential external and internal cues for plant survival. Although the coordination of light with phytohormone signals is crucial for plant growth and development, the molecular connection between light and brassinosteroid signaling during root soil penetration remains elusive. Here, we reveal that light-stabilized RACK1 couples a brassinosteroid signaling cascade to drive cell division in root meristems. RACK1 family scaffold proteins positively regulate light-induced the promotion of root elongation during soil penetration. Under the light condition, RACK1A interacts with both phyB and SPA1, then reinforces the phyB-SPA1 association to accumulate its abundance in roots. In response to brassinosteroid signals, RACK1A competes with BKI1 to attenuate the BRI1-BKI1 interaction, thereby leading to activating BRI1 actions in root development. Furthermore, RACK1A binds to BES1 to repress its DNA binding activity toward the target gene CYCD3;1. This ultimately allows to release the inhibition of CYCD3;1 transcription, and promotes cell division during root growth. Our study illustrates a new mechanistic model of how plants engage scaffold proteins in transducing light information to facilitate brassinosteroid signaling for root growth in the soil.Keywords: root growth, cell division, light signaling, brassinosteroid signaling, soil penetration, scaffold protein, RACK1
Procedia PDF Downloads 802162 Supercomputer Simulation of Magnetic Multilayers Films
Authors: Vitalii Yu. Kapitan, Aleksandr V. Perzhu, Konstantin V. Nefedev
Abstract:
The necessity of studying magnetic multilayer structures is explained by the prospects of their practical application as a technological base for creating new storages medium. Magnetic multilayer films have many unique features that contribute to increasing the density of information recording and the speed of storage devices. Multilayer structures are structures of alternating magnetic and nonmagnetic layers. In frame of the classical Heisenberg model, lattice spin systems with direct short- and long-range exchange interactions were investigated by Monte Carlo methods. The thermodynamic characteristics of multilayer structures, such as the temperature behavior of magnetization, energy, and heat capacity, were investigated. The processes of magnetization reversal of multilayer structures in external magnetic fields were investigated. The developed software is based on the new, promising programming language Rust. Rust is a new experimental programming language developed by Mozilla. The language is positioned as an alternative to C and C++. For the Monte Carlo simulation, the Metropolis algorithm and its parallel implementation using MPI and the Wang-Landau algorithm were used. We are planning to study of magnetic multilayer films with asymmetric Dzyaloshinskii–Moriya (DM) interaction, interfacing effects and skyrmions textures. This work was supported by the state task of the Ministry of Education and Science of the Russia # 3.7383.2017/8.9Keywords: The Monte Carlo methods, Heisenberg model, multilayer structures, magnetic skyrmion
Procedia PDF Downloads 1662161 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer
Procedia PDF Downloads 3172160 Communication Styles of Business Students: A Comparison of Four National Cultures
Authors: Tiina Brandt, Isaac Wanasika
Abstract:
Culturally diverse global companies need to understand cultural differences between leaders and employees from different backgrounds. Communication is culturally contingent and has a significant impact on effective execution of leadership goals. The awareness of cultural variations related to communication and interactions will help leaders modify their own behavior, and consequently improve the execution of goals and avoid unnecessary faux pas. Our focus is on young adults that have experienced cultural integration, culturally diverse surroundings in schools and universities, and cultural travels. Our central research problem is to understand the impact of different national cultures on communication. We focus on four countries with distinct national cultures and spatial distribution. The countries are Finland, Indonesia, Russia and USA. Our sample is based on business students (n = 225) from various backgrounds in the four countries. Their responses of communication and leadership styles were analyzed using ANOVA and post-hoc test. Results indicate that culture impacts on communication behavior. Even young culturally-exposed adults with cultural awareness and experience demonstrate cultural differences in their behavior. Apparently, culture is a deeply seated trait that cannot be completely neutralized by environmental variables. Our study offers valuable input for leadership training programs and for expatriates when recognizing specific differences on leaders’ behavior due to culture.Keywords: communication, culture, interaction, leadership
Procedia PDF Downloads 1132159 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity
Procedia PDF Downloads 2582158 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling
Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana
Abstract:
Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin
Procedia PDF Downloads 3212157 Research on Urban Design Method of Ancient City Guided by Catalyst Theory
Authors: Wang Zhiwei, Wang Weiwu
Abstract:
The process of urbanization in China has entered a critical period of transformation from urban expansion and construction to delicate urban design, thus forming a new direction in the field of urban design. So far, catalyst theory has become a prominent guiding strategy in urban planning and design. In this paper, under the background of urban renewal, catalyst theory is taken as the guiding ideology to explore the method of urban design in shouxian county. Firstly, this study briefly introduces and analyzes the catalyst theory. Through field investigation, it is found that the city has a large number of idle Spaces, such as abandoned factories and schools. In the design, the idle Spaces in the county town are utilized and interlinked in space, and functional interaction is carried out from the pattern of the county town. On the one hand, the results showed that the catalyst theory can enhance the vitality of the linear street space with a small amount of monomer construction. On the other hand, the city can also increase the cultural and economic sites of the city without damaging the historical relics and the sense of alterations of the ancient city, to improve the quality of life and quality of life of citizens. The city micro-transformation represented by catalyst theory can help ancient cities like shouxian to realize the activation of the old city and realize the gradual development.Keywords: catalytic theory, urban design, China's ancient city, Renaissance
Procedia PDF Downloads 1242156 Study of the Adhesive Bond Effect on Electro-Mechanical Behaviour of Coupled Piezo Structural System
Authors: Rahul S. Raj
Abstract:
Electro-mechanical impedance technique is a recently developed non-destructive method for structural health monitoring. This system comprises of piezo electric patch, bonded to the structure using an adhesive/epoxy and electrically excited to determine the health of the component. The subjected electric field actuates the PZT patch harmonically and imparts a force on the host structure. The structural response thus produced by the host component is in the form of peaks and valleys which further shows the admittance signatures of the structure for the given excitation frequency. Adhesives have the capability to change the structural signatures, in EMI technique, by transforming conductance and susceptance signatures. The static approximation provide a justifiable result where adhesive bond lines are thin and stiff. The epoxy adhesive bonds limits design flexibility due to poor bond strengths, hence to enhance the performance of the joints, a new technique is developed for joining PZT, i.e. the alloy bonding technique. It is a metallic joining compound which contains many active elements including Titanium, that reacts with the tenacious surface films of the ceramic and composites to create excellent bonds. This alloy-based bonding technique will be used for better strain interaction and rigorous stress transfer between PZT patch and the host structure.Keywords: EMI technique, conductance, susceptance, admittance, alloy bonding
Procedia PDF Downloads 119