Search results for: two stage stochastic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19563

Search results for: two stage stochastic model

19083 Stochastic Default Risk Estimation Evidence from the South African Financial Market

Authors: Mesias Alfeus, Kirsty Fitzhenry, Alessia Lederer

Abstract:

The present paper provides empirical studies to estimate defaultable bonds in the South African financial market. The main goal is to estimate the unobservable factors affecting bond yields for South African major banks. The maximum likelihood approach is adopted for the estimation methodology. Extended Kalman filtering techniques are employed in order to tackle the situation that the factors cannot be observed directly. Multi-dimensional Cox-Ingersoll-Ross (CIR)-type factor models are considered. Results show that default risk increased sharply in the South African financial market during COVID-19 and the CIR model with jumps exhibits a better performance.

Keywords: default intensity, unobservable state variables, CIR, α-CIR, extended kalman filtering

Procedia PDF Downloads 111
19082 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
19081 Calibration of a Large Standard Step Height with Low Sampled Coherence Scanning Interferometry

Authors: Dahi Ghareab Abdelsalam Ibrahim

Abstract:

Scanning interferometry is commonly used for measuring the three-dimensional profiling of surfaces. Here, we used a scanning stage calibrated with standard gauge blocks to measure a standard step height of 200μm. The stage measures precisely the envelope of interference at the platen and at the surface of the step height. From the difference between the two envelopes, we measured the step height of the sample. Experimental measurements show that the measured value matches well with the nominal value of the step height. A light beam of 532nm from a Tungsten Lamp is collimated and incident on the interferometer. By scanning, two envelopes were produced. The envelope at the platen surface and the envelope at the object surface were determined precisely by a written program code, and then the difference between them was measured from the calibrated scanning stage. The difference was estimated to be in the range of 198 ± 2 μm.

Keywords: optical metrology, digital holography, interferometry, phase unwrapping

Procedia PDF Downloads 73
19080 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 72
19079 Measuring Strategic Management Maturity: An Empirical Study in Turkish Public and Private Sector Organizations

Authors: F. Demir

Abstract:

Strategic Management is highly critical for all types of organizations. This paper examines maturity level of strategic management practices of public and private sector organizations in Turkey, and presents a conceptual model for assessing the maturity of strategic management in any organization. This research focuses on R&D intensive organizations (RDO) because it is claimed that such organizations are more innovative and innovation is a critical part of the model. The Strategic management maturity model (S-3M) is basically composed of six maturity levels with five different dimensions. Based on 63 organizations, the findings reveal that the average maturity of all organizations in the sample group is three out of five. It corresponds to the stage of ‘performed’. Results simply show that the majority of organizations from various industries and sectors implement strategic management activities; however, they experience multiple challenges to optimize strategic management processes and integrate organizational components with business strategies. Briefly, they struggle to become an innovative organization.

Keywords: strategic management maturity, innovation, developing countries, research and development

Procedia PDF Downloads 287
19078 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 341
19077 Developing Cucurbitacin a Minimum Inhibition Concentration of Meloidogyne Incognita Using a Computer-Based Model

Authors: Zakheleni P. Dube, Phatu W. Mashela

Abstract:

Minimum inhibition concentration (MIC) is the lowest concentration of a chemical that brings about significant inhibition of target organism. The conventional method for establishing the MIC for phytonematicides is tedious. The objective of this study was to use the Curve-fitting Allelochemical Response Data (CARD) to determine the MIC for pure cucurbitacin A on Meloidogyne incognita second-stage juveniles (J2) hatch, immobility and mortality. Meloidogyne incognita eggs and freshly hatched J2 were separately exposed to a series of pure cucurbitacin A concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹for 12, 24, 48 and 72 h in an incubator set at 25 ± 2°C. Meloidogyne incognita J2 hatch, immobility and mortality counts were determined using a stereomicroscope and the significant means were subjected to the CARD model. The model exhibited density-dependent growth (DDG) patterns of J2 hatch, immobility and mortality to increasing concentrations of cucurbitacin A. The average MIC for cucurbitacin A on M. incognita J2 hatch, immobility and mortality were 2.2, 0.58 and 0.63 µg.mL⁻¹, respectively. Meloidogyne incognita J2 hatch had the highest average MIC value followed by mortality and immobility had the least. In conclusion, the CARD model was able to generate MIC for cucurbitacin A, hence it could serve as a valuable tool in the chemical-nematode bioassay studies.

Keywords: inhibition concentration, phytonematicide, sensitivity index, threshold stimulation, triterpenoids.

Procedia PDF Downloads 190
19076 Different Motor Inhibition Processes in Action Selection Stage: A Study with Spatial Stroop Paradigm

Authors: German Galvez-Garcia, Javier Albayay, Javiera Peña, Marta Lavin, George A. Michael

Abstract:

The aim of this research was to investigate whether the selection of the actions needs different inhibition processes during the response selection stage. In Experiment 1, we compared the magnitude of the Spatial Stroop effect, which occurs in response selection stage, in two motor actions (lifting vs reaching) when the participants performed both actions in the same block or in different blocks (mixed block vs. pure blocks).Within pure blocks, we obtained faster latencies when lifting actions were performed, but no differences in the magnitude of the Spatial Stroop effect were observed. Within mixed block, we obtained faster latencies as well as bigger-magnitude for Spatial Stroop effect when reaching actions were performed. We concluded that when no action selection is required (the pure blocks condition), inhibition works as a unitary system, whereas in the mixed block condition, where action selection is required, different inhibitory processes take place within a common processing stage. In Experiment 2, we investigated this common processing stage in depth by limiting participants’ available resources, requiring them to engage in a concurrent auditory task within a mixed block condition. The Spatial Stroop effect interacted with Movement as it did in Experiment 1, but it did not significantly interact with available resources (Auditory task x Spatial Stroop effect x Movement interaction). Thus, we concluded that available resources are distributed equally to both inhibition processes; this reinforces the likelihood of there being a common processing stage in which the different inhibitory processes take place.

Keywords: inhibition process, motor processes, selective inhibition, dual task

Procedia PDF Downloads 392
19075 Fuzzy Decision Support System for Human-Realistic Overtaking in Railway Traffic Simulations

Authors: Tomáš Vyčítal

Abstract:

In a simulation model of a railway system it is important, besides other crucial algorithms, to have correct behaviour of train overtaking in stochastic conditions. This problem is being addressed in many simulation tools focused on railway traffic, however these are not very human-realistic. The goal of this paper is to create a more human-realistic overtaking decision support system for the use in railway traffic simulations. A fuzzy system has been chosen for this task as fuzzy systems are well-suited for human-like decision making. The fuzzy system designed takes into account timetables, train positions, delays and buffer times as inputs and provides an instruction to overtake or not overtake.

Keywords: decision-making support, fuzzy systems, simulation, railway, transport

Procedia PDF Downloads 139
19074 Effect of Roasting Treatment on Milling Quality, Physicochemical, and Bioactive Compounds of Dough Stage Rice Grains

Authors: Chularat Leewuttanakul, Khanitta Ruttarattanamongkol, Sasivimon Chittrakorn

Abstract:

Rice during grain development stage is a rich source of many bioactive compounds. Dough stage rice contains high amounts of photochemical and can be used for rice milling industries. However, rice grain at dough stage had low milling quality due to high moisture content. Thermal processing can be applied to rice grain for improving milled rice yield. This experiment was conducted to study the chemical and physic properties of dough stage rice grain after roasting treatment. Rice were roasted with two different methods including traditional pan roasting at 140 °C for 60 minutes and using the electrical roasting machine at 140 °C for 30, 40, and 50 minutes. The chemical, physical properties, and bioactive compounds of brown rice and milled rice were evaluated. The result of this experiment showed that moisture content of brown and milled rice was less than 10 % and amylose contents were in the range of 26-28 %. Rice grains roasting for 30 min using electrical roasting machine had high head rice yield and length and breadth of grain after milling were close to traditional pan roasting (p > 0.05). The lightness (L*) of rice did not affect by roasting treatment (p > 0.05) and the a* indicated the yellowness of milled rice was lower than brown rice. The bioactive compounds of brown and milled rice significantly decreased with increasing of drying time. Brown rice roasted for 30 minutes had the highest of total phenolic content, antioxidant activity, α-tocopherol, and ɤ-oryzanol content. Volume expansion and elongation of cooked rice decreased as roasting time increased and quality of cooked rice roasted for 30 min was comparable to traditional pan roasting. Hardness of cooked rice as measured by texture analyzer increased with increasing roasting time. The results indicated that rice grains at dough stage, containing a high amount of bioactive compounds, have a great potential for rice milling industries and the electrical roasting machine can be used as an alternative to pan roasting which decreases processing time and labor costs.

Keywords: bioactive compounds, cooked rice, dough stage rice grain, grain development, roasting

Procedia PDF Downloads 163
19073 Modeling Study of Short Fiber Orientation in Simple Injection Molding Processes

Authors: Ihsane Modhaffar, Kamal Gueraoui, Abouelkacem Qais, Abderrahmane Maaouni, Samir Men-La-Yakhaf, Hamid Eltourroug

Abstract:

The main objective of this paper is to develop a Computational Fluid Dynamics (CFD) model to simulate and characterize the fiber suspension in flow in rectangular cavities. The model is intended to describe the velocity profile and to predict the fiber orientation. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The numerical model for determination of velocity profile and fiber orientation during mold-filling stage of injection molding process was solved using finite volume method. The governing equations of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 465
19072 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: subcontracting, optimal control, deterioration, simulation, production planning

Procedia PDF Downloads 579
19071 Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree

Authors: Mohamed Sahli, David Bassir, Thierry Barriere, Xavier Roizard

Abstract:

Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool.

Keywords: titanium turning, cutting tools, FE simulation, chip

Procedia PDF Downloads 173
19070 Estimation of Opc, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method

Authors: Suresh Palla

Abstract:

This research paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by novel selective dissolution method. Types of cement samples investigated include OPC with fly ash as performance improver, OPC with slag as performance improver, PPC, PSC and Composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this novel selective dissolution method can be successfully used for estimation of OPC and SCMs contents in different types of cements.

Keywords: selective dissolution method , fly ash, ggbfs slag, edta

Procedia PDF Downloads 156
19069 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining

Authors: İbrahi̇m Kara, Seher Arslankaya

Abstract:

Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.

Keywords: data mining, decision support systems, heart attack, health sector

Procedia PDF Downloads 356
19068 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha

Abstract:

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12.

Keywords: cascade system, refrigerants, thermodynamic model, production engineering

Procedia PDF Downloads 361
19067 Total Plaque Area in Chronic Renal Failure

Authors: Hernán A. Perez, Luis J. Armando, Néstor H. García

Abstract:

Background and aims Cardiovascular disease rates are very high in patients with renal failure (CRF), but the underlying mechanisms are incompletely understood. Traditional cardiovascular risk factors do not explain the increased risk, and observational studies have observed paradoxical or absent associations between classical risk factors and mortality in dialysis patients. A large randomized controlled trial, the 4D Study, the AURORA and the ALERT study found that statin therapy in CRF do not reduce cardiovascular events. These results may be the results of ‘accelerated atherosclerosis’ observed on these patients. The objective of this study was to investigate if carotid total plaque area (TPA), a measure of carotid plaque burden growth is increased at progressively lower creatinine clearance in patients with CRF. We studied a cohort of patients with CRF not on dialysis, reasoning that risk factor associations might be more easily discerned before end stage renal disease. Methods: The Blossom DMO Argentina ethics committee approved the study and informed consent from each participant was obtained. We performed a cohort study in 412 patients with Stage 1, 2 and 3 CRF. Clinical and laboratory data were obtained. TPA was determined using bilateral carotid ultrasonography. Modification of Diet in Renal Disease estimation formula was used to determine renal function. ANOVA was used when appropriate. Results: Stage 1 CRF group (n= 16, 43±2yo) had a blood pressure of 123±2/78±2 mmHg, BMI 30±1, LDL col 145±10 mg/dl, HbA1c 5.8±0.4% and had the lowest TPA 25.8±6.9 mm2. Stage 2 CRF (n=231, 50±1 yo) had a blood pressure of 132±1/81±1 mmHg, LDL col 125±2 mg/dl, HbA1c 6±0.1% and TPA 48±10mm2 ( p< 0.05 vs CRF stage 1) while Stage 3 CRF (n=165, 59±1 yo) had a blood pressure of 134±1/81±1, LDL col 125±3 mg/dl, HbA1c 6±0.1% and TPA 71±6mm2 (p < 0.05 vs CRF stage 1 and 2). Conclusion: Our data indicate that TPA increases along the renal function deterioration, and it is not related with the LDL cholesterol and triglycerides levels. We suggest that mechanisms other than the classics are responsible for the observed excess of cardiovascular disease in CKD patients and finally, determination of total plaque area should be used to measure effects of antiatherosclerotic therapy.

Keywords: hypertension, chronic renal failure, atherosclerosis, cholesterol

Procedia PDF Downloads 271
19066 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory

Procedia PDF Downloads 129
19065 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network

Procedia PDF Downloads 225
19064 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation

Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski

Abstract:

In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.

Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming

Procedia PDF Downloads 406
19063 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 177
19062 Industrial Wastewater Treatment Improvements Using Limestone

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.

Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal

Procedia PDF Downloads 448
19061 Proposed Alternative System for Existing Traffic Signal System

Authors: Alluri Swaroopa, L. V. N. Prasad

Abstract:

Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Keywords: bridges, junctions, ramps, urban traffic control

Procedia PDF Downloads 553
19060 Phosphorus Uptake of Triticale (Triticosecale Wittmack) Genotypes at Different Growth Stages

Authors: Imren Kutlu, Nurdilek Gulmezoglu

Abstract:

Triticale (Triticosecale Wittmack) is a man-made crop developed by crossing wheat (Triticum L.) and rye (Secale cereale L.). Triticale has until now been used mostly for animal feed; however, it can be consumed by humans in the form of biscuits, cookies, and unleavened bread. Moreover, one of the reasons for the development of triticale is that it is more efficient in nutrient deficient soil than wheat cultivars. After nitrogen fertilizer, phosphorus (P) is the most used fertilizer for crop production because P fixation occurs highly when it is applied the soil. The aim of the present study was to evaluate P uptake of winter triticale genotypes under different P fertilizer rates in different growth stages. The experiment was conducted in Eskisehir, Central Anatolia, Turkey. Treatments consisted of five triticale lines and one triticale cultivars (Samursortu) with four rates of P fertilization (0, 30, 60 and 120 kg P2O5 ha⁻¹). Phosphorus uptake of triticale genotypes in tillering, heading, as well as grain and straw at harvest stage and yield of grain and straw were determined. The results showed that a P rate of 60 kg/ha and the TCL-25 genotype produced the highest yields of straw and grain at harvest. Phosphorus uptake was the highest in tillering stage, and it decreased towards to harvest time. Phosphorus uptake of all growth stage increased as P rates raised and the application of 120 kg/ha P₂O₅ had the highest P uptake. Phosphorus uptake of genotypes was found differently. The regression analyses indicated that P uptake at tillering stage was the most effective on grain yield. These results will provide useful information to triticale growers about suitable phosphorus fertilization for both forage and food usage.

Keywords: grain yield, growth stage, phosphorus fertilization, phosphorus uptake, triticale

Procedia PDF Downloads 145
19059 Risk Assessment for International Investment: A Standardized Approach to Identify Risk, Risk Appetite, Risk Rating, Risk Treatment and Mitigation Plans

Authors: Pui Yong Leo, Normy Maziah Mohd Said

Abstract:

Change of global economy landscape and business environment has led to companies’ decision to go global and enter international markets. As the companies go beyond the comfort zone (i.e. investing in the home country), it is important to ensure a comprehensive risk assessment is carried out. This paper describes a standardized approach for international investment, ensuring identification of risk, risk appetite, risk rating, risk treatment and mitigation plans for respective international investment proposal. The standardized approach is divided into three (3) stages as follows: Stage 1 – Preliminary Risk profiling; with the objective to gauge exposure to countries and high level risk factors as first level assessment. Stage 2 – Risk Parameters; with the objective to define risk appetite for the international investment from the perspective of likelihood and impact. Stage 3 – Detailed Risk Assessments; with the objectives to assess in detail any triggered elements from Stage 1, and project specific risks. The final output will include the mitigation plans for the identified risks for the total investment. Example will be given in this paper to show how comprehensive risk assessment is carried out for an international investment in power energy sector.

Keywords: international investment, mitigation plans, risk appetite, risk assessment

Procedia PDF Downloads 388
19058 Comparative Proteomic Analysis of Rice bri1 Mutant Leaves at Jointing-Booting Stage

Authors: Jiang Xu, Daoping Wang, Yinghong Pan

Abstract:

The jointing-booting stage is a critical period of both vegetative growth and reproductive growth in rice. Therefore, the proteomic analysis of the mutant Osbri1, whose corresponding gene OsBRI1 encodes the putative BRs receptor OsBRI1, at jointing-booting stage is very important for understanding the effects of BRs on vegetative and reproductive growth. In this study, the proteomes of leaves from an allelic mutant of the DWARF 61 (D61, OsBRI1) gene, Fn189 (dwarf54, d54) and its wild-type variety T65 (Taichung 65) at jointing-booting stage were analysed by using a Q Exactive plus orbitrap mass spectrometer, and more than 3,100 proteins were identified in each sample. Ontology analysis showed that these proteins distribute in various space of the cells, such as the chloroplast, mitochondrion, and nucleus, they functioned as structural components and/or catalytic enzymes and involved in many physiological processes. Moreover, quantitative analysis displayed that 266 proteins were differentially expressed in two samples, among them, 77 proteins decreased and 189 increased more than two times in Fn189 compared with T65, the proteins whose content decreased in Fn189 including b5-like Heme/Steroid binding domain containing protein, putative retrotransposon protein, putative glutaminyl-tRNA synthetase, and higher content proteins such as mTERF, putative Oligopeptidase homologue, zinc knuckle protein, and so on. A former study founded that the transcription level of a mTERF was up-regulated in the leaves of maize seedling after EBR treatment. In our experiments, it was interesting that one mTERF protein increased, but another mTERF decreased in leaves of Fn189 at jointing-booting stage, which suggested that BRs may have differential regulation mechanisms on the expression of various mTERF proteins. The relationship between other differential proteins with BRs is still unclear, and the effects of BRs on rice protein contents and its regulation mechanisms still need further research.

Keywords: bri1 mutant, jointing-booting stage, proteomic analysis, rice

Procedia PDF Downloads 247
19057 Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method

Authors: F. Erdal, E. Dogan, F. E. Uz

Abstract:

In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented.

Keywords: firefly algorithm, steel grillage systems, optimum design, stochastic search techniques

Procedia PDF Downloads 434
19056 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader

Abstract:

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

Keywords: modelling, optimization, rainfall-runoff relationship, empirical model, OCC

Procedia PDF Downloads 265
19055 The Role of Relationship Duration in the Expressions of Love

Authors: Thea Silayro, Isabella Tan, Carlo Manuel, Denisse Abellon

Abstract:

Romantic love is highly universal and exists in most cultures. The current study explored its definition for people in different relationship durations and explored how this definition influences their expression of love and their conflict resolutions. Gender‟s influence on the definitions was explored, as well. Nine couples from different relationship durations (2-3 years, 7-10 years and more than 25 years) were interviewed. Transcripts of the interviews underwent thematic analysis. The results of the study suggest that 2-3 years in the relationship is the courting stage, 7-10 years in the relationship is the settling down stage and more than 25 years, the most stable stage. Men and women have similar ways of expressing love and resolving conflicts, but differ in such a way that men highlight actions and women highlight emotions when talking about love; changes in definitions arise internally in men and externally in females. Generally, romantic love is expressed through service. Communication is essential among all couples, and they become more secure with time.

Keywords: relationship duration, love, expressions of love, relationships

Procedia PDF Downloads 335
19054 Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity

Authors: Ganiyat Soliu, Glen Bright, Chiemela Onunka

Abstract:

Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario.

Keywords: performance optimization, productivity, queuing theory, robotics

Procedia PDF Downloads 154