Search results for: time-lapse imaging data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26014

Search results for: time-lapse imaging data

25534 Influence of High-Resolution Satellites Attitude Parameters on Image Quality

Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy

Abstract:

One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.

Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF

Procedia PDF Downloads 402
25533 Importance of Developing a Decision Support System for Diagnosis of Glaucoma

Authors: Murat Durucu

Abstract:

Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.

Keywords: decision support system, glaucoma, image processing, pattern recognition

Procedia PDF Downloads 302
25532 Digital Immunity System for Healthcare Data Security

Authors: Nihar Bheda

Abstract:

Protecting digital assets such as networks, systems, and data from advanced cyber threats is the aim of Digital Immunity Systems (DIS), which are a subset of cybersecurity. With features like continuous monitoring, coordinated reactions, and long-term adaptation, DIS seeks to mimic biological immunity. This minimizes downtime by automatically identifying and eliminating threats. Traditional security measures, such as firewalls and antivirus software, are insufficient for enterprises, such as healthcare providers, given the rapid evolution of cyber threats. The number of medical record breaches that have occurred in recent years is proof that attackers are finding healthcare data to be an increasingly valuable target. However, obstacles to enhancing security include outdated systems, financial limitations, and a lack of knowledge. DIS is an advancement in cyber defenses designed specifically for healthcare settings. Protection akin to an "immune system" is produced by core capabilities such as anomaly detection, access controls, and policy enforcement. Coordination of responses across IT infrastructure to contain attacks is made possible by automation and orchestration. Massive amounts of data are analyzed by AI and machine learning to find new threats. After an incident, self-healing enables services to resume quickly. The implementation of DIS is consistent with the healthcare industry's urgent requirement for resilient data security in light of evolving risks and strict guidelines. With resilient systems, it can help organizations lower business risk, minimize the effects of breaches, and preserve patient care continuity. DIS will be essential for protecting a variety of environments, including cloud computing and the Internet of medical devices, as healthcare providers quickly adopt new technologies. DIS lowers traditional security overhead for IT departments and offers automated protection, even though it requires an initial investment. In the near future, DIS may prove to be essential for small clinics, blood banks, imaging centers, large hospitals, and other healthcare organizations. Cyber resilience can become attainable for the whole healthcare ecosystem with customized DIS implementations.

Keywords: digital immunity system, cybersecurity, healthcare data, emerging technology

Procedia PDF Downloads 67
25531 From Dissection to Diagnosis: Integrating Radiology into Anatomy Labs for Medical Students

Authors: Julia Wimmers-Klick

Abstract:

At the Canadian University of British Columbia's Faculty of Medicine, anatomy has traditionally been taught through a combination of lectures and dissection labs in the first two years, with radiology taught separately through lectures and online modules. However, this separation may leave students underprepared for medical practice, as medical imaging is essential for diagnosing anatomical and pathological conditions. To address this, a pilot project was initiated aimed at integrating radiological imaging into anatomy dissection labs from day one of medical school. The incorporated radiological images correlated with the current dissection areas. Additional stations were added within the lab, tailored to the specific content being covered. These stations focused on bones, and quiz questions, along with light-box exercises using radiographs, CT scans, and MRIs provided by the radiology department. The images used were free of pathologies. Examples of these will be presented in the poster. Feedback from short interviews with students and instructors has been positive, particularly among second-year students who appreciated the integration compared to their first-year experience. This low-budget approach was easy to implement but faced challenges, as lab instructors were not radiologists and occasionally struggled to answer students' questions. Instructors expressed a desire for basic training or a refresher course in radiology image reading, particularly focused on identifying healthy landmarks. Overall, all participants agreed that integrating radiology with anatomy reinforces learning during dissection, enhancing students' understanding and preparation for clinical practice.

Keywords: quality improvement, radiology education, anatomy education, integration

Procedia PDF Downloads 8
25530 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 378
25529 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review

Procedia PDF Downloads 162
25528 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows

Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld

Abstract:

Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.

Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV

Procedia PDF Downloads 86
25527 Human Absorbed Dose Assessment of 68Ga-Dotatoc Based on Biodistribution Data in Syrian Rats

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, A. Ramazani, A. R. Jalilian

Abstract:

The aim of this work was to evaluate the values of absorbed dose of 68Ga-DOTATOC in numerous human organs. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37° C at least 2 h after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreas and adrenal. The absorbed dose received by human organs was evaluated based on biodistribution studies in Syrian rats by the radiation absorbed dose assessment resource (RADAR) method. Maximum absorbed dose was obtained in the pancreas, kidneys, and adrenal with 0.105, 0.074, and 0.010 mGy/MBq, respectively. The effective absorbed dose was 0.026 mSv/MBq for 68Ga-DOTATOC. The results showed that 68Ga-DOTATOC can be considered as a safe and effective agent for clinically PET imaging applications.

Keywords: effective absorbed dose, Ga-68, octreotide, MIRD

Procedia PDF Downloads 526
25526 Side Effects of COVID-19 Vaccine Investigated by Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

The detailed serious adverse effects raised the stresses around the safety of individuals who have gotten COVID-19 vaccines. Numerous verification referrers that disease with COV-19 causes neurological dysfunction in a significant proportion of influenced patients, where these side effects show up seriously amid the disease, and still less is known approximately the potential long-term results for the brain, where the loss of olfaction could be a neurological sign and simple indications of COVID-19. Since publishing effective clinical trial results of mRNA coronavirus disease 2019 (COVID-19) and injecting it to the volunteers in 2020, numerous reports have emerged approximately about cardiovascular complications followed by the mRNA vaccination. Vaccination-associated adenopathy could be a constant imaging finding after the organization of COVID-19 antibodies that will lead to a symptomatic problem in patients with shown or suspected cancer, in whom it may be vague from dangerous nodal inclusion. In spite of all the benefits and viability of the coronavirus infection 2019 (COVID-19) antibodies specified in later clinical trials, a few other post-vaccination side impacts, such as lymphadenopathy (LAP), were observed. Also, numerous variables, including financial conditions, have played a critical part in expanding the number of people with COVID-19 infection and also much more side effects in that country. Amid the Coronavirus widespread, Iran has been experiencing extreme sanctions, which has faced this nation with an extreme financial crisis. Additionally, with COVID-19 widespread, there was a developing concern around the abuse of imaging exams extraordinarily within the pediatric populace, which highlights the issues pointed out by this review.

Keywords: radiology, vaccines, COVID-19, side effect

Procedia PDF Downloads 64
25525 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model

Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3

Procedia PDF Downloads 215
25524 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
25523 Government Big Data Ecosystem: A Systematic Literature Review

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.

Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review

Procedia PDF Downloads 228
25522 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
25521 Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics

Authors: Umedov Mekhroz, Griaznova Svetlana

Abstract:

In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine.

Keywords: architectural planning solutions, functional zoning, nuclear medicine, PET/CT scan, production of radiopharmaceuticals, radiotherapy

Procedia PDF Downloads 89
25520 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education

Procedia PDF Downloads 131
25519 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm

Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima

Abstract:

In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.

Keywords: cloud space, AES, FTP, NetBeans IDE

Procedia PDF Downloads 206
25518 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 160
25517 MRI R2* of Liver in an Animal Model

Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao

Abstract:

This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8  10.9 s-1 and 37.4  9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration.

Keywords: liver, magnetic resonance imaging, muscle, R2* relaxation rate

Procedia PDF Downloads 436
25516 Symmetric Corticobasal Degeneration: Case Report

Authors: Sultan Çağırıcı, Arsida Bajrami, Beyza Aslan, Hacı Ali Erdoğan, Nejla Sözer Topçular, Dilek Bozkurt, Vildan Yayla

Abstract:

Objective: Corticobasal syndrome (CBS) is phenotypically characterized by asymmetric rigidity, apraxia, alien-limb phenomenon, cortical sensory loss, dystonia and myoclonus. The underlying pathologies consists of corticobasal degeneration (CBD), progressive supra nuclear palsy, Alzheimer's, Creutzfeldt-Jakob and frontotemporal degeneration. CBD is a degenerative disease with clinical symptoms related to the prominent involvement of cerebral cortex and basal ganglia. CBD is a pathological diagnosis and antemortem clinical diagnosis may change many times. In this paper, we described the clinical features and discussed a cases diagnosed with symmetric CBS because of its rarity. Case: Seventy-five-year-old woman presented with a three years history of difficulty in speaking and reading. Involuntary hand jerks and slowness of movement also had began in the last six months. In the neurological examination the patient was alert but not fully oriented. The speech was non-fluent, word finding difficulties were present. Bilateral limited upgaze, bradimimia, bilateral positive cogwheel' rigidity but prominent in the right side, postural tremor and negative myoclonus during action on the left side were detected. Receptive language was normal but expressive language and repetition were impaired. Acalculia, alexia, agraphia and apraxia were also present. CSF findings were unremarkable except for elevated protein level (75 mg/dL). MRI revealed bilateral symmetric cortical atrophy prominent in the frontoparietal region. PET showed hypometabolism in the left caudate nucleus. Conclusion: The increase of data related to neurodegenerative disorders associated with dementia, movement disorders and other findings results in an expanded range of diagnosis and transitions between clinical diagnosis. When considered the age of onset, clinical symptoms, imaging findings and prognosis of this patient, clinical diagnosis was CBS and pathologic diagnosis as probable CBD. Imaging of CBD usually consist of typical asymmetry between hemispheres. Still few cases with clinical appearance of CBD may show symmetrical cortical cerebral atrophy. It is presented this case who was diagnosed with CBD although we found symmetrical cortical cerebral atrophy in MRI.

Keywords: symmetric cortical atrophy, corticobasal degeneration, corticobasal syndrome

Procedia PDF Downloads 458
25515 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 223
25514 Audit on Compliance with Ottawa Ankle Rules in Ankle Radiograph Requests

Authors: Daud Muhammad

Abstract:

Introduction: Ankle radiographs are frequently requested in Emergency Departments (ED) for patients presenting with traumatic ankle pain. The Ottawa Ankle Rules (OAR) serve as a clinical guideline to determine the necessity of these radiographs, aiming to reduce unnecessary imaging. This audit was conducted to evaluate the adequacy of clinical information provided in radiograph requests in relation to the OAR. Methods: A retrospective analysis was performed on 50 consecutive ankle radiograph requests under ED clinicians' names for patients aged above 5 years, specifically excluding follow-up radiographs for known fractures. The study assessed whether the provided clinical information met the criteria outlined by the OAR. Results: The audit revealed that none of the 50 radiograph requests contained sufficient information to satisfy the Ottawa Ankle Rules. Furthermore, 10 out of the 50 radiographs (20%) identified fractures. Discussion: The findings indicate a significant lack of adherence to the OAR, suggesting potential overuse of radiography and unnecessary patient exposure to radiation. This non-compliance may also contribute to increased healthcare costs and resource utilization, as well as possible delays in diagnosis and treatment. Recommendations: To address these issues, the following recommendations are proposed: (1) Education and Training: Enhance awareness and training among ED clinicians regarding the OAR. (2) Standardised Request Forms: Implement changes to imaging request forms to mandate relevant information according to the OAR. (3) Scan Vetting: Promote awareness among radiographers to discuss the appropriateness of scan requests with clinicians. (4) Regular re-audits should be conducted to monitor improvements in compliance.

Keywords: Ottawa ankle rules, ankle radiographs, emergency department, traumatic pain

Procedia PDF Downloads 45
25513 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 483
25512 Assessment of Breeding Soundness by Comparative Radiography and Ultrasonography of Rabbit Testes

Authors: Adenike O. Olatunji-Akioye, Emmanual B Farayola

Abstract:

In order to improve the animal protein recommended daily intake of Nigerians, there is an upsurge in breeding of hitherto shunned food animals one of which is the rabbit. Radiography and ultrasonography are tools for diagnosing disease and evaluating the anatomical architecture of parts of the body non-invasively. As the rabbit is becoming a more important food animal, to achieve improved breeding of these animals, the best of the species form a breeding stock and will usually depend on breeding soundness which may be evaluated by assessment of the male reproductive organs by these tools. Four male intact rabbits weighing between 1.2 to 1.5 kg were acquired and acclimatized for 2 weeks. Dorsoventral views of the testes were acquired using a digital radiographic machine and a 5 MHz portable ultrasound scanner was used to acquire images of the testes in longitudinal, sagittal and transverse planes. Radiographic images acquired revealed soft tissue images of the testes in all rabbits. The testes lie in individual scrotal sacs sides on both sides of the midline at the level of the caudal vertebrae and thus are superimposed by caudal vertebrae and the caudal limits of the pelvic girdle. The ultrasonographic images revealed mostly homogenously hypoechogenic testes and a hyperechogenic mediastinum testis. The dorsal and ventral poles of the testes were heterogeneously hypoechogenic and correspond to the epididymis and spermatic cord. The rabbit is unique in the ability to retract the testes particularly when stressed and so careful and stressless handling during the procedures is of paramount importance. The imaging of rabbit testes can be safely done using both imaging methods but ultrasonography is a better method of assessment and evaluation of soundness for breeding.

Keywords: breeding soundness, rabbit, radiography, ultrasonography

Procedia PDF Downloads 131
25511 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
25510 Computed Tomography Guided Bone Biopsies: Experience at an Australian Metropolitan Hospital

Authors: K. Hinde, R. Bookun, P. Tran

Abstract:

Percutaneous CT guided biopsies provide a fast, minimally invasive, cost effective and safe method for obtaining tissue for histopathology and culture. Standards for diagnostic yield vary depending on whether the tissue is being obtained for histopathology or culture. We present a retrospective audit from Western Health in Melbourne Australia over a 12-month period which aimed to determine the diagnostic yield, technical success and complication rate for CT guided bone biopsies and identify factors affecting these results. The digital imaging storage program (Synapse Picture Archiving and Communication System – Fujifilm Australia) was analysed with key word searches from October 2015 to October 2016. Nineteen CT guided bone biopsies were performed during this time. The most common referring unit was oncology, work up imaging included CT, MRI, bone scan and PET scan. The complication rate was 0%, overall diagnostic yield was 74% with a technical success of 95%. When performing biopsies for histologic analysis diagnostic yield was 85% and when performing biopsies for bacterial culture diagnostic yield was 60%. There was no significant relationship identified between size of lesion, distance of lesion to skin, lesion appearance on CT, the number of samples taken or gauge of needle to diagnostic yield or technical success. CT guided bone biopsy at Western Health meets the standard reported at other major clinical centres for technical success and safety. It is a useful investigation in identification of primary malignancy in distal bone metastases.

Keywords: bone biopsy, computed tomography, core biopsy, histopathology

Procedia PDF Downloads 200
25509 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls

Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper

Abstract:

Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.

Keywords: patient safety, quality improvement, serious incidents, falls, clinical care

Procedia PDF Downloads 124
25508 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 574
25507 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 345
25506 Leaf Image Processing: Review

Authors: T. Vijayashree, A. Gopal

Abstract:

The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics.

Keywords: authenticity, standardization, principal component analysis, imaging processing, signal processing

Procedia PDF Downloads 246
25505 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control

Procedia PDF Downloads 286