Search results for: binary logistic regression
3443 Logistics Support as a Key Success Factor in Gastronomy
Authors: Hanna Zietara
Abstract:
Gastronomy is one of the oldest forms of commercial activity. It is currently one of the most popular and still dynamically developing branches of business. Socio-economic changes, its widespread occurrence, new techniques, or culinary styles affect the almost unlimited possibilities of its development. Importantly, regardless of the form of business adopted, food service is strongly related to logistics processes, and areas of food service that are closely linked to logistics are of strategic importance. Any inefficiency in logistics processes results in reduced chances for success and achieving competitive advantage by companies belonging to the catering industry. The aim of the paper is to identify the areas of logistic support occurring in the catering business, affecting the scope of the logistic processes implemented. The aim of the paper is realized through a plural homogeneous approach, based on: direct observation, text analysis of current documents, in-depth free targeted interviews.Keywords: gastronomy, competitive advantage, logistics, logistics support
Procedia PDF Downloads 1633442 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1503441 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 1563440 Internet Addiction among Students: An Empirical Study in Pondicherry University
Authors: Mashood C., Abdul Vahid K., Ashique C. K.
Abstract:
The technology is growing beyond human expectation. Internet is one of very sophisticated product of the information technology. It has various advantages like connecting the world, simplifying the difficult tasks done in past etc. Simultaneously it has demerits also; that is lack of authenticity and internet addiction. To find out the problems of internet addiction, a study conducted among the Postgraduate students of Pondicherry University and collected 454 samples. The study strictly focused to identify the internet addiction among students, influence and interdependence of personality on internet addiction among first years and second years. To evaluate this, we used two major analysis, these are Confirmatory Factor Analysis (CFA) to predict the internet addiction with the observed data and Logistic Regression to identify the difference between first years and second years in the case of internet addiction. Before applying to the core analysis, the data applied to some preliminary tests to check the model fit. The empirical findings shows that , the students of Pondicherry University are very much addicted to the internet, But there is no such huge difference between first years and second years in case of internet addiction.Keywords: internet addiction, students, Pondicherry University, empirical study
Procedia PDF Downloads 4593439 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces
Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet
Abstract:
In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.Keywords: dropwise condensation, textured surface, image processing, watershed
Procedia PDF Downloads 2233438 Drivers of Farmers' Contract Compliance Behaviour: Evidence from a Case Study of Dangote Tomato Processing Plant in Northern Nigeria.
Authors: Umar Shehu Umar
Abstract:
Contract farming is a viable strategy agribusinesses rely on to strengthen vertical coordination. However, low contract compliance remains a significant setback to agribusinesses' contract performance. The present study aims to understand what drives smallholder farmers’ contract compliance behaviour. Qualitative information was collected through Focus Group Discussions to enrich the design of the survey questionnaire administered on a sample of 300 randomly selected farmers contracted by the Dangote Tomato Processing Plant (DTPP) in four regions of northern Nigeria. Novel transaction level data of tomato sales covering one season were collected in addition to socio-economic information of the sampled farmers. Binary logistic model results revealed that open fresh market tomato prices and payment delays negatively affect farmers' compliance behaviour while quantity harvested, education level and input provision correlated positively with compliance. The study suggests that contract compliance will increase if contracting firms devise a reliable and timely payment plan (e.g., digital payment), continue input and service provisions (e.g., improved seeds, extension services) and incentives (e.g., loyalty rewards, bonuses) in the contract.Keywords: contract farming, compliance, farmers and processors., smallholder
Procedia PDF Downloads 563437 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 2253436 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Authors: Joonas Pääkkönen
Abstract:
In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling
Procedia PDF Downloads 1253435 The Predictors of Student Engagement: Instructional Support vs Emotional Support
Authors: Tahani Salman Alangari
Abstract:
Student success can be impacted by internal factors such as their emotional well-being and external factors such as organizational support and instructional support in the classroom. This study is to identify at least one factor that forecasts student engagement. It is a cross-sectional, conducted on 6206 teachers and encompassed three years of data collection and observations of math instruction in approximately 50 schools and 300 classrooms. A multiple linear regression revealed that a model predicting student engagement from emotional support, classroom organization, and instructional support was significant. Four linear regression models were tested using hierarchical regression to examine the effects of independent variables: emotional support was the highest predictor of student engagement while instructional support was the lowest.Keywords: student engagement, emotional support, organizational support, instructional support, well-being
Procedia PDF Downloads 813434 Household Socioeconomic Factors Associated with Teenage Pregnancies in Kigali City, Rwanda
Authors: Dieudonne Uwizeye, Reuben Muhayiteto
Abstract:
Teenage pregnancy is a challenging problem for sustainable development due to restrictions it poses to socioeconomic opportunities for young mothers, their children and families. Being unable to take appropriate economic and social responsibilities, teen mothers get trapped into poverty and become economic burden to their family and country. Besides, teenage pregnancy is also a health problem because children born to very young mothers are vulnerable with greater risk of illnesses and deaths, and teenage mothers are more likely to be exposed to greater risk of maternal mortality and to other health and psychological problems. In Kigali city, in Rwanda, teenage pregnancy rate is currently high and its increase in recent years is worrisome. However, only individual factors influencing the teenage pregnancy tend to be the basis of interventions. It is important to understand the important socioeconomic factors at the household level that are associated with teenage pregnancy to help government, parents, and other stakeholders to appropriately address the problem with sustainable measures. This study analyzed secondary data from the Fifth Rwanda Demographic and Health Survey (RDHS-V 2014-2015) conducted by the National Institute of Statistics of Rwanda (NISR). The aim was to examine household socio-economic factors that are associated with incidence of teenage pregnancies in Kigali city. In addition to descriptive analysis, Pearson’s Chi Square and Binary Logistic Regression were used in the analysis. Findings indicate that marital status and age of household head, number of members in a household, number of rooms used for sleeping, educational level of the household head and household's wealth are significantly associated with teenage pregnancy in Rwanda ( p< 0.05). It was found that teenagers living with parents, those having parents with higher education and those from richer families are less likely to become pregnant. Age of household head was pinpointed as factor to teenage pregnancy, with teenage-headed households being more vulnerable. The findings also revealed that household composition correlates with the probability of teenage pregnancy (p < 0.05) with teenagers from households with less number of members being more vulnerable. Regarding the size of the house, the study suggested that the more rooms available in households, the less incidences of teenage pregnancy are likely to be observed (p < 0.05). However, teenage pregnancy was not significantly associated with physical violence among parents (p = 0.65) and sex of household heads (p = 0.52), except in teen-headed households of which female are predominantly heads. The study concludes that teenage pregnancy remains a serious social, economic and health problem in Rwanda. The study informs government officials, parents and other stakeholders to take interventions and preventive measures through community sex education, policies and strategies to foster effective parental guidance, care and control of young girls through meeting their necessary social and financial needs within households.Keywords: household socio-economic factors, Rwanda, Rwanda demographic and health survey, teenage pregnancy
Procedia PDF Downloads 1793433 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model
Authors: Seydou Sinde
Abstract:
The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression
Procedia PDF Downloads 843432 A Forbidden-Minor Characterization for the Class of Co-Graphic Matroids Which Yield the Graphic Element-Splitting Matroids
Authors: Prashant Malavadkar, Santosh Dhotre, Maruti Shikare
Abstract:
The n-point splitting operation on graphs is used to characterize 4-connected graphs with some more operations. Element splitting operation on binary matroids is a natural generalization of the notion of n-point splitting operation on graphs. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid. Characterization of graphic (cographic) matroids whose element splitting matroids are graphic (cographic) is known. The element splitting operation on a co-graphic matroid, in general may not yield a graphic matroid. In this paper, we give a necessary and sufficient condition for the cographic matroid to yield a graphic matroid under the element splitting operation. In fact, we prove that the element splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to M(K4); where K4 is the complete graph on 4 vertices.Keywords: binary matroids, splitting, element splitting, forbidden minor
Procedia PDF Downloads 2763431 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 763430 Hepatitis B Vaccination Status and Its Determinants among Primary Health Care Workers in Northwest Pakistan
Authors: Mohammad Tahir Yousafzai, Rubina Qasim
Abstract:
We assessed Hepatitis B vaccination and its determinants among health care workers (HCW) in Northwest Pakistan. HCWs from both public and private clinics were interviewed about hepatitis B vaccination, socio-demographic, hepatitis B virus transmission modes, disease threat and benefits of vaccination. Logistic regression was performed. Hepatitis B vaccination was 40% (Qualified Physicians: 86% and non-qualified Dispensers:16%). Being Qualified Physician (Adj. OR 26.6; 95%CI 9.3-73.2), Non-qualified Physician (Adj.OR 1.9; 95%CI 0.8-4.6), qualified Dispensers (Adj. OR 3.6; 95%CI 1.3-9.5) compared to non-qualified Dispensers, working in public clinics (Adj. OR 2.5; 95%CI 1.1-5.7) compared to private, perceived disease threat after exposure to blood and body fluids (Adj. OR 1.1; 95%CI 1.1-1.2) and perceived benefits of vaccination (Adj. OR 1.1; 95%CI 1.1-1.2) were significant predictors of hepatitis B vaccination. Improved perception of disease threat and benefits of vaccination and qualification of HCWs are associated with hepatitis B vaccination.Keywords: Hepatitis B vaccine, immunization, healthcare workers, primary health
Procedia PDF Downloads 3173429 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.Keywords: image fusion, iris recognition, local binary pattern, wavelet
Procedia PDF Downloads 3673428 Determinants of Stone Free Status After a Single Session of Flexible Ureteroscopy with Laser Lithotripsy for Renal Calculi
Authors: Mohamed Elkoushy, Sameer Munshi, Waseem Tayeb
Abstract:
Background: Flexible ureteroscopy (fURS) has dramatically improved the minimally invasive management of complex nephrolithiasis. fUR is increasingly being used as the first-line treatment for patients with renal stones. Stone-free status (SFS) is the primary goal in the management of patients with urolithiasis. However, substantial variations exist in the reported SFS following fURS. Objectives: This study determines the predictors of SFS after a single session of fURS with holmium laser lithotripsy (HLL) for renal calculi. Methods: A retrospective review of prospectively collected data was performed for all consecutive patients undergoing fURS and HLL for renal calculi at a tertiary care center. Patients with previous ipsilateral URS for the same stones were excluded. All patients underwent JJ ureteral stent insertion at the end of the procedure. SFS was defined as the presence of no residuals or ≤4-mm non-obstructing stone and was assessed by CT/KUB imaging after 3-4 weeks post-operatively. Multivariate logistic regression was used to detect possible predictors of SFS. Results: A total of 212 patients were included with a mean age of 52.3±8.3 years and a stone burden <20 mm (49.1%), 20-30 mm (41.0%) and >30 mm (9.9%). Overall SFS after a single session of fURS was 71.7%, 92% and 52% for stones less and larger than 20 mm, respectively. Patients with stones> 20 mm need retreatment with a mean number of 1.8 (1.3-2.7) fURS. SFS was significantly associated with male gender, stone bulk <20 mm (95.7% vs. 56.2%), non-lower pole stones, hydronephrotic kidney, low stone intensity, ureteral access sheath, and preoperative stenting. SFS was associated with a lower readmission rate (5.9% vs. 38.9%) and urinary tract infections (3.8% vs. 25.9%). In multivariate regression analysis, SFS maintains its significant association with low stone burden of <20 mm (OR: 5.21), stone intensity <600 HFU (OR: 2.87), and non-lower caliceal stones (OR: 3.84). Conclusion: Best results after a single-session fURS for renal stone were obtained for the stone burden of less than 20 mm and low stone attenuation. Lower calyceal stones may influence stone clearance and need a different approach than fURS, especially for higher stone burden.Keywords: ureteroscopy, kidney stone, lithotripsy, stone-free, predictors
Procedia PDF Downloads 193427 Illustrative Effects of Social Capital on Perceived Health Status and Quality of Life among Older Adult in India: Evidence from WHO-Study on Global AGEing and Adults Health India
Authors: Himansu, Bedanga Talukdar
Abstract:
The aim of present study is to investigate the prevalence of various health outcomes and quality of life and analyzes the moderating role of social capital on health outcomes (i.e., self-rated good health (SRH), depression, functional health and quality of life) among elderly in India. Using WHO Study on Global AGEing and adults health (SAGE) data, with sample of 6559 elderly between 50 and above (Mage=61.81, SD=9.00) age were selected for analysis. Multivariate analysis accessed the prevalence of SRH, depression, functional limitation and quality of life among older adults. Logistic regression evaluates the effect of social capital along with other co-founders on SRH, depression, and functional limitation, whereas linear regression evaluates the effect of social capital with other co-founders on quality of life (QoL) among elderly. Empirical results reveal that (74%) of respondents were married, (70%) having low social action, (46%) medium sociability, (45%) low trust-solidarity, (58%) high safety, (65%) medium civic engagement and 37% reported medium psychological resources. The multivariate analysis, explains (SRH) is associated with age, female, having education, higher social action great trust, safety and greater psychological resources. Depression among elderly is greatly related to age, sex, education and higher wealth, higher sociability, having psychological resources. QoL is negatively associated with age, sex, being Muslim, whereas positive associated with higher education, currently married, civic engagement, having wealth, social action, trust and solidarity, safeness, and strong psychological resources.Keywords: depressive symptom, functional limitation, older adults, quality of life, self rated health, social capital
Procedia PDF Downloads 2253426 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 1153425 The Effect of Artificial Intelligence on Construction Development
Authors: Shady Gamal Aziz Shehata
Abstract:
Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception
Procedia PDF Downloads 593424 Determinants of Maternal Near-Miss among Women in Public Hospital Maternity Wards in Northern Ethiopia: A Facility Based Case-Control Study
Authors: Dejene Ermias Mekango, Mussie Alemayehu, Gebremedhin Berhe Gebregergs, Araya Abrha Medhanye, Gelila Goba
Abstract:
Background: Maternal near miss (MNM) can be used as a proxy indicator of maternal mortality ratio. There is a huge gap in life time risk between Sub-Saharan Africa and developed countries. In Ethiopia, a significant number of women die each year from complications during pregnancy, childbirth and the post-partum period. Besides, a few studies have been performed on MNM, and little is known regarding determinant factors. This study aims to identify determinants of MNM among women in Tigray region, Northern Ethiopia. Methods: a case-control study in hospital found in Tigray region, Ethiopia was conducted from January 30 - March 30, 2016. The sample included 103 cases and 205 controls recruited from women seeking obstetric care at six public hospitals. Clients having a life-threatening obstetric complication including haemorrhage, hypertensive diseases of pregnancy, dystocia, infections, and anemia or clinical signs of severe anemia in women without haemorrhage were taken as cases and those with normal obstetric outcomes were considered as controls. Cases were selected based on proportional to size allocation while systematic sampling was employed for controls. Data were analyzed using SPSS version 20.0. Binary and multiple variable logistic regression (odds ratio) analyses were calculated with 95% CI. Results: The largest proportion of cases and controls was among the ages of20–29 years, accounting for37.9 %( 39) of cases and 31.7 %( 65) of controls. Roughly 90% of cases and controls were married. About two-thirds of controls and 45.6 %( 47) of cases had gestational age between 37-41 weeks. History of chronic medical conditions was reported in 55.3 %(57) of cases and 33.2%(68) of controls. Women with no formal education [AOR=3.2;95%CI:1.24, 8.12],being less than 16 years old at first pregnancy [AOR=2.5; 95%CI:1.12,5.63],induced labor[AOR=3; 95%CI:1.44, 6.17], history of Cesarean section (C-section) [AOR=4.6; 95%CI: 1.98, 7.61] or chronic medical disorder[AOR=3.5;95%CI:1.78, 6.93], and women who traveled more than 60 minutes before reaching their final place of care[AOR=2.8;95% CI: 1.19,6.35] all had higher odds of experiencing MNM. Conclusions: The Government of Ethiopia should continue its effort to address the lack of road and health facility access as well as education, which will help reduce MNM. Work should also be continued to educate women and providers about common predictors of MNM like the history of C-section, chronic illness, and teenage pregnancy. These efforts should be carried out at the facility, community, and individual levels. The targeted follow-up to women with a history of chronic disease and C-section could also be a practical way to reduce MNM.Keywords: maternal near miss, severe obstetric hemorrhage, hypertensive disorder, c-section, Tigray, Ethiopia
Procedia PDF Downloads 2223423 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 373422 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications
Authors: Morsy Ahmed Morsy Ismail
Abstract:
In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia
Procedia PDF Downloads 1753421 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5133420 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation
Authors: Yoonsuh Jung, Steven N. MacEachern
Abstract:
Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.Keywords: cross-validation, model selection, quantile regression, tuning parameter selection
Procedia PDF Downloads 4383419 Personalty Traits as Predictors of Emotional Distress among Awaiting-trials Inmates in Some Selected Correctional Centers in Nigeria
Authors: Fasanmi Samuel Sunday
Abstract:
This study investigated the influence of gender and personality traits on emotional distress among awaiting trial inmates in Nigeria. Participants were three hundred and twenty (320) awaiting trial inmates, drawn from three main correctional centres in Northeast Nigeria, namely: Gashua Correctional Centre, Postiskum Correctional Centre, and Bauchi Correctional Centre. Expo facto research design was adopted. Questionnaires such as the Big Five Inventory and the Perceived Emotional Distress Inventory (PEDI) were used to measure the variables of the study. Three hypotheses were tested. Logistic regression was used for data analysis. Results of the analysis indicated that conscientiousness significantly predicted emotional distress among awaiting trial inmates. However, most of the identified personality traits did not significantly predict emotional distress among awaiting trial inmates. There was no significant gender difference in emotional distress among awaiting-trial inmates. The implications of the study were discussed.Keywords: personality traits, emotional distress, awaiting-trial inmates, gender
Procedia PDF Downloads 983418 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1303417 Spectrophotometric Methods for Simultaneous Determination of Binary Mixture of Amlodipine Besylate and Atenolol Based on Dual Wavelength
Authors: Nesrine T. Lamie
Abstract:
Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a binary mixture containing amlodipine besylate (AM) and atenolol (AT) where AM is determined at its λmax 360 nm (0D), while atenolol can be determined by different methods. Method (A) is absorpotion factor (AFM). Method (B) is the new Ratio Difference method(RD) which measures the difference in amplitudes between 210 and 226 nm of ratio spectrum., Method (C) is novel constant center spectrophotometric method (CC) Method (D) is mean centering of the ratio spectra (MCR) at 284 nm. The calibration curve is linear over the concentration range of 10–80 and 4–40 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the cited drugs and they are applied to their commercial pharmaceutical preparation. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.Keywords: amlodipine, atenolol, absorption factor, constant center, mean centering, ratio difference
Procedia PDF Downloads 3043416 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control
Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines
Abstract:
This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.Keywords: extraction, cloud point, non ionic surfactant, bezanyl green
Procedia PDF Downloads 1263415 Thermodynamic Properties of Binary Mixtures of 1, 2-Dichloroethane with Some Polyethers: DISQUAC Calculations Compared with Dortmund UNIFAC Results
Authors: F. Amireche, I. Mokbel, J. Jose, B. F. Belaribi
Abstract:
The experimental vapour-liquid equilibria (VLE) at isothermal conditions and excess molar Gibbs energies GE are carried out for the three binary mixtures: 1, 2- dichloroethane + ethylene glycol dimethyl ether, + diethylene glycol dimethyl ether or + diethylene glycol diethyl ether, at ten temperatures ranging from 273 to 353.15 K. A good static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P, the excess molar Gibbs energies GE and the excess molar enthalpies HE.Keywords: Disquac model, Dortmund UNIFAC model, 1, 2- dichloroethane, excess molar Gibbs energies GE, polyethers, VLE
Procedia PDF Downloads 2693414 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 119