Search results for: licensed manufacturing agreements
1804 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 771803 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains
Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang
Abstract:
Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment
Procedia PDF Downloads 1171802 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 4231801 New Media and Social Media Laws and Ethics in United Arab Emirates
Authors: Ahmed Farouk Radwan, Sheren Mousa
Abstract:
There are many laws and regulations governing the use of new and social media in the United Arab Emirates. During the past few years, the importance of using these platforms in the fields of media and government communication has increased, as well as at the level of individual use. In 2016, the National Media Council Law was issued to regulate traditional and new media field, and gave the council the power to oversee and undertake the media affairs in the state. NMC is mandated to: Develop the UAE’s media policy, Draft media legislation and ensure its execution and Prohibited media content ,Co-ordinate the media policy between the emirates in line with the UAE’s domestic and foreign policy, Ensure support for the federation and project national unity. All media organizations in the UAE must comply with the regulations and rules issued by council. Social media influencers have to be licensed by NMC if they accept paid ads to be published on their accounts. The study explores other laws concerning of new media and social media regulations and ethics including Combatting Cybercrimes law, Combating Discrimination and Hatred law, The Government Guidelines for social media users in the UAE, The Guidelines for the practices of electronic participation and social networking, Copyright Law, and Child Rights Law. The study clarifies the legal articles, items and standards in all these laws which related with the new media and social platforms and also determines the prohibited digital practices and the cultural norms governing it.Keywords: media laws, media ethics, new media , UAE
Procedia PDF Downloads 1691800 Studies of Reduction Metal Impurity in Residual Melt by Czochralski Method
Authors: Jaemin Kim, Ilsun Pang, Yongrae Cho, Kwanghun Kim, Sungsun Baik
Abstract:
Manufacturing cost reduction is becoming more important due to excessive oversupply of Single crystalline ingot in recent solar market. Many companies are carrying out extensive research to grow more than one Single crystalline ingot in one batch to reduce manufacturing cost. However what most companies are finding difficult in this process is the effect on ingot due to increasing levels of impurities. Every ingot leaves a certain amount of melt after it is fully grown. This is the impurity that lowers the ingot quality. This impurity increase in the batch after second, third and more are grown subsequently in one batch. In order to solve this problem, the experiment to remove the residual melt in high temperature of hot zone was performed and succeeded. Theoretical average metal concentration of second ingot by new method was calculated and compared to it by conventional method.Keywords: single crystal, solar cell, metal impurity, Ingot
Procedia PDF Downloads 4001799 Identifying the Barriers behind the Lack of Six Sigma Use in Libyan Manufacturing Companies
Authors: Osama Elgadi, Martin Birkett, Wai Ming Cheung
Abstract:
This paper investigates the barriers behind the underutilisation of six sigma in Libyan manufacturing companies (LMCs). A mixed-method methodology is proposed, starting by conducting interviews to collect qualitative data followed by the development of a questionnaire to obtain quantitative data. The focus of this paper is on discussing the findings of the interview stage and how these can be used to further develop the questionnaire stage. The interview results showed that only four key barriers were highlighted as being encountered by LMCs. With a difference in terms of their significance, these factors were identified, and placed in descending order according to their importance, namely: “Lack of top management commitment”, “Lack of training”, “Lack of knowledge about six sigma”, and “Culture effect”. The findings also showed that some barriers which, were found in previous studies of six sigma implementation were not considered as barriers to LMCs but can, in fact, be considered as success factors or enablers for six sigma adoption. These factors were identified as: “sufficiency of time and financial resources”; “customers unsatisfied”; “good communication between all departments in the company”; “we are certain about its results and benefits to our company and unhappy with the current quality system”. These results suggest that LMCs face fewer barriers to adopting six sigma than many well-established global companies operating in other countries and could take advantage of these successful factors by developing and implementing a six sigma framework to improve their product quality and competitiveness.Keywords: six sigma, barriers, Libyan manufacturing companies, interview
Procedia PDF Downloads 2291798 Application of Lean Manufacturing in Brake Shoe Manufacturing Plant: A Case Study
Authors: Anees K. Ahamed, Aakash Kumar R. G., Raj M. Mohan
Abstract:
The main objective is to apply lean tools to identify and eliminate waste in and among the work stations so as to improve the process speed and quality. From the top seven wastes in the lean concept, we consider the movement of materials, defects, and inventory for the improvement since these cause the major impact on the performance measures. The layout was improved to reduce the movement of materials. It also quantifies the reduction in movement among the work stations. Value stream mapping has been used for identification of waste. Cause and effect diagram and 5W analysis are used to identify the reasons for defects and to provide the counter measures. Some cycle time reduction techniques also proposed to improve the productivity. Lean Audit check sheet was also used to identify the current position of the industry and to identify the gap to make the industry Lean.Keywords: cause and effect diagram, cycle time reduction, defects, lean, waste reduction
Procedia PDF Downloads 3861797 Preparation and Evaluation of Multiple Unit Tablets of Aceclofenac
Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan
Abstract:
The present research is aimed at fabrication of multiple-unit controlled-release tablet formulation of aceclofenac by employing acrylic polymers as the release controlling excipients for drug multi-particulates to achieve the desired objectives of maintaining the same controlled release characteristics as that prior to their compression into tablet. Various manufacturers are successfully manufacturing and marketing aceclofenac controlled release tablet by applying directly coating materials on the tablet. The basic idea behind development of such formulations was to employ aqueous acrylics polymers dispersion as an alternative to the existing approaches, wherein the forces of compression may cause twist of drug pellets, but do not have adverse effects on the drug release properties. Thus, the study was undertaken to illustrate manufacturing of controlled release aceclofenac multiple-unit tablet formulation.Keywords: aceclofenac, multiple-unit tablets, acrylic polymers, controlled-release
Procedia PDF Downloads 4421796 Commercial Winding for Superconducting Cables and Magnets
Authors: Glenn Auld Knierim
Abstract:
Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable
Procedia PDF Downloads 1411795 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support
Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi
Abstract:
The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools
Procedia PDF Downloads 1221794 Increase Productivity by Using Work Measurement Technique
Authors: Mohammed Al Awadh
Abstract:
In order for businesses to take advantage of the opportunities for expanded production and trade that have arisen as a result of globalization and increased levels of competition, productivity growth is required. The number of available sources is decreasing with each passing day, which results in an ever-increasing demand. In response to this, there will be an increased demand placed on firms to improve the efficiency with which they utilise their resources. As a scientific method, work and time research techniques have been employed in all manufacturing and service industries to raise the efficiency of use of the factors of production. These approaches focus on work and time. The goal of this research is to improve the productivity of a manufacturing industry's production system by looking at ways to measure work. The work cycles were broken down into more manageable and quantifiable components. On the observation sheet, these aspects were noted down. The operation has been properly analysed in order to identify value-added and non-value-added components, and observations have been recorded for each of the different trails.Keywords: time study, work measurement, work study, efficiency
Procedia PDF Downloads 701793 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination
Authors: Iris Käppler, Paul Matthäi, Chokri Cherif
Abstract:
In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.Keywords: non-crimp fabric, adhesive, stitch-free, high-performance fibre
Procedia PDF Downloads 3551792 Continuous Improvement Programme as a Strategy for Technological Innovation in Developing Nations. Nigeria as a Case Study
Authors: Sefiu Adebowale Adewumi
Abstract:
Continuous improvement programme (CIP) adopts an approach to improve organizational performance with small incremental steps over time. In this approach, it is not the size of each step that is important, but the likelihood that the improvements will be ongoing. Many companies in developing nations are now complementing continuous improvement with innovation, which is the successful exploitation of new ideas. Focus area of CIP in the organization was in relation to the size of the organizations and also in relation to the generic classification of these organizations. Product quality was prevalent in the manufacturing industry while manpower training and retraining and marketing strategy were emphasized for improvement to be made in the service, transport and supply industries. However, focus on innovation in raw materials, process and methods are needed because these are the critical factors that influence product quality in the manufacturing industries.Keywords: continuous improvement programme, developing countries, generic classfications, technological innovation
Procedia PDF Downloads 1901791 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain
Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami
Abstract:
To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.Keywords: business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption
Procedia PDF Downloads 1381790 Analysis of Behavior and Determinants of Cost Stickiness in Manufacturing Companies in Indonesia
Authors: Farizy Yunaz, Catur Sasongko
Abstract:
This research aims to provide the empirical evidence regarding cost stickiness behavior and its determinants on listed manufacturing companies. Hypothesis testing is performed using pooled least square method. The result concludes that there is cost stickiness behavior in selling, general and administrative costs. In term of determinants, firm-specific adjustment costs measured by asset intensity and employee intensity have significant positive impact on the level of cost stickiness. Meanwhile, earnings target and leverage have significant negative impact on the level of cost stickiness. However, the management empire building incentives measured by free cash flow has no significant positive impact.Keywords: adjustment cost, cost behavior, cost stickiness, earnings target, leverage, management empire building incentive
Procedia PDF Downloads 3661789 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering
Authors: Tuba Kizilirmak
Abstract:
Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals
Procedia PDF Downloads 1961788 Enabling Wire Arc Additive Manufacturing in Aircraft Landing Gear Production and Its Benefits
Authors: Jun Wang, Chenglei Diao, Emanuele Pagone, Jialuo Ding, Stewart Williams
Abstract:
As a crucial component in aircraft, landing gear systems are responsible for supporting the plane during parking, taxiing, takeoff, and landing. Given the need for high load-bearing capacity over extended periods, 300M ultra-high strength steel (UHSS) is often the material of choice for crafting these systems due to its exceptional strength, toughness, and fatigue resistance. In the quest for cost-effective and sustainable manufacturing solutions, Wire Arc Additive Manufacturing (WAAM) emerges as a promising alternative for fabricating 300M UHSS landing gears. This is due to its advantages in near-net-shape forming of large components, cost-efficiency, and reduced lead times. Cranfield University has conducted an extensive preliminary study on WAAM 300M UHSS, covering feature deposition, interface analysis, and post-heat treatment. Both Gas Metal Arc (GMA) and Plasma Transferred Arc (PTA)-based WAAM methods were explored, revealing their feasibility for defect-free manufacturing. However, as-deposited 300M features showed lower strength but higher ductility compared to their forged counterparts. Subsequent post-heat treatments were effective in normalising the microstructure and mechanical properties, meeting qualification standards. A 300M UHSS landing gear demonstrator was successfully created using PTA-based WAAM, showcasing the method's precision and cost-effectiveness. The demonstrator, measuring Ф200mm x 700mm, was completed in 16 hours, using 7 kg of material at a deposition rate of 1.3kg/hr. This resulted in a significant reduction in the Buy-to-Fly (BTF) ratio compared to traditional manufacturing methods, further validating WAAM's potential for this application. A "cradle-to-gate" environmental impact assessment, which considers the cumulative effects from raw material extraction to customer shipment, has revealed promising outcomes. Utilising Wire Arc Additive Manufacturing (WAAM) for landing gear components significantly reduces the need for raw material extraction and refinement compared to traditional subtractive methods. This, in turn, lessens the burden on subsequent manufacturing processes, including heat treatment, machining, and transportation. Our estimates indicate that the carbon footprint of the component could be halved when switching from traditional machining to WAAM. Similar reductions are observed in embodied energy consumption and other environmental impact indicators, such as emissions to air, water, and land. Additionally, WAAM offers the unique advantage of part repair by redepositing only the necessary material, a capability not available through conventional methods. Our research shows that WAAM-based repairs can drastically reduce environmental impact, even when accounting for additional transportation for repairs. Consequently, WAAM emerges as a pivotal technology for reducing environmental impact in manufacturing, aiding the industry in its crucial and ambitious journey towards Net Zero. This study paves the way for transformative benefits across the aerospace industry, as we integrate manufacturing into a hybrid solution that offers substantial savings and access to more sustainable technologies for critical component production.Keywords: WAAM, aircraft landing gear, microstructure, mechanical performance, life cycle assessment
Procedia PDF Downloads 1611787 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 1641786 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads
Authors: T. H. Young, Y. J. Tsai
Abstract:
A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work. The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.Keywords: stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear
Procedia PDF Downloads 1571785 A Study for Turkish Underwater Sports Federation Athletes: Evaluation of the Street Foods Consumption
Authors: Su Tezel
Abstract:
The paper deals with licensed athletes affiliated with the Turkish Underwater Sports Federation to assess the consumption status of street food. The aim of the paper is the frequency of training during competition preparatory training or season periods, the athletes' economic situation, social life, work-life or education situations are the directs them to street food? Also to evaluate the importance that athletes attach to their nutritional status. Data were collected with survey method. 141 underwater sports athletes participated in the survey. Empirical findings on 141 respondents are related to athletes' demographic information, which underwater sports branch they doing (underwater hockey, underwater rugby and free diving), with whom they live, training hours and frequency, street food consumption frequency and preferences, which type drinks they prefer drink with or without street foods and other similar things. Most of the athletes were male (64.5%), female (35.5%) and the most athletes from the sports branches included in the survey belong to underwater hockey (95.7%). 93.7% of athletes have a training time between 08:00 pm to 00:00 am and the frequency of consuming street food after training is 88%. As a remarkable result, 48% of the reasons for consuming street food easy access to street foods after training. Statistical analyzes were made with the data obtained and the status of street food consumption of athletes, whether they were suitable for professional athlete nutrition and their attitudes were evaluated.Keywords: nutrition, street foods, underwater hockey, underwater sport
Procedia PDF Downloads 1501784 Approach of Measuring System Analyses for Automotive Part Manufacturing
Authors: S. Homrossukon, S. Sansureerungsigun
Abstract:
This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipment were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipment of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded.Keywords: automotive part manufacturing measurement, measuring accuracy, measuring precision, measurement system analyses
Procedia PDF Downloads 3111783 Analysis of the Theoretical Values of Several Characteristic Parameters of Surface Topography in Rotational Turning
Authors: J. Kundrák, I. Sztankovics, K. Gyáni
Abstract:
In addition to the increase of the material removal rate or surface rate, or the improvement of the surface quality, which are the main aims of the development of manufacturing technology, a growing number of other manufacturing requirements have appeared in the machining of workpiece surfaces. Among these, it is becoming increasingly dominant to generate a surface topography in finishing operations which meet more closely the needs of operational requirements. These include the examination of the surface periodicity and/or ensuring that the twist structure values are within the limits (or even preventing its occurrence) in specified cases such as on the sealing surfaces of rotating shafts or on the inside working surfaces of needle roller bearings. In the view of the measurement, the twist has different parameters from surface roughness, which must be determined for the machining procedures. Therefore in this paper the alteration of the theoretical values of the parameters determining twist structure are studied as a function of the kinematic properties.Keywords: kinematic parameters, rotational turning, surface topography, twist structure
Procedia PDF Downloads 3781782 A Comparative Study of Primary Revenue Sources in the U.S. Professional Sports, Intercollegiate Sports, and Sporting Goods Industry
Authors: Chenghao Ma
Abstract:
This paper mainly examines and compares the primary revenue sources in the professional sports, intercollegiate sports, and sporting goods industries in the U.S. In the professional team sport, revenues may come from different resources, including broadcasting rights, ticket sales, corporate partnerships, naming rights, licensed merchandise, luxury suites, club seating, ancillary activities, and transfer fees. Many universities use university budgets and student fees to cover the cost of collegiate athletics. Other sources of revenue include ticket sales, broadcast rights, concessions, corporate partnerships, cash contributions from alumni, and others. Revenues in the sporting goods industry are very different compared with professional sports teams and collegiate athletics. Sporting goods companies mainly sell a line of products and equipment to generate revenue. Revenues are critical for sports organizations, including professional sports teams, intercollegiate athletics, and sporting goods companies. There are similarities and differences among these areas. Sports managers are looking for new ways to generate revenues, and there are many changes of sources because of the development of the internet and technology. Compared with intercollegiate athletics, professional sport and sporting goods companies will create more revenue opportunities globally.Keywords: revenue sources, professional sports, intercollegiate athletics, sporting goods industry
Procedia PDF Downloads 2221781 Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field
Authors: Brahim Mahfoud
Abstract:
A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.Keywords: magnetic field, manufacturing, silicon melt, thermocapillary
Procedia PDF Downloads 851780 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy
Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay
Abstract:
The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.Keywords: knowledge management, cloud computing, knowledge management approaches, cloud-based knowledge management
Procedia PDF Downloads 3101779 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling
Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar
Abstract:
The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength
Procedia PDF Downloads 751778 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 821777 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation
Procedia PDF Downloads 2451776 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection
Authors: Teresa B. King
Abstract:
In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection
Procedia PDF Downloads 1381775 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly
Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee
Abstract:
Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect
Procedia PDF Downloads 631