Search results for: variation simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7022

Search results for: variation simulation

7022 On Coverage Probability of Confidence Intervals for the Normal Mean with Known Coefficient of Variation

Authors: Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

Statistical inference of normal mean with known coefficient of variation has been investigated recently. This phenomenon occurs normally in environment and agriculture experiments when the scientist knows the coefficient of variation of their experiments. In this paper, we constructed new confidence intervals for the normal population mean with known coefficient of variation. We also derived analytic expressions for the coverage probability of each confidence interval. To confirm our theoretical results, Monte Carlo simulation will be used to assess the performance of these intervals based on their coverage probabilities.

Keywords: confidence interval, coverage probability, expected length, known coefficient of variation

Procedia PDF Downloads 347
7021 Asymptotic Confidence Intervals for the Difference of Coefficients of Variation in Gamma Distributions

Authors: Patarawan Sangnawakij, Sa-Aat Niwitpong

Abstract:

In this paper, we proposed two new confidence intervals for the difference of coefficients of variation, CIw and CIs, in two independent gamma distributions. These proposed confidence intervals using the close form method of variance estimation which was presented by Donner and Zou (2010) based on concept of Wald and Score confidence interval, respectively. Monte Carlo simulation study is used to evaluate the performance, coverage probability and expected length, of these confidence intervals. The results indicate that values of coverage probabilities of the new confidence interval based on Wald and Score are satisfied the nominal coverage and close to nominal level 0.95 in various situations, particularly, the former proposed confidence interval is better when sample sizes are small. Moreover, the expected lengths of the proposed confidence intervals are nearly difference when sample sizes are moderate to large. Therefore, in this study, the confidence interval for the difference of coefficients of variation which based on Wald is preferable than the other one confidence interval.

Keywords: confidence interval, score’s interval, wald’s interval, coefficient of variation, gamma distribution, simulation study

Procedia PDF Downloads 381
7020 On Kantorovich-Stancu Type Operators with the Variation Detracting Property

Authors: Özlem Öksüzer

Abstract:

In this paper, we introduce variation detracting property of Kantorovich-Stancu type operators in the space of functions of bounded variation. These problems are studied with respect to the variation seminorm.

Keywords: Kantorovich-Stancu type operators, variation seminorm, variation detracting property, absolutely continuous function

Procedia PDF Downloads 367
7019 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV

Procedia PDF Downloads 137
7018 Unsteadiness Effects on Variable Thrust Nozzle Performance

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design.

Keywords: nozzle, numerical study, unsteady, variable thrust

Procedia PDF Downloads 313
7017 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant

Authors: M. Wigwe, J. G Akpa, E. N Wami

Abstract:

Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.

Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol

Procedia PDF Downloads 456
7016 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: flat plate, finite element model, punching shear, reinforcement ratio

Procedia PDF Downloads 213
7015 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 143
7014 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization

Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang

Abstract:

The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.

Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling

Procedia PDF Downloads 211
7013 On Confidence Intervals for the Difference between Inverse of Normal Means with Known Coefficients of Variation

Authors: Arunee Wongkhao, Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

In this paper, we propose two new confidence intervals for the difference between the inverse of normal means with known coefficients of variation. One of these two confidence intervals for this problem is constructed based on the generalized confidence interval and the other confidence interval is constructed based on the closed form method of variance estimation. We examine the performance of these confidence intervals in terms of coverage probabilities and expected lengths via Monte Carlo simulation.

Keywords: coverage probability, expected length, inverse of normal mean, coefficient of variation, generalized confidence interval, closed form method of variance estimation

Procedia PDF Downloads 267
7012 Variation in Italian Specialized Economic Texts

Authors: Abdelmagid Basyouny Sakr

Abstract:

Terminological variation is a reality and it is now recognized by terminologists. This paper investigates the terminological variation in the context of specialized economic texts in Italian. It aims to find whether certain patterns or tendencies can be derived from the analysis of these texts. Term variants pose two different kinds of difficulties. The first one is being able to recognize linguistic expressions that denote the same concept in running text. Another one lies in knowing which variant should be considered and for what purpose. This would help to differentiate between variants that could be candidates for inclusion in terminological resources and the ones which are synonyms or contextual variants. New insights about terminological variation in specialized texts could contribute to improve specialized dictionaries which will better account for the different ways in which a given thought is expressed.

Keywords: corpus linguistics, specialized communication, terms and concepts, terminological variation

Procedia PDF Downloads 112
7011 Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 28
7010 Study of Heat Transfer by Natural Convection in Overhead Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

During the period storage of liquefied natural gas, stability is necessarily affected by natural convection along the walls of the tank with thermal insulation is not perfectly efficient. In this paper, we present the numerical simulation of heat transfert by natural convection double diffusion,in unsteady laminar regime in a storage tank. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The gas is just on the surface of the liquid phase. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 436
7009 Achieving Product Robustness through Variation Simulation: An Industrial Case Study

Authors: Narendra Akhadkar, Philippe Delcambre

Abstract:

In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.

Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation

Procedia PDF Downloads 130
7008 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation

Authors: Phinyo Mueangmeesap

Abstract:

This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation.

Keywords: inverter simulation, PWM signal, single-phase inverter, sinusoidal inverter

Procedia PDF Downloads 376
7007 Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload

Authors: Shinji Oouchi, Hajime Nomura, Kung-Da Wu, Jui-Pin Hung

Abstract:

This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation.

Keywords: dynamic compliance, bearing preload, modal damping, standard preload

Procedia PDF Downloads 423
7006 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD

Procedia PDF Downloads 189
7005 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 100
7004 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method

Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola

Abstract:

In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.

Keywords: constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity

Procedia PDF Downloads 266
7003 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 336
7002 Study of Natural Convection in Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 397
7001 The Simulation of Superfine Animal Fibre Fractionation: The Strength Variation of Fibre

Authors: Sepehr Moradi

Abstract:

This study investigates the contribution of individual Australian Superfine Merino Wool (ASFW) and Inner Mongolia Cashmere (IMC) fibres strength behaviour to the breaking force variation (CVBF) and minimum fibre diameter (CVₘFD) induced by actual single fibre lengths and the combination of length and diameter groups. Mid-side samples were selected for the ASFW (n = 919) and IMC (n = 691) since it is assumed to represent the average of the whole fleece. The average (LₘFD) varied for ASFW and IMC by 36.6 % and 33.3 % from shortest to longest actual single fibre length and -21.2 % and -21.7 % between longest-coarsest and shortest-finest groups, respectively. The tensile properties of single animal fibres were characterised using Single Fibre Analyser (SIFAN 4). After normalising for diversity in fibre diameter at the position of breakage, the parameters, which explain the strength behaviour within actual fibre lengths and combination of length-diameter groups, were the Intrinsic Fibre Strength (IFS) (MPa), Min IFS (MPa), Max IFS (MPa) and Breaking force (BF) (cN). The average strength of single fibres varied extensively within actual length groups and within a combination of length-diameter groups. IFS ranged for ASFW and IMC from 419 to 355 MPa (-15.2 % range) and 353 to 319 (-9.6 % range) and BF from 2.2 to 3.6 (63.6 % range) and 3.2 to 5.3 cN (65.6 % range) from shortest to longest groups, respectively. Single fibre properties showed no differences within actual length groups and within a combination of length-diameter groups, or was there a strong interaction between the strength of single fibre (P > 0.05) within remaining and removing length-diameter groups. Longer-coarser fibre fractionation had a significant effect on BF and IFS and all of the length groups showed a considerable variance in single fibre strength that is accounted for by diversity in the diameter variation along the fibre. There are many concepts for the improvement of the stress-strain properties of animal fibres as a means of raising a single fibre strength by simultaneous changes in fibre length and diameter. Fibre fractionation over a given length directly for single fibre strength or using the variation traits of fibre diameter is an important process used to increase the strength of the single fibre.

Keywords: single animal fibre fractionation, actual length groups, strength variation, length-diameter groups, diameter variation along fibre

Procedia PDF Downloads 158
7000 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method

Authors: Raju Murugan, Pankaj S. Kolhe

Abstract:

The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.

Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio

Procedia PDF Downloads 176
6999 Variation in Orbital Elements of Mars and Jupiter Due to the Sun Oblateness by Using Secular Theory

Authors: Avaneesh Vaishwar, Badam Singh Kushvah, Devi Prasad Mishra

Abstract:

We studied the variation in orbital elements of Mars and Jupiter for a time span of 200 thousand years by using secular theory. Here we took Sun oblateness into account and considered the first two zonal gravity constants (J2 and J4) for showing the effect of Sun oblateness on the orbital elements of Mars and Jupiter. We found that in both cases (with and without Sun oblateness) the variation in orbital elements of Mars and Jupiter is periodic moreover in case of the Sun oblateness, the period of variation in orbital elements is decreasing for both the planets.

Keywords: lagrange's planetary equation, orbital elements, planetary system, secular theory

Procedia PDF Downloads 177
6998 Causes of Variation Orders in the Egyptian Construction Industry: Time and Cost Impacts

Authors: A. Samer Ezeldin, Jwanda M. El Sarag

Abstract:

Variation orders are of great importance in any construction project. Variation orders are defined as any change in the scope of works of a project that can be an addition omission, or even modification. This paper investigates the variation orders that occur during construction projects in Egypt. The literature review represents a comparison of causes of variation orders among Egypt, Tanzania, Nigeria, Malaysia and the United Kingdom. A classification of occurrence of variation orders due to owner related factors, consultant related factors and other factors are signified in the literature review. These classified events that lead to variation orders were introduced in a survey with 19 events to observe their frequency of occurrence, and their time and cost impacts. The survey data was obtained from 87 participants that included clients, consultants, and contractors and a database of 42 scenarios was created. A model is then developed to help assist project managers in predicting the frequency of variations and account for a budget for any additional costs and minimize any delays that can take place. Two experts with more than 25 years of experience were given the model to verify that the model was working effectively. The model was then validated on a residential compound that was completed in July 2016 to prove that the model actually produces acceptable results.

Keywords: construction, cost impact, Egypt, time impact, variation orders

Procedia PDF Downloads 131
6997 Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Marker

Authors: Emma K. Sales, Nilda G. Butardo

Abstract:

The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated. Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP). Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest. These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.

Keywords: methylation, MSAP, somaclones, SSR, subculture, 2, 4-D

Procedia PDF Downloads 263
6996 Control of Photovoltaic System Interfacing Grid

Authors: Zerzouri Nora

Abstract:

In this paper, author presented the generalities of a photovoltaic system study and simulation. Author inserted the DC-DC converter to raise the voltage level and improve the operation of the PV panel by continuing the operating point at maximum power by using the Perturb and Observe technique (P&O). The connection to the network is made by inserting a three-phase voltage inverter allowing synchronization with the network the inverter is controlled by a PWM control. The simulation results allow the author to visualize the operation of the different components of the system, as well as the behavior of the system during the variation of meteorological values.

Keywords: photovoltaic generator PV, boost converter, P&O MPPT, PWM inverter, three phase grid

Procedia PDF Downloads 81
6995 Simulation Programs to Education of Crisis Management Members

Authors: Jiri Barta

Abstract:

This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project.

Keywords: crisis management, continuity, critical infrastructure, dangerous substance, education, flood, simulation programs

Procedia PDF Downloads 425
6994 Modelling of the Linear Operator in the Representation of the Function of Wave of a Micro Particle

Authors: Mohammedi Ferhate

Abstract:

This paper deals with the generalized the notion of the function of wave a micro particle moving free, the concept of the linear operator in the representation function delta of Dirac which is a generalization of the symbol of Kronecker to the case of a continuous variation of the sizes concerned with the condition of orthonormation of the Eigen functions the use of linear operators and their Eigen functions in connection with the solution of given differential equations, it is of interest to study the properties of the operators themselves and determine which of them follow purely from the nature of the operators, without reference to specific forms of Eigen functions. The models simulation examples are also presented.

Keywords: function, operator, simulation, wave

Procedia PDF Downloads 100
6993 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances

Authors: Muhammad Abdullah Arafat, Nahrin Nowrose

Abstract:

Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2 percent increase in average output power is obtained for 10 percent variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.

Keywords: coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer

Procedia PDF Downloads 136