Search results for: electro spin resonance
820 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance
Authors: Yi Jen Wang, Yu Ju Chen
Abstract:
Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing
Procedia PDF Downloads 176819 Postmortem Magnetic Resonance Imaging as an Objective Method for the Differential Diagnosis of a Stillborn and a Neonatal Death
Authors: Uliana N. Tumanova, Sergey M. Voevodin, Veronica A. Sinitsyna, Alexandr I. Shchegolev
Abstract:
An important part of forensic and autopsy research in perinatology is the answer to the question of life and stillbirth. Postmortem magnetic resonance imaging (MRI) is an objective non-invasive research method that allows to store data for a long time and not to exhume the body to clarify the diagnosis. The purpose of the research is to study the possibilities of a postmortem MRI to determine the stillbirth and death of a newborn who had spontaneous breathing and died on the first day after birth. MRI and morphological data of a study of 23 stillborn bodies, prenatally dead at a gestational age of 22-39 weeks (Group I) and the bodies of 16 newborns who died from 2 to 24 hours after birth (Group II) were compared. Before the autopsy, postmortem MRI was performed on the Siemens Magnetom Verio 3T device in the supine position of the body. The control group for MRI studies consisted of 7 live newborns without lung disease (Group III). On T2WI in the sagittal projection was measured MR-signal intensity (SI) in the lung tissue (L) and shoulder muscle (M). During the autopsy, a pulmonary swimming test was evaluated, and macro- and microscopic studies were performed. According to the postmortem MRI, the highest values of mean SI of the lung (430 ± 27.99) and of the muscle (405.5 ± 38.62) on T2WI were detected in group I and exceeded the corresponding value of group II by 2.7 times. The lowest values were found in the control group - 77.9 ± 12.34 and 119.7 ± 6.3, respectively. In the group II, the lung SI was 1.6 times higher than the muscle SI, whereas in the group I and in the control group, the muscle SI was 2.1 times and 1.8 times larger than the lung. On the basis of clinical and morphological data, we calculated the formula for determining the breathing index (BI) during postmortem MRI: BI = SIL x SIM / 100. The mean value of BI in the group I (1801.14 ± 241.6) (values ranged from 756 to 3744) significantly higher than the corresponding average value of BI in the group II (455.89 ± 137.32, p < 0.05) (305-638.4). In the control group, the mean BI value was 91.75 ± 13.3 (values ranged from 53 to 154). The BI with the results of pulmonary swimming tests and microscopic examination of the lungs were compared. The boundary value of BI for the differential diagnosis of stillborn and newborn death was 700. Using the postmortem MRI allows to differentiate the stillborn with the death of the breathing newborn.Keywords: lung, newborn, postmortem MRI, stillborn
Procedia PDF Downloads 128818 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy
Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais
Abstract:
Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology
Procedia PDF Downloads 204817 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation
Authors: Bharatkumar Doshi
Abstract:
Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.Keywords: COMSOL, EMPW, FEM, Lorentz force
Procedia PDF Downloads 185816 Prediction of a Nanostructure Called Porphyrin-Like Buckyball, Using Density Functional Theory and Investigating Electro Catalytic Reduction of Co₂ to Co by Cobalt– Porphyrin-Like Buckyball
Authors: Mohammad Asadpour, Maryam Sadeghi, Mahmoud Jafari
Abstract:
The transformation of carbon dioxide into fuels and commodity chemicals is considered one of the most attractive methods to meet energy demands and reduce atmospheric CO₂ levels. Cobalt complexes have previously shown high faradaic efficiency in the reduction of CO₂ to CO. In this study, a nanostructure, referred to as a porphyrin-like buckyball, is simulated and analyzed for its electrical properties. The investigation aims to understand the unique characteristics of this material and its potential applications in electronic devices. Through computational simulations and analysis, the electrocatalytic reduction of CO₂ to CO by Cobalt-porphyrin-like buckyball is explored. The findings of this study offer valuable insights into the electrocatalytic properties of this predicted structure, paving the way for further research and development in the field of nanotechnology.Keywords: porphyrin-like buckyball, DFT, nanomaterials, CO₂ to CO
Procedia PDF Downloads 54815 Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model
Authors: S.I.Mukhin, S. Seidov, A. Mukherjee
Abstract:
The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field.Keywords: Dicke Model, nonlinear dynamics, perturbation theory, superconductivity
Procedia PDF Downloads 135814 Dielectric Properties of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ Ceramics at Microwave Frequency
Authors: Yih-Chien Chen, Tse-Lung Lin
Abstract:
The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are studied to determine the feasibility of their use in the liquid sensor. The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are determined using X-ray diffraction (XRD) patterns. The permittivity (𝜀r) of NdTi₍₀.₄₉₎Ge₀.₀₁Mo₀.₅O₄ that is sintered at 1425 ℃ for 4 h is 17.6, the unloaded quality factor (Qu×f) is 33,400 GHz, and it has a temperature coefficient at the resonance frequency (TCF) of -30.7 ppm/℃. The proposed liquid sensor is at the 5G FR1 bands.Keywords: NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄, X-ray diffraction pattern, permittivity, Unloaded quality factor
Procedia PDF Downloads 294813 Automatic Processing of Trauma-Related Visual Stimuli in Female Patients Suffering From Post-Traumatic Stress Disorder after Interpersonal Traumatization
Authors: Theresa Slump, Paula Neumeister, Katharina Feldker, Carina Y. Heitmann, Thomas Straube
Abstract:
A characteristic feature of post-traumatic stress disorder (PTSD) is the automatic processing of disorder-specific stimuli that expresses itself in intrusive symptoms such as intense physical and psychological reactions to trauma-associated stimuli. That automatic processing plays an essential role in the development and maintenance of symptoms. The aim of our study was, therefore, to investigate the behavioral and neural correlates of automatic processing of trauma-related stimuli in PTSD. Although interpersonal traumatization is a form of traumatization that often occurs, it has not yet been sufficiently studied. That is why, in our study, we focused on patients suffering from interpersonal traumatization. While previous imaging studies on PTSD mainly used faces, words, or generally negative visual stimuli, our study presented complex trauma-related and neutral visual scenes. We examined 19 female subjects suffering from PTSD and examined 19 healthy women as a control group. All subjects did a geometric comparison task while lying in a functional-magnetic-resonance-imaging (fMRI) scanner. Trauma-related scenes and neutral visual scenes that were not relevant to the task were presented while the subjects were doing the task. Regarding the behavioral level, there were not any significant differences between the task performance of the two groups. Regarding the neural level, the PTSD patients showed significant hyperactivation of the hippocampus for task-irrelevant trauma-related stimuli versus neutral stimuli when compared with healthy control subjects. Connectivity analyses revealed altered connectivity between the hippocampus and other anxiety-related areas in PTSD patients, too. Overall, those findings suggest that fear-related areas are involved in PTSD patients' processing of trauma-related stimuli even if the stimuli that were used in the study were task-irrelevant.Keywords: post-traumatic stress disorder, automatic processing, hippocampus, functional magnetic resonance imaging
Procedia PDF Downloads 199812 Half Metallic Antiferromagnetic of Doped TiO2 Rutile with Doubles Impurities (Os, Mo) from Ab Initio Calculations
Authors: M. Fakhim Lamrani, M. Ouchri, M. Belaiche, El Kenz, M. Loulidi, A. Benyoussef
Abstract:
Electronic and magnetic calculations based on density functional theory within the generalized gradient approximation for II-VI compound semiconductor TiO2 doped with single impurity Os and Mo; these compounds are a half metallic ferromagnet in their ground state with a total magnetic moment of 2 μB for both systems. Then, TiO2 doped with double impurities Os and Mo have been performed. As result, Ti1-2xOsxMoxO2 with x=0.065 is half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. Moreover, Ti14OsMoO32 compound is stable energetically than Ti1-xMoxO2 and Ti1-xOsxO2. The antiferromagnetic interaction in Ti1-2xOsxMoxO2 system is attributed to the double exchange mechanism, and the latter could also be the origin of their half metallic.Keywords: diluted magnetic semiconductor, half-metallic antiferromagnetic, augmented spherical wave method
Procedia PDF Downloads 422811 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium
Authors: Kartikaningsih Danis, Yao-Hui Huang
Abstract:
Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.Keywords: boron removal, chemical coagulation, aluminum, electro-coagulation
Procedia PDF Downloads 404810 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques
Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee
Abstract:
Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel
Procedia PDF Downloads 260809 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation
Procedia PDF Downloads 447808 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection
Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan
Abstract:
This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.Keywords: boost converter, current sensing, power-on protection, step-up converter, soft-start
Procedia PDF Downloads 1019807 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field
Authors: Yue Yan, Chang Nyung Kim
Abstract:
The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic
Procedia PDF Downloads 496806 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media
Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas
Abstract:
A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties
Procedia PDF Downloads 503805 Modified DNA as a Base Material for Nonlinear Optics
Authors: Ewelina Nowak, Anna Wisla-Swider
Abstract:
Deoxyribonucleic acid (DNA) is a biomolecule which exhibits an electro-optic properties. These features are related with structure of double-stranded helix. Modification of DNA with ionic liquids allows intensify these properties. The aim of our study was synthesis of ionic liquids that are used the formation of DNA-surfactant complexes in order to obtain new materials with potential application for nonlinear optics. Complexes were achieved through the ion exchange reactions of carbazole-based and imidazole-based ionic liquids with H+ ions from salmon DNA. To examination the properties of obtained complexes DNA-ionic liquids there were investigated using circular dichroism (CD), UV-Vis spectra and infrared spectroscopy (IR). Additionally, the resulting DNA-surfactant complexes were characterized in terms of solubility in common organic solvents and water.Keywords: deoxyribonucleic acid, biomolecule, carbazole, imidazole, ionic liquids, ion exchange reactions
Procedia PDF Downloads 466804 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data
Authors: Arman S. Kussainov, Altynbek K. Beisekov
Abstract:
This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm
Procedia PDF Downloads 412803 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption
Authors: Binyam Teferi
Abstract:
Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation
Procedia PDF Downloads 129802 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents
Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino
Abstract:
Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.Keywords: biopolymers, MRI, nanoparticles, contrast agent
Procedia PDF Downloads 150801 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate
Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim
Abstract:
The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films
Procedia PDF Downloads 118800 Fabrication of InGaAs P-I-N Micro-Photodiode Sensor Array
Authors: Jyun-Hao Liao, Chien-Ju Chen, Chia-Jui Yu, Meng Chyi Wu, Chia-Ching Wu
Abstract:
In this letter, we reported the fabrication of InGaAs micro-photodiode sensor array with the rapid thermal diffusion (RTD) technique. The spin-on dopant source Zn was used to form the p-type region in InP layer. Through the RTD technique, the InP/InGaAs heterostructure was formed. We improved our fabrication on the p-i-n photodiode to micro size which pixel is 7.8um, and the pitch is 12.8um. The proper SiNx was deposited to form the passivation layer. The leakage current of single pixel decrease to 3.3pA at -5V, and 35fA at -10mV. The leakage current densities of each voltage are 21uA/cm² at -5V and 0.223uA/cm² at -10mV. As we focus on the wavelength from 0.9um to 1.7um, the optimized Si/Al₂O₃ bilayers are deposited to form the AR-coating.Keywords: InGaAs, micro sensor array, p-i-n photodiode, rapid thermal diffusion, Zn diffusion
Procedia PDF Downloads 319799 Changes in Kidney Tissue at Postmortem Magnetic Resonance Imaging Depending on the Time of Fetal Death
Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh
Abstract:
All cases of stillbirth undoubtedly subject to postmortem examination, since it is necessary to find out the cause of the stillbirths, as well as a forecast of future pregnancies and their outcomes. Determination of the time of death is an important issue which is addressed during the examination of the body of a stillborn. It is mean the period from the time of death until the birth of the fetus. The time for fetal deaths determination is based on the assessment of the severity of the processes of maceration. To study the possibilities of postmortem magnetic resonance imaging (MRI) for determining the time of intrauterine fetal death based on the evaluation of maceration in the kidney. We have conducted MRI morphological comparisons of 7 dead fetuses (18-21 gestational weeks) and 26 stillbirths (22-39 gestational weeks), and 15 bodies of died newborns at the age of 2 hours – 36 days. Postmortem MRI 3T was performed before the autopsy. The signal intensity of the kidney tissue (SIK), pleural fluid (SIF), external air (SIA) was determined on T1-WI and T2-WI. Macroscopic and histological signs of maceration severity and time of death were evaluated in the autopsy. Based on the results of the morphological study, the degree of maceration varied from 0 to 4. In 13 cases, the time of intrauterine death was up to 6 hours, in 2 cases - 6-12 hours, in 4 -12-24 hours, in 9 -2-3 days, in 3 -1 week, in 2 -1,5-2 weeks. At 15 dead newborns, signs of maceration were absent, naturally. Based on the data from SIK, SIF, SIA on MR-tomograms, we calculated the coefficient of MR-maceration (M). The calculation of the time of intrauterine death (MP-t) (hours) was performed by our formula: МR-t = 16,87+95,38×М²-75,32×М. A direct positive correlation of MR-t and autopsy data from the dead at the gestational ages 22-40 weeks, with a dead time, not more than 1 week, was received. The maceration at the antenatal fetal death is characterized by changes in T1-WI and T2-WI signals at postmortem MRI. The calculation of MP-t allows defining accurately the time of intrauterine death within one week at the stillbirths who died on 22-40 gestational weeks. Thus, our study convincingly demonstrates that radiological methods can be used for postmortem study of the bodies, in particular, the bodies of stillborn to determine the time of intrauterine death. Postmortem MRI allows for an objective and sufficiently accurate analysis of pathological processes with the possibility of their documentation, storage, and analysis after the burial of the body.Keywords: intrauterine death, maceration, postmortem MRI, stillborn
Procedia PDF Downloads 126798 Solar Electric Propulsion: The Future of Deep Space Exploration
Authors: Abhishek Sharma, Arnab Banerjee
Abstract:
The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle
Procedia PDF Downloads 211797 A Deep Explanation for the Formation of Force as a Foundational Law of Physics by Incorporating Unknown Degrees of Freedom into Space
Authors: Mohsen Farshad
Abstract:
Information and force definition has been intertwined with the concept of entropy for many years. The displacement information of degrees of freedom with Brownian motions at a given temperature in space emerges as an entropic force between species. Here, we use this concept of entropy to understand the underlying physics behind the formation of attractive and repulsive forces by imagining that space is filled with free Brownian degrees of freedom. We incorporate the radius of bodies and the distance between them into entropic force relation systematically. Using this modified gravitational entropic force, we derive the attractive entropic force between bodies without considering their spin. We further hypothesize a possible mechanism for the formation of the repulsive force between two bodies. We visually elaborate that the repulsive entropic force will be manifested through the rotation of degrees of freedom around the spinning particles.Keywords: entropy, information, force, Brownian Motions
Procedia PDF Downloads 76796 Solution Growth of Titanium Nitride Nanowires for Implantation Application
Authors: Roaa Sait, Richard Cross
Abstract:
The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters.Keywords: nanowires, dissolution-growth, nucleation, PECVD, deposition, spin coating, scanning electron microscopic analysis, cyclic voltammetry analysis
Procedia PDF Downloads 361795 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 163794 Integrating Dynamic Brain Connectivity and Transcriptomic Imaging in Major Depressive Disorder
Authors: Qingjin Liu, Jinpeng Niu, Kangjia Chen, Jiao Li, Huafu Chen, Wei Liao
Abstract:
Functional connectomics is essential in cognitive science and neuropsychiatry, offering insights into the brain's complex network structures and dynamic interactions. Although neuroimaging has uncovered functional connectivity issues in Major Depressive Disorder (MDD) patients, the dynamic shifts in connectome topology and their link to gene expression are yet to be fully understood. To explore the differences in dynamic connectome topology between MDD patients and healthy individuals, we conducted an extensive analysis of resting-state functional magnetic resonance imaging (fMRI) data from 434 participants (226 MDD patients and 208 controls). We used multilayer network models to evaluate brain module dynamics and examined the association between whole-brain gene expression and dynamic module variability in MDD using publicly available transcriptomic data. Our findings revealed that compared to healthy individuals, MDD patients showed lower global mean values and higher standard deviations, indicating unstable patterns and increased regional differentiation. Notably, MDD patients exhibited more frequent module switching, primarily within the executive control network (ECN), particularly in the left dorsolateral prefrontal cortex and right fronto-insular regions, whereas the default mode network (DMN), including the superior frontal gyrus, temporal lobe, and right medial prefrontal cortex, displayed lower variability. These brain dynamics predicted the severity of depressive symptoms. Analyzing human brain gene expression data, we found that the spatial distribution of MDD-related gene expression correlated with dynamic module differences. Cell type-specific gene analyses identified oligodendrocytes (OPCs) as major contributors to the transcriptional relationships underlying module variability in MDD. To the best of our knowledge, this is the first comprehensive description of altered brain module dynamics in MDD patients linked to depressive symptom severity and changes in whole-brain gene expression profiles.Keywords: major depressive disorder, module dynamics, magnetic resonance imaging, transcriptomic
Procedia PDF Downloads 29793 Designing Nanowire Based Honeycomb Photonic Crystal Surface Emitting Lasers
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Photonic Crystal Surface Emitting Lasers (PCSELs) are structures which are made up of a periodically repeating patterns with a unit cell consisting of changes in refractive index. The variation in refractive index can be achieved by etching air holes in a semiconductor material to get hole based PCSELs or by growing nanowires to get nanowire based PCSELs. As opposed to hole based PCSELs, nanowire based PCSELs can be integrated on silicon platform without threading dislocations, thanks to the small area of the nanowire that is in contact with silicon substrate that relaxes the strain. Nanowire based PCSELs reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) and/or variable wavelength devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we study how the resonance wavelength and the Q-factor of three different resonance modes of the device vary when their design parameters are tuned. Through this study we establish the design and simulation of devices operating in 970nm wavelength band, O band and in the C band with quality factors up to 7X〖10〗^7 . We also investigate the quality factors of undeformed device and establish that the band edge close to 970nm can attain high quality factor when the device is undeformed and the quality factor degrades as the device is deformed.Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, simulation of photonic crystal surface emitting laser
Procedia PDF Downloads 14792 Perovskite-Type La1−xCaxAlO3 (x=0, 0.2, 0.4, 0.6) as Active Anode Materials for Methanol Oxidation in Alkaline Solutions
Authors: M. Diafi, M. Omari, B. Gasmi
Abstract:
Perovskite-type La1−xCaxAlO3 were synthesized at 1000◦C by a co- precipitation method. The synthesized oxide powders were characterized by X-ray diffraction (XRD) and the oxide powders were produced in the form of films on pretreated Ni-supports by an oxide-slurry painting technique their electrocatalytic activities towards methanol oxidation in alkaline solutions at 25°C using cyclic voltammetry, chronoamperometry, and anodic Tafel polarization techniques. The oxide catalysts followed the rhombohedral hexagonal crystal geometry. The rate of electro-oxidation of methanol was found to increase with increasing substitution of La by Ca in the oxide matrix. The reaction indicated a Tafel slope of ~2.303RT/F, The electrochemical apparent activation energy (〖∆H〗_el^(°#)) was observed to decrease on increasing Ca content. The results point out the optimum electrode activity and stability of the Ca is x=0.6 of composition.Keywords: electrocatalysis, oxygen evolution, perovskite-type La1−x Cax AlO3, methanol oxidation
Procedia PDF Downloads 439791 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications
Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani
Abstract:
A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.Keywords: composite membrane, electrospinning, fuel cell, nanofibers
Procedia PDF Downloads 266