Search results for: bacterial leaf spot
1634 Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation
Authors: Saif N. Al-Bahry, Yahya M. Al-Wahaibi, Abdulkadir E. Elshafie, Ali S. Al-Bemani, Sanket J. Joshi
Abstract:
Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills.Keywords: bioremediation, hydrocarbon pollution, spore-forming bacteria, bio-surfactant
Procedia PDF Downloads 2971633 Quorum Quenching Activities of Bacteria Isolated from Red Sea Sediments
Authors: Zahid Rehman, TorOve Leiknes
Abstract:
Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules, such as N-acylhomoserine lactones (AHLs). Also, certain bacteria have the ability to degrade AHL molecules by a process referred to as quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activities. To achieve this, sediments from Red Sea were collected either in the close vicinity of Sea grass or from area with no vegetation. From these samples, we isolated 72 bacterial strains and tested their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum based bioassay was used in initial screening of isolates for QQ activity. The QQ activity of the positive isolates was further confirmed and quantified by employing liquid chromatography and mass spectrometry. These analyses showed that isolated bacterial strain could degrade AHL molecules with different acyl chain length and modifications. Sequencing of 16S-rRNA genes of positive isolates revealed that they belong to three different genera. Specifically, two isolates belong to genus Erythrobacter, four to Labrenzia and one isolate belongs to Bacterioplanes. Time course experiment showed that isolate belonging to genus Erythrobacter could degrade AHLs faster than other isolates. Furthermore, these isolates were tested for their ability to inhibit formation of biofilm and degradation of 3OXO-C12 AHLs produced by P. aeruginosa PAO1. Our results showed that isolate VG12 is better at controlling biofilm formation. This aligns with the ability of VG12 to cause at least 10-fold reduction in the amount of different AHLs tested.Keywords: quorum sensing, biofilm, quorum quenching, anti-biofouling
Procedia PDF Downloads 1651632 Hybrid Molecules: A Promising Approach to Design Potent Antimicrobial and Anticancer Drugs
Authors: Blessing Atim Aderibigbe
Abstract:
A series of amine/ester-linked hybrid compounds containing pharmacophores, such as ursolic acid, oleanolic acid, ferrocene and bisphosphonates, were synthesized in an attempt to develop potent antibacterial and anticancer agents. Their structures were analyzed and confirmed using Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, and mass spectroscopy. All the synthesized hybrid compounds were evaluated for their antibacterial activities against eleven selected bacterial strains using a serial dilution method. Some of the compounds displayed significant antibacterial activity against most of the bacterial and fungal strains. In addition, the in vitro cytotoxicity of these compounds was also performed against selected cancer cell lines. Some of the compounds were also found to be more active than their parent compounds, revealing the efficacy of designing hybrid molecules using plant-based bioactive agents.Keywords: ursolic acid, hybrid drugs, oleanolic acid, bisphosphonates
Procedia PDF Downloads 851631 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean
Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama
Abstract:
Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.Keywords: coral environment, marine microbiology, network analysis, omics data analysis
Procedia PDF Downloads 2541630 Bacterial Community Diversity in Soil under Two Tillage Systems
Authors: Dalia Ambrazaitienė, Monika Vilkienė, Danute Karcauskienė, Gintaras Siaudinis
Abstract:
The soil is a complex ecosystem that is part of our biosphere. The ability of soil to provide ecosystem services is dependent on microbial diversity. T Tillage is one of the major factors that affect soil properties. The no-till systems or shallow ploughless tillage are opposite of traditional deep ploughing, no-tillage systems, for instance, increase soil organic matter by reducing mineralization rates and stimulating litter concentrations of the top soil layer, whereas deep ploughing increases the biological activity of arable soil layer and reduces the incidence of weeds. The role of soil organisms is central to soil processes. Although the number of microbial species in soil is still being debated, the metagenomic approach to estimate microbial diversity predicted about 2000 – 18 000 bacterial genomes in 1 g of soil. Despite the key role of bacteria in soil processes, there is still lack of information about the bacterial diversity of soils as affected by tillage practices. This study focused on metagenomic analysis of bacterial diversity in long-term experimental plots of Dystric Epihypogleyic Albeluvisols in western part of Lithuania. The experiment was set up in 2013 and had a split-plot design where the whole-plot treatments were laid out in a randomized design with three replicates. The whole-plot treatments consisted of two tillage methods - deep ploughing (22-25 cm) (DP), ploughless tillage (7-10 cm) (PT). Three subsamples (0-20 cm) were collected on October 22, 2015 for each of the three replicates. Subsamples from the DP and PT systems were pooled together wise to make two composition samples, one representing deep ploughing (DP) and the other ploughless tillage (PT). Genomic DNA from soil sample was extracted from approximately 200 mg field-moist soil by using the D6005 Fungal/Bacterial Miniprep set (Zymo Research®) following the manufacturer’s instructions. To determine bacterial diversity and community composition, we employed a culture – independent approach of high-throughput pyrosequencing of the 16S rRNA gene. Metagenomic sequencing was made with Illumina MiSeq platform in Base Clear Company. The microbial component of soil plays a crucial role in cycling of nutrients in biosphere. Our study was a preliminary attempt at observing bacterial diversity in soil under two common but contrasting tillage practices. The number of sequenced reads obtained for PT (161 917) was higher than DP (131 194). The 10 most abundant genus in soil sample were the same (Arthrobacter, Candidatus Saccharibacteria, Actinobacteria, Acidobacterium, Mycobacterium, Bacillus, Alphaproteobacteria, Longilinea, Gemmatimonas, Solirubrobacter), just the percent of community part was different. In DP the Arthrobacter and Acidobacterium consist respectively 8.4 % and 2.5%, meanwhile in PT just 5.8% and 2.1% of all community. The Nocardioides and Terrabacter were observed just in PT. This work was supported by the project VP1-3.1-ŠMM-01-V-03-001 NKPDOKT and National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: deep ploughing, metagenomics, ploughless tillage, soil community analysis
Procedia PDF Downloads 2461629 Anti-cancer Activity of Cassava Leaves (Manihot esculenta Crantz.) Against Colon Cancer (WiDr) Cells in vitro
Authors: Fatma Zuhrotun Nisa, Aprilina Ratriany, Agus Wijanarka
Abstract:
Background: Cassava leaves are widely used by the people of Indonesia as a vegetable and treat various diseases, including anticancer believed as food. However, not much research on the anticancer activity of cassava leaves, especially in colon cancer. Objectives: the aim of this study is to investigate anti-cancer activity of cassava leaves (Manihot esculanta C.) against colon cancer (WiDr) cells in vitro. Methods: effect of crude aqueous extract of leaves of cassava and cassava leaves boiled tested in colon cancer cells widr. Determination of Anticancer uses the MTT method with parameters such as the percentage of deaths. Results: raw cassava leaf water extract gave IC50 of 63.1 mg / ml. While the water extract of boiled cassava leaves gave IC50 of 79.4 mg/ml. However, there is no difference anticancer activity of raw cassava leaves or cancer (p> 0.05). Conclusion: Cassava leaves contain a variety of compounds that have previously been reported to have anticancer activity. Linamarin, β-carotene, vitamin C, and fiber were thought to affect the IC50 cassava leaf extract against colon cancer cells WiDr.Keywords: boiled cassava leaves, cassava leaves raw, anticancer activity, colon cancer, IC50
Procedia PDF Downloads 5501628 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum
Authors: Lidia Kowalska, Edward Arseniuk
Abstract:
Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding
Procedia PDF Downloads 1201627 Biohydrogen Production from Rice Water Using Bacteria Isolated from Wetland Sediment
Authors: Jerry John T. M., Sylas V. P., Shijo Joy
Abstract:
Hydrogen is the most essential gas that can be used for many purposes. During the production of hydrogen using raw materials like Soil and leftover cooked rice water (kanjivellam), the major by-product formed is water. Soil is collected from three different places in kottayam district: Kallara, Meenachilar, and Athirampuzha. Collected samples are mixed with rice water and tested for traces of hydrogen using a biohydrogen sensor after 72 hours. The result was the presence of hydrogen in all the 3 samples. After streaking, PCR and gel electrophoresis detected the bacteria which produced the hydrogen. RGCB Thiruvananthapuram conducted the sequencing of the PCR resultant. And identified the bacterial strains. Five variants of Bacillus bacteria ( (1) Bacillus cereus strain JTM GenBank: OP278839.1 (2) Bacillus toyonensis strain JTM2 GenBank: OP278841.1 (3) Bacillus anthracis strain JTM_SR2989-3-R_H08 GenBank: OP278960.1 (4) Bacillus thuringiensis strain JRY1 GenBank: OP278976.1 (5) Bacillus anthracis strain JTM_SR2989-3-F_H07 GenBank: OP278959.1 ) are identified and successfully registered in NCBI Gen bank. These Bacillus bacteria are major types of Rhizobacteria that can form spores and can survive in the soil for a long time period under harsh environmental conditions. Also, plant growth is enhanced by PGPR (Plant growth promoting rhizobacteria) through the induction of systemic resistance, antibiosis, and competitive omission. The molecular sequencing was submitted to the NCBI Gen Bank, and the accession numbers were allotted for the bacterial cultures.Keywords: bio hydrogen production, bacterial bio hydrogen production, plant related to bacillus bacteria., bacillus bacteria study
Procedia PDF Downloads 661626 Prevalence and Evaluation of Antimicrobial Activity of Dodonaea viscosa Extract and Antibacterial Agents against Salmonella spp. Isolated from Poultry
Authors: Shayma Munqith Al-Baker, Fadhl Ahmed Saeed Al-Gasha’a, Samira Hamid Hanash, Ahmed Ali Al-Hazmi
Abstract:
A total of 200 samples (180 fecal materials and 20 organ samples) were collected from (5 different poultry farms, 10 local poultry shops, 5 houses poultry, 5 Eggs stores shops and 5 hand slaughters centers) in Ibb city, Yemen, 2014. According to morphological, cultural, as well as biochemical characterization and serological tests, 59 29.5% isolates were identified as Salmonella spp. and all Salmonella isolates were categorized by serotype, which comprised of, 37 62.71% Salmonella Typhimurium serovar, 21 35.59%. Salmonella Enteritidis serovar and 11.69% Salmonella Heidelberg serovar. Antibiotic sensitivity test was done for bacterial isolates and the results showed there were clear differences in antibiotic resistant. Antimicrobial susceptibility of the isolates varies as follows: Ofloxacin 79.66%, Ciprofloxacin 67.80%, Colistin 59.32% and Gentamycin 52.54%. All of isolates were resistant to Erythromycin, Penicillin and Lincomycin. Antibacterial activity was done for both aqueous and ethanol extracts of Dodonaea viscosa plant by using well and disc diffusion assay. The results indicated that well diffusion assay had best results than disc diffusion assay, the highest inhibition zone was 22 mm for well diffusion and 15 mm for disc diffusion assay, the results observed that ethanol extract had best antibacterial effect than aqueous extract which the percentage of bacterial isolates affected with ethanol extract was 71.19% comparing with aqueous extract 28.81% by using disc diffusion assay, while the percentage of bacterial isolates affected with ethanol extract was 88.13% comparing with aqueous extract 52.54% by using will diffusion assay.Keywords: Salmonella spp, Dodonaea viscosa, antimicrobial and salmonellosis
Procedia PDF Downloads 4731625 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract
Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna
Abstract:
In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.Keywords: barley, functional foods, olive leaf, polyphenols, shelf life
Procedia PDF Downloads 3021624 Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum
Authors: Won Yeol Choi, Sangmo Kang
Abstract:
The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.Keywords: fluid viscosity, hydrodynamics, similitude, propulsive force
Procedia PDF Downloads 3501623 Clustered Regularly Interspaced Short Palindromic Repeats Interference (CRISPRi): An Approach to Inhibit Microbial Biofilm
Authors: Azna Zuberi
Abstract:
Biofilm is a sessile bacterial accretion in which bacteria adapts different physiological and morphological behavior from planktonic form. It is the root cause of about 80% microbial infections in human. Among them, E. coli biofilms are most prevalent in medical devices associated nosocomial infections. The objective of this study was to inhibit biofilm formation by targeting LuxS gene, involved in quorum sensing using CRISPRi. luxS is a synthase, involved in the synthesis of Autoinducer-2(AI-2), which in turn guides the initial stage of biofilm formation. To implement CRISPRi system, we have synthesized complementary sgRNA to target gene sequence and co-expressed with dCas9. Suppression of luxS was confirmed through qRT-PCR. The effect of luxS gene on biofilm inhibition was studied through crystal violet assay, XTT reduction assay and scanning electron microscopy. We conclude that CRISPRi system could be a potential strategy to inhibit bacterial biofilm through mechanism base approach.Keywords: biofilm, CRISPRi, luxS, microbial
Procedia PDF Downloads 1831622 Cardioprotective Effect of the Leaf Extract of Andrographis Paniculata in Isoproterenol-Induced Myocardial Infarction
Authors: Emmanuel Ikechuckwu Onwubuya, Afees Adebayo Oladejo
Abstract:
Background: The use of medicinal plants in the treatment of chronic diseases especially myocardial infarction, is gaining wide acceptance globally. Andrographis paniculata (Acanthaceae) is a medicinal plant commonly known as the king of bitters in Nigeria and has been acclaimed for several therapeutic activities. Materials and methods: This study investigated the cardio-protective effect of the leaf extract of A. paniculata in isoproterenol-induced myocardial infarction. Fresh green leaves of A paniculata were harvested from the Faculty of Agriculture farmland, Nnamdi Azikiwe University, Awka, Nigeria. Identification and authentication of the plant were carried out at the Department of Botany, Nnamdi Azikiwe University and a voucher specimen was deposited at the herbarium. The plant material was then shredded, air-dried under shade and pulverized. The fine powders obtained were weighed and extraction was done via a solvent combination of water and ethanol (3:7) for 72 hr via maceration. The filtrate gotten was evaporated to dryness to obtain the ethanol extract, which was used for further bioassay study. The bioactive constituents of the plant extract were quantitatively analyzed by Gas chromatography-mass spectrometry (GC-MS). The animals were administered the extract of A. paniculata orally for seven days at a divided dose of 100 mg/kg, 200 mg/kg and 400 mg/kg body weights. On the eighth day, myocardial infarction was induced through subcutaneous administration of isoproterenol at a dose of 150 mg/kg/day diluted in 2 ml of saline on two consecutive days. Subsequently, the blood pressures were monitored and blood was collected for bioassay studies. Results: The results of the study showed that the leaf extract of A. paniculata was rich in Dodecanoic acid (8.261%), 4-Dibenzofuranamine (6.03%), Cyclotrisiloxane (4.679 %). The findings also showed a significant decrease (p>0.05) in the Mean arterial blood pressure, heart rate, aspartate transaminase, alanine transaminase, creatinine kinase and lactate dehydrogenase activities of the treatment group compared with the untreated control group while the antioxidant (superoxide dismutase, catalase and glutathione) activities were significantly increased in the treatment group, compared with the untreated control group. Conclusion: The findings of this work have shown that the leaf of A. paniculata was rich in bioactive compounds, which could be synthesized to produce plant-based products to fight cardiovascular diseases, especially myocardial infarction.Keywords: cardiovascular disease, myocardial infarction, medicinal plant, andrographis paniculata, isoproterenol
Procedia PDF Downloads 1181621 Bacterial Diversity in Human Intestinal Microbiota and Correlations with Nutritional Behavior, Physiology, Xenobiotics Intake and Antimicrobial Resistance in Obese, Overweight and Eutrophic Individuals
Authors: Thais O. de Paula, Marjorie R. A. Sarmiento, Francis M. Borges, Alessandra B. Ferreira-Machado, Juliana A. Resende, Dioneia E. Cesar, Vania L. Silva, Claudio G. Diniz
Abstract:
Obesity is currently a worldwide public health threat, being considered a pandemic multifactorial disease related to the human gut microbiota (GM). Add to that GM is considered an important reservoir of antimicrobial resistance genes (ARG) and little is known on GM and ARG in obesity, considering the altered physiology and xenobiotics intake. As regional and social behavior may play important roles in GM modulation, and most of the studies are based on small sample size and various methodological approaches resulting in difficulties for data comparisons, this study was focused on the investigation of GM bacterial diversity in obese (OB), overweight (OW) and eutrophic individuals (ET) considering their nutritional, clinical and social characteristics; and comparative screening of AGR related to their physiology and xenobiotics intake. Microbial community was accessed by FISH considering phyla as a taxonomic level, and PCR-DGGE followed by dendrograms evaluation (UPGMA method) from fecal metagenome of 72 volunteers classified according to their body mass index (BMI). Nutritional, clinical, social parameters and xenobiotics intake were recorded for correlation analysis. The fecal metagenome was also used as template for PCR targeting 59 different ARG. Overall, 62% of OB were hypertensive, and 12% or 4% were, regarding the OW and ET individuals. Most of the OB were rated as low income (80%). Lower relative bacterial densities were observed in the OB compared to ET for almost all studied taxa (p < 0.05) with Firmicutes/Bacteroidetes ratio increased in the OB group. OW individuals showed a bacterial density representative of GM more likely to the OB. All the participants were clustered in 3 different groups based on the PCR-DGGE fingerprint patterns (C1, C2, C3), being OB mostly grouped in C1 (83.3%) and ET mostly grouped in C3 (50%). The cluster C2 showed to be transitional. Among 27 ARG detected, a cluster of 17 was observed in all groups suggesting a common core. In general, ARG were observed mostly within OB individuals followed by OW and ET. The ratio between ARG and bacterial groups may suggest that AGR were more related to enterobacteria. Positive correlations were observed between ARG and BMI, calories and xenobiotics intake (especially use of sweeteners). As with nutritional and clinical characteristics, our data may suggest that GM of OW individuals behave in a heterogeneous pattern, occasionally more likely to the OB or to the ET. Regardless the regional and social behaviors of our population, the methodological approaches in this study were complementary and confirmatory. The imbalance of GM over the health-disease interface in obesity is a matter of fact, but its influence in host's physiology is still to be clearly elucidated to help understanding the multifactorial etiology of obesity. Although the results are in agreement with observations that GM is altered in obesity, the altered physiology in OB individuals seems to be also associated to the increased xenobiotics intake and may interfere with GM towards antimicrobial resistance, as observed by the fecal metagenome and ARG screening. Support: FAPEMIG, CNPQ, CAPES, PPGCBIO/UFJF.Keywords: antimicrobial resistance, bacterial diversity, gut microbiota, obesity
Procedia PDF Downloads 1691620 Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation
Authors: Hailemariam Solomon, Taye Tadesse, Daniel Nadew, Firezer Girma
Abstract:
Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity.Keywords: roor sysytem architecture, root angle, narrow root angle, wider root angle, drought
Procedia PDF Downloads 751619 Compost Enriched with Actinomyces and Bacillus Polymyxa Algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards
Authors: Abdelaziz Sheba Abdelrahman
Abstract:
Compost enriched with actinomyces and Bacillus polymyxa algae as a Partial Substitute for Mineral N in Ewaise Mango Orchards Organic fertiliser, compost enriched with actinomyces, and the biofertilizer Bacillus polymyxa algae were used as a partial replacement for mineral N fertiliser in Ewaise mango orchards during the 2019 and 2020 seasons. When compared to using mineral N alone, the results showed that reducing the percentage of mineral N fertiliser from 100 to 50% and using compost enriched with actinomyces at 25 to 50% and Bacillus polymyxa had an announced promotion on leaf area, total chlorophylls, leaf N, P, and K, yield, and fruit quality. The use of compost enriched with actinomyces and Bacillus polymyxa, as well as mineral N, resulted in a significant decrease in nitrite in the pulp. Reducing mineral N to 25% of the suitable N had a negative impact on yield. The application of appropriate N via 50% inorganic N + compost enriched with actinomyces at 50% + Bacillus polymyxa algae increased yield quantitatively and qualitatively in Ewaise mango orchards. This promised treatment significantly reduced nitrite levels in the pulp fruit.Keywords: bacillus polymyxa algae, fertiliser, biofertilizer, ewaise mango
Procedia PDF Downloads 1131618 Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter
Authors: Ayesha Irum, Sadia Mumtaz, Abdul Rehman, Iffat Naz, Safia Ahmed
Abstract:
The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was the ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.Keywords: biodegradation, textile dyes, waste water, trickling filters
Procedia PDF Downloads 4331617 Application of Crude Palm Oil Liquid Sludge Sewage On Maize (Zea mays. L) as Re-Cycle Possibility to Fertilizer
Authors: Hasan Basri Jumin, Henni Rosneti, Agusnimar
Abstract:
Crude palm oil liquid sludge sewage was treated to maize with 400 cc/plant could be increased mean relative growth rates, net assimilation rate, leaf area and dry weight of seed. There are indicated that 400 cc / plant treated to maize significantly increase the average of mean relative growth rates into 0.32 g.day-1. Net assimilation rates increase from 13.5 mg.m-2.day-1 into 34.5 mg.m-2.day-1, leaf area at 50 days after planting increase from 1419 cm-2 into 2458 cm-2 and dry weight of seed from 38 g per plant into 43 g per plant. Crude palm oil liquid sludge waste chemical analysis indicated that, there are no exceed threshold content of dangerous metals and biology effects. Cadmium content as heavy metal is lower than threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. Biological oxygen demands and chemical oxygen demands as indicators for micro-organism activities, there are under the threshold of human healthy tolerance.Keywords: crude-palm-oil, fertilizer, liquid-sludge, maize, pollutant, waste
Procedia PDF Downloads 5661616 Assessment of Antiplasmodial and Some Other Biological Activities, Essential Oil Constituents, and Phytochemical Screening of Azadirachta indica Grown in Ethiopia
Authors: Dawit Chankaye
Abstract:
Background: Azadirachta indica is the most versatile medicinal plant known as “the village pharmacy”. The plant is known for its broad spectrum of biological activity in India and various countries throughout history by many different human cultures. The present study was undertaken to determine the antimalarial and antidiabetic properties of the leaf extracts of A. indica grown in Ethiopia when treated in vivo. This work has also been concerned with determining essential oil composition and the antimicrobial activity of the plant in vitro. Methods: Leaf extracts were prepared using three different selected solvents. Standard and clinical isolates were treated with extracts of the leaves of A. indica using the agar well diffusion method. The antimalarial and antidiabetic tests were conducted in vivo in mice. Phytochemical screening was done using various chemical tests, and the volatile oil constituents were determined using gas chromatography-mass spectrometry (GC/MS). Results: In vivo antimalarial activity studies showed 85.23%, 69.01%, and 81.54% suppression of parasitemia for 70% ethanol, acetone, and water extracts, respectively. The extracts collected from the leaves also showed reduced blood sugar levels in alloxan-induced diabetic mice. In addition, the solvent extracts were shown to have an inhibitory effect on the growth of microorganisms under the study. The minimum inhibitory concentration (MIC) ranged from 850 to 1050 µg/ml. Notably, the phytochemical investigation of the ethanol extracts showed the presence of secondary metabolites. Seventeen compounds (mainly sesquiterpenes) that represent 75.45% of the essential oil were characterized by GC/MS analysis. Conclusion: Extracts examined in this study indicated that the leaf of A. indica grown in Ethiopia retained the biological activities demonstrating the extent equivalent to when it was grown in its natural habitat. In addition, phytochemical investigation and GC/MS analysis of volatile oil constituents showed comparable results to those presented in India and elsewhere.Keywords: Azadirachta indica, vivo, antimalarial activity, antidiabetic activity, alloxan, mice, phytochemical
Procedia PDF Downloads 791615 Meanings and Construction: Evolution of Inheriting the Traditions in Chinese Modern Architecture in the 1980s
Authors: Wei Wang
Abstract:
Queli Hotel, Xixi Scenery Spot Reception and Square Pagoda Garden are three important landmarks of localized Chinese modern architecture (LCMA) in the architectural design context of "Inheriting the Traditions in Modern Architecture" in the 1980s. As the most representative cases of LCMA in the 1980s, they interpret the traditions of Chinese garden and imperial roof from different perspectives. Based on the research text, conceptual drawings, construction drawings and site investigation, this paper extracts two groups of prominent contradictions in practice ("Pattern-Material-Structure" and "Type-Topography-Body") for keyword-based analysis to compare and examine different choices and balances by architects. Based on this, this paper attempts to indicate that the ideographic form derived from macro-narrative and the innovative investigation in construction is a pair of inevitable contradictions that must be handled and coordinated in these practices. The collision of the contradictions under specific conditions results in three cognitive attitudes and practical strategies towards traditions: Formal symbolism, spatial abstraction and construction-based narrative. These differentiated thoughts about Localization and Chineseness reflect various professional ideologies and value standpoints in the transition of Chinese Architecture discipline in the 1980s. The great variety in this particular circumstance suggests tremendous potential and possibilities of the future LCMA.Keywords: construction, meaning, Queli Hotel, square pagoda garden, tradition, Xixi scenery spot reception
Procedia PDF Downloads 1471614 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1
Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi
Abstract:
Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR
Procedia PDF Downloads 4091613 Antibacterial Activity of Bacillus thuringiensis Activated Delta-endotoxins
Authors: R. Gounina-Allouane, N. Ouali, F. Z. Berrabah, A. Bentaleb
Abstract:
For a long time, the Gram-positive spore-forming bacteria Bacillus thuringiensis (Bt) has been widely used in biological control against devastating and disease vectors insects. This is due to the insecticidal activity of its crystalline parasporal inclusion (crystals) predominantly comprised of one or more proteins (Cry and Cyt proteins) also called δ-endotoxins, produced during sporulation. The shape and composition of Bt crystals vary among strains and crystalline proteins are extremely varied (more than 475 cry gene were discovered). The insecticidal activity of Bt crystals is very well studied, thus their insecticidal mode of action is well established, however, their antimicrobial effect is largely unknown. The lack of data on the antimicrobial effect of crystalline proteins of Bt and the need for searching new antimicrobial molecules encouraged us to carried out this study. The antibacterial effect of δ-endotoxines produced by two Bt stains; a strain isolated from soil at northern of Algeria (Bt 7.2.B), and a strain isolated from a bioinsecticide (Bacillus thuringiensis var aizawai), activated by proteolysis, was assayed on clinical bacterial strains and ATCC collection ones respectively. Gram positive and negative clinical bacterial strains (Escherichia coli, Klebsiella pneumonaie, Pseudomonas aeruginosa, Staphylococcus aureus) were sensitive to activated Bt 72B endotoxins. Similarly, bacterial strains from ATCC collection (Escherichia coli ATCC 25922, Pseudomonas aerugenosa ATCC 27853, Staphylococcus aureus ATCC 25923) were sensitive to activated B. thuringiensis var aizawai δ-endotoxines. The activated δ-endotoxins were separated by SDS-PAGE.Keywords: Bacillus thuringiensis, crystals, cry proteins, δ-endotoxins, antibacterial activity
Procedia PDF Downloads 4481612 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors
Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth
Abstract:
In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.Keywords: bioactivity, drug design, topoisomerase, molecular modeling
Procedia PDF Downloads 5691611 Determination of the Effectiveness of Some Methods Used in Greater Wax Moth (Galleria mellonella L.) in Honeycombs
Authors: Neslihan Ozsoy Taskiran, Miray Dayioglu, Belgin Gunbey, Banu Yucel, Cigdem Takma, Unal Karik, Tugce Olgun, Levent Aydin
Abstract:
A greater wax moth (Galleria mellonella L.), which is one of the most important pests after Varroa, plays a role in the transportation of many pathogens into the hive as well as damage to the honeycombs, and beekeepers suffer economically. Due to the risk that some of the methods against this pest may cause residue in bee products, and it can be harmful to the health of people who consume these products. Therefore, the most appropriate, most economical, and effective method should be applied in the moth control. For this purpose, in the first phase of the project (2017-2018), planned to be 2-stage in the Aegean Agricultural Research Institute in 2017-2020, the honeycombs, certified with good agricultural practice, were kept in a favorable condition for moths. Later, applications (Sulfur - B401 - Walnut (Leaf & Smoker) - lavender essential oil (1cc & 2cc & 3cc & 4cc) - laurel essential oil (1cc & 2cc & 3cc & 4cc) - control) were applied to the honeycombs with moths. In 2017, the B401 group had the highest wax moth damage area, and the group with the lowest wax moth damage area was determined as lavender 1cc; In 2018, the highest wax moth damage area was found in the walnut smoker group, while the lowest wax moth damage area was found in sulfur, walnut leaves, laurel 1cc - 2cc - 4cc, lavender 1cc - 2cc - 3cc - 4cc and control groups. In addition, sulfur residue amount (mean 128,18 mg/kg) in honeycomb was measured in the sulfur-treated group. Phase 1 of the project was completed, and the most important sub-groups among walnut (leaf) - lavender (1cc) and laurel (4cc) groups were identified. Accordingly, it is planned to carry out these treatments ((sulfur - B401 - walnut (leaf) - lavender (1cc) and laurel (4cc)) on honeycombs with do not contain moths, and later, it is planned to examine the effects of the treatment on the offspring area and honey yield by giving these honeycombs to the hives, in the 2nd stage of the project (2019-2020).Keywords: honey bee, lavender essential oil, laurel essential oil, walnut, wax moth
Procedia PDF Downloads 1661610 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 1681609 Efficacy of Three Different Herbicides to the Control of Wild Barley (Hordeum spontaneum C. Koch) in Relation to Plant Growth Stage and Nitrogen Fertilizer Additive
Authors: Sh. Edrisi, M. Moeeni, A. Farahbakhsh
Abstract:
To study the effect of nitrogenous additive spray solution on the efficacy of three herbicides i.e. pinoxaden (Trade name: Axial), sulfosulfuron+metsulfuron-methyl (Trade name: Total) and sulfosulfuron (Trade name: Apirus) in controlling wild barley (Hordeum spontaneum C. Koch), in different growth stages, a greenhouse experiment as a split plot in a completely randomized design in three replications was conducted. One month after treatments, all plants were harvested and growth parameters were determined. The data were analyzed with computer. The results showed that the herbicide applications with and without nitrogen additive caused significant reductions in growth parameters of wild barley at 2-4 leaf stage. However, the plants were not killed by this herbicide. Plants were killed completely due to applications of the two other herbicides i.e. Apirus and Total at 2-4 leaf. There was no significant difference between the effect of these two herbicides. There was no significant difference between the highest rate of each herbicide used alone and that of the lowest rate with nitrogenous additive.Keywords: growth stage, herbicide, nitrogen, wild barley
Procedia PDF Downloads 2601608 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis
Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi
Abstract:
Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.Keywords: antibacterial, flavonoid, corn silk, acne
Procedia PDF Downloads 5091607 Antibacterial Activity of Bacillus thuringiensis Cristalline Parasporal Proteins
Authors: R. Gounina-Allouane, N. Ouali, F. Z. Berrabah, A. Bentaleb
Abstract:
For a long time, the Gram-positive spore-forming bacteria Bacillus thuringiensis (Bt) has been widely used in biological control against devastating and disease vectors insects. This is due to the insecticidal activity of its crystalline parasporal inclusion (crystals) predominantly comprised of one or more proteins (Cry and Cyt proteins) also called δ-endotoxins, produced during sporulation. The shape and composition of Bt crystals vary among strains and crystalline proteins are extremely varied (more than 475 cry gene were discovered). The insecticidal activity of Bt crystals is very well studied, thus their insecticidal mode of action is well established, however, their antimicrobial effect is largely unknown. The lack of data on the antimicrobial effect of crystalline proteins of Bt and the need for searching new antimicrobial molecules encouraged us to carried out this study. The antibacterial effect of δ-endotoxines produced by two Bt stains; a strain isolated from soil at northern of Algeria (Bt 7.2.B), and a strain isolated from a bioinsecticide (Bacillus thuringiensis var aizawai), activated by proteolysis, was assayed on clinical bacterial strains and ATCC collection ones respectively. Gram positive and negative clinical bacterial strains (Escherichia coli, Klebsiella pneumonaie, Pseudomonas aeruginosa, Staphylococcus aureus) were sensitive to activated Bt 72B endotoxins. Similarly, bacterial strains from ATCC collection (Escherichia coli ATCC 25922, Pseudomonas aerugenosa ATCC 27853, Staphylococcus aureus ATCC 25923) were sensitive to activated B. thuringiensis var aizawai δ-endotoxines. The activated δ-endotoxins were separated by SDS-PAGE.Keywords: Bacillus thuringiensis, crystals, cry proteins, δ-endotoxins, antibacterial activity
Procedia PDF Downloads 4301606 Bioefficacy of Novel Insecticide Flupyradifurone Sl 200 against Leaf Hoppers, Aphids and Whitefly in Cotton
Authors: N. V. V. S. D. Prasad
Abstract:
Field experiments were conducted at Regional Agricultural Research Station, Lam, Guntur, Andhra Pradesh, India for two seasons during 2011-13 to evaluate the efficacy of flupyradifurone SL 200 a new class of insecticide in butenolide group against leaf hoppers, aphids and whitefly in Cotton. The test insecticide flupyradifurone 200 was evaluated at three doses @ 150, 200 and 250 g ai/ha ha along with imidacloprid 200 SL @ 20g ai/ha, acetamiprid 20 SP @ 20g ai/ha, thiamethoxam 25 WG @ 25g ai/ha and monocrotophos 36 SL @ 360 g ai/ha as standards. Flupyradifurone SL 200 even at lower dose of 150g ai/ha exhibited superior efficacy against cotton leafhopper, Amrasca devastans than the neonicotinoids which are widely used for control of sucking pests in cotton. Against cotton aphids, Aphis gossypii. Flupyradifurone SL 200 @ 200 and 250 g ai/ha ha was proved to be effective and the lower dose @ 150g ai/ha performed better than some of the neonicotinoids. The effect of flupyradifurone SL 200 on cotton against whitefly, Bemisia tabaci was evident at higher doses of 200 and 250 g ai/ha and superior to all standard treatments, however, the lower dose is at par with neonicotinoids. The seed cotton yield of flupyradifurone 200 SL at all the doses tested was superior than imidacloprid 200 SL @ 20g ai/ha and acetamiprid 20 SP @ 20g ai/ha. There is no significant difference among the insecticidal treatments with regards to natural enemies. The results clearly suggest that flupyradifurone is a new tool to combat sucking pest problems in cotton and can well fit in IRM strategies in light of wide spread insecticide resistance in cotton sucking pests.Keywords: cotton, flupyradifurone, neonicotinoids, sucking pests
Procedia PDF Downloads 1921605 Sensitivity of Acanthamoeba castellanii-Grown Francisella to Three Different Disinfectants
Authors: M. Knezevic, V. Marecic, M. Ozanic, I. Kelava, M. Mihelcic, M. Santic
Abstract:
Francisella tularensis is a highly infectious, gram-negative intracellular bacterium and the causative agent of tularemia. The bacterium has been isolated from more than 250 wild species, including protozoa cells. Since Francisella is very virulent and persists in the environment for years, the aim of this study was to investigate whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. It has been shown by other intracellular pathogens, including Legionella pneumophila that bacteria grown in amoeba exhibit more resistance to disinfectants. However, there is no data showing Francisella viability behaviour after intracellular life cycle in A. castellani. In this study, the bacterial suspensions of A. castellanii-grown or in vitro-grown Francisella were treated with three different disinfectants, and the bacterial viability after disinfection treatment was determined by a colony-forming unit (CFU) counting method, transmission electron microscopy (TEM), fluorescence microscopy as well as the leakage of intracellular fluid. Our results have shown that didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol was the most effective in bacterial killing; all in vitro-grown and A. castellanii-grown F. novicida were killed after only 10s. Surprisingly, in comparison to in vitro-grown bacteria, A. castellanii-grown F. novicida was more sensitive to decontamination by the benzalkonium chloride combined with DDAC and formic acid and the polyhexamethylene biguanide (PHMB). We can conclude that the tested disinfectants exhibit antimicrobial activity by causing a loss of structural organization and integrity of the Francisella cell wall and membrane and the subsequent leakage of the intracellular contents. Finally, the results of this study clearly demonstrate that Francisella grown in A. castellanii had become more susceptible to many disinfectants.Keywords: Acanthamoeba, disinfectant, Francisella, sensitivity
Procedia PDF Downloads 100