Search results for: data reduction
24250 The Contribution of Sanitation Practices to Marine Pollution and the Prevalence of Water-Borne Diseases in Prampram Coastal Area, Greater Accra-Ghana
Authors: Precious Roselyn Obuobi
Abstract:
Background: In Ghana, water-borne diseases remain a public health concern due to its impact. While marine pollution has been linked to outbreak of diseases especially in communities along the coast, associated risks such as oil spillage, marine debris, erosion, improper waste disposal and management practices persist. Objective: The study seeks to investigate sanitation practices that contribute to marine pollution in Prampram and the prevalence of selected water-borne diseases (diarrhea and typhoid fever). Method: This study used a descriptive cross-sectional design, employing the mix-method (qualitative and quantitative) approach. Twenty-two (22) participants were selected and semistructured questionnaire were administered to them. Additionally, interviews were conducted to collect more information. Further, an observation check-list was used to aid the data collection process. Secondary data comprising information on water-borne diseases in the district was acquired from the district health directorate to determine the prevalence of selected water-borne diseases in the community. Data Analysis: The qualitative data was analyzed using NVIVO® software by adapting the six steps thematic analysis by Braun and Clarke whiles STATA® version 16 was used to analyze the secondary data collected from the district health directorate. A descriptive statistic employed using mean, standard deviation, frequencies and proportions were used to summarize the results. Results: The results showed that open defecation and indiscriminate waste disposal were the main practices contributing to marine pollution in Prampram and its effect on public health. Conclusion: These findings have implications on public health and the environment, thus effort needs to be stepped up in educating the community on best sanitation practices.Keywords: environment, sanitation, marine pollution, water-borne diseases
Procedia PDF Downloads 8124249 Acute Toxicity Studies of Total Alkaloids of Seeds of Datura stramonium in Female Rats: Effect on Liver and Kidney
Authors: Bouzidi Abdelouahab, Ghadjati Nadhra, Bettihi Sara, Mahdeb Nadia, Daamouche Z. El Youm
Abstract:
The effects of acute administration of TOTAL alkaloids, the main active principle of Datura stramonium, with toxic properties, were studied in female Albino-Wistar rats. After acute intraperitoneal administration of dose 120 mg kg-1 (≈1/3 DL50) of total alkaloids to the seeds of D. stramonium, there were no remarkable changes in general appearance and no deaths occurred in any experimental group. After 5 days a significant reduction was observed in total alkaloids of seeds. The Red Blood Cells (RBC), Hematocrit (HCT) and Hemoglobin (HGB) show significant changes in the treated groups. There were no statistical differences in Glutamic-pyruvic Transaminase (GPT), Alkaline Phosphatase (ALP), urea, glucose and total protein observed between groups. After 24 h Glutamic-Oxaloacetic Transaminase (GOT) and creatinine were significantly higher in the treated male rats than the control group histological examination of liver showed no histopathological changes.Keywords: datura stramonium, rat, liver, kidney, alkaloids, toxicity
Procedia PDF Downloads 48624248 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands
Authors: Ilham S. M. Elsayed
Abstract:
The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station
Procedia PDF Downloads 25624247 The Impact of Agricultural Product Export on Income and Employment in Thai Economy
Authors: Anucha Wittayakorn-Puripunpinyoo
Abstract:
The research objectives were 1) to study the situation and its trend of agricultural product export of Thailand 2) to study the impact of agricultural product export on income of Thai economy 3) the impact of agricultural product export on employment of Thai economy and 4) to find out the recommendations of agricultural product export policy of Thailand. In this research, secondary data were collected as yearly time series data from 1990 to 2016 accounted for 27 years. Data were collected from the Bank of Thailand database. Primary data were collected from the steakholders of agricultural product export policy of Thailand. Data analysis was applied descriptive statistics such as arithmetic mean, standard deviation. The forecasting of agricultural product was applied Mote Carlo Simulation technique as well as time trend analysis. In addition, the impact of agricultural product export on income and employment by applying econometric model while the estimated parameters were utilized the ordinary least square technique. The research results revealed that 1) agricultural product export value of Thailand from 1990 to 2016 was 338,959.5 Million Thai baht with its growth rate of 4.984 percent yearly, in addition, the forecasting of agricultural product export value of Thailand has increased but its growth rate has been declined 2) the impact of agricultural product export has positive impact on income in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.0051 percent 3) the impact of agricultural product export has positive impact on employment in Thai economy, increasing in agricultural product export of Thailand by 1 percent would lead income increased by 0.079 percent and 4) in the future, agricultural product export policy would focused on finished or semi-finished agricultural product instead of raw material by applying technology and innovation in to make value added of agricultural product export. The public agricultural product export policy would support exporters in private sector in order to encourage them as agricultural exporters in Thailand.Keywords: agricultural product export, income, employment, Thai economy
Procedia PDF Downloads 31724246 Seafloor and Sea Surface Modelling in the East Coast Region of North America
Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk
Abstract:
Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.Keywords: seafloor, sea surface height, bathymetry, satellite altimetry
Procedia PDF Downloads 8424245 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 9824244 Reuse of Spent Lithium Battery for the Production of Environmental Catalysts
Authors: Jyh-Cherng Chen, Chih-Shiang You, Jie-Shian Cheng
Abstract:
This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied.Keywords: catalyst, lithium-cobalt battery, lithium-iron battery, recycle and reuse
Procedia PDF Downloads 26224243 Delineation of the Geoelectric and Geovelocity Parameters in the Basement Complex of Northwestern Nigeria
Authors: M. D. Dogara, G. C. Afuwai, O. O. Esther, A. M. Dawai
Abstract:
The geology of Northern Nigeria is under intense investigation particularly that of the northwest believed to be of the basement complex. The variability of the lithology is consistently inconsistent. Hence, the need for a close range study, it is, in view of the above that, two geophysical techniques, the vertical electrical sounding employing the Schlumberger array and seismic refraction methods, were used to delineate the geoelectric and geovelocity parameters of the basement complex of northwestern Nigeria. A total area of 400,000 m² was covered with sixty geoelectric stations established and sixty sets of seismic refraction data collected using the forward and reverse method. From the interpretation of the resistivity data, it is suggestive that the area is underlain by not more than five geoelectric layers of varying thicknesses and resistivities when a maximum half electrode spread of 100m was used. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. The results of the two techniques, suggests that the area of study has an undulating bedrock topography with geoeletric and geovelocity layers composed of weathered rock materials.Keywords: basement complex, delineation, geoelectric, geovelocity, Nigeria
Procedia PDF Downloads 15524242 Exploring the Entrepreneur-Function in Uncertainty: Towards a Revised Definition
Authors: Johan Esbach
Abstract:
The entrepreneur has traditionally been defined through various historical lenses, emphasising individual traits, risk-taking, speculation, innovation and firm creation. However, these definitions often fail to address the dynamic nature of the modern entrepreneurial functions, which respond to unpredictable uncertainties and transition to routine management as certainty is achieved. This paper proposes a revised definition, positioning the entrepreneur as a dynamic function rather than a human construct, that emerges to address specific uncertainties in economic systems, but fades once uncertainty is resolved. By examining historical definitions and its limitations, including the works of Cantillon, Say, Schumpeter, and Knight, this paper identifies a gap in literature and develops a generalised definition for the entrepreneur. The revised definition challenges conventional thought by shifting focus from static attributes such as alertness, traits, firm creation, etc., to a dynamic role that includes reliability, adaptation, scalability, and adaptability. The methodology of this paper employs a mixed approach, combining theoretical analysis and case study examination to explore the dynamic nature of the entrepreneurial function in relation to uncertainty. The selection of case studies includes companies like Airbnb, Uber, Netflix, and Tesla, as these firms demonstrate a clear transition from entrepreneurial uncertainty to routine certainty. The data from the case studies is then analysed qualitatively, focusing on the patterns of entrepreneurial function across the selected companies. These results are then validated using quantitative analysis, derived from an independent survey. The primary finding of the paper will validate the entrepreneur as a dynamic function rather than a static, human-centric role. In considering the transition from uncertainty to certainty in companies like Airbnb, Uber, Netflix, and Tesla, the study shows that the entrepreneurial function emerges explicitly to address market, technological, or social uncertainties. Once these uncertainties are resolved and a certainty in the operating environment is established, the need for the entrepreneurial function ceases, giving way to routine management and business operations. The paper emphasises the need for a definitive model that responds to the temporal and contextualised nature of the entrepreneur. In adopting the revised definition, the entrepreneur is positioned to play a crucial role in the reduction of uncertainties within economic systems. Once the uncertainties are addressed, certainty is manifested in new combinations or new firms. Finally, the paper outlines policy implications for fostering environments that enables the entrepreneurial function and transition theory.Keywords: dynamic function, uncertainty, revised definition, transition
Procedia PDF Downloads 2824241 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 12024240 Adult Language Learning in the Institute of Technology Sector in the Republic of Ireland
Authors: Una Carthy
Abstract:
A recent study of third level institutions in Ireland reveals that both age and aptitude can be overcome by teaching methodologies to motivate second language learners. This PhD investigation gathered quantitative and qualitative data from 14 Institutes of Technology over a three years period from 2011 to 2014. The fundamental research question was to establish the impact of institutional language policy on attitudes towards language learning. However, other related issues around second language acquisition arose in the course of the investigation. Data were collected from both lectures and students, allowing interesting points of comparison to emerge from both datasets. Negative perceptions among lecturers regarding language provision were often associated with the view that language learning belongs to primary and secondary level and has no place in third level education. This perception was offset by substantial data showing positive attitudes towards adult language learning. Lenneberg’s Critical Age Theory postulated that the optimum age for learning a second language is before puberty. More recently, scholars have challenged this theory in their studies, revealing that mature learners can and do succeed at learning languages. With regard to aptitude, a preoccupation among lecturers regarding poor literacy skills among students emerged and was often associated with resistance to second language acquisition. This was offset by a preponderance of qualitative data from students highlighting the crucial role which teaching approaches play in the learning process. Interestingly, the data collected regarding learning disabilities reveals that, given the appropriate learning environments, individuals can be motivated to acquire second languages, and indeed succeed at learning them. These findings are in keeping with other recent studies regarding attitudes towards second language learning among students with learning disabilities. Both sets of findings reinforce the case for language policies in the Institute of Technology (IoTs). Supportive and positive learning environments can be created in third level institutions to motivate adult learners, thereby overcoming perceived obstacles relating to age and aptitude.Keywords: age, aptitude, second language acquisition, teaching methodologies
Procedia PDF Downloads 12624239 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus
Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan
Abstract:
Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing
Procedia PDF Downloads 1324238 Cloud Monitoring and Performance Optimization Ensuring High Availability
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy
Procedia PDF Downloads 6324237 Microstructure and Mechanical Properties of Mg-Zn Alloys
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.Keywords: Mg-Zn alloy, heat treatment, microstructure, mechanical properties, hardness
Procedia PDF Downloads 28424236 Performance Analysis of BLDC Motors for Flywheel Energy Storage Applications with Nonmagnetic vs. Magnetic Core Stator using Finite Element Time Stepping Method
Authors: Alok Kumar Pasa, Krs Raghavan
Abstract:
This paper presents a comparative analysis of Brushless DC (BLDC) motors for flywheel applications with a focus on the choice of stator core materials. The study employs a Finite Element Method (FEM) in time domain to investigate the performance characteristics of BLDC motors equipped with nonmagnetic and magnetic type stator core materials. Preliminary results reveal significant differences in motor efficiency, torque production, and electromagnetic properties between the two configurations. This research sheds light on the advantages of utilizing nonmagnetic materials in BLDC motors for flywheel applications, offering potential advantages in terms of efficiency, weight reduction and cost-effectiveness.Keywords: finite element time stepping method, high-speed BLDC motor, flywheel energy storage system, coreless BLDC motors
Procedia PDF Downloads 1524235 Economic and Environmental Benefits of the Best Available Technique Application in a Food Processing Plant
Authors: Frantisek Bozek, Pavel Budinsky, Ignac Hoza, Alexandr Bozek, Magdalena Naplavova
Abstract:
A cleaner production project was implemented in a bakery. The project is based on the substitution of the best available technique for an obsolete leaven production technology. The new technology enables production of durable, high-quality leavens. Moreover, 25% of flour as the original raw material can be replaced by pastry from the previous day production which has not been sold. That pastry was previously disposed in a waste incineration plant. Besides the environmental benefits resulting from less waste, lower consumption of energy, reduction of sewage waters quantity and floury dustiness there are also significant economic benefits. Payback period of investment was calculated with help of static method of financial analysis about 2.6 years, using dynamic method 3.5 years and an internal rate of return more than 29%. The supposed annual average profit after taxation in the second year of operation was incompliance with the real profit.Keywords: bakery, best available technology, cleaner production, costs, economic benefit, efficiency, energy, environmental benefit, investment, savings
Procedia PDF Downloads 37124234 The Use of Artificial Intelligence to Curb Corruption in Brazil
Authors: Camila Penido Gomes
Abstract:
Over the past decade, an emerging body of research has been pointing to artificial intelligence´s great potential to improve the use of open data, increase transparency and curb corruption in the public sector. Nonetheless, studies on this subject are scant and usually lack evidence to validate AI-based technologies´ effectiveness in addressing corruption, especially in developing countries. Aiming to fill this void in the literature, this paper sets out to examine how AI has been deployed by civil society to improve the use of open data and prevent congresspeople from misusing public resources in Brazil. Building on the current debates and carrying out a systematic literature review and extensive document analyses, this research reveals that AI should not be deployed as one silver bullet to fight corruption. Instead, this technology is more powerful when adopted by a multidisciplinary team as a civic tool in conjunction with other strategies. This study makes considerable contributions, bringing to the forefront discussion a more accurate understanding of the factors that play a decisive role in the successful implementation of AI-based technologies in anti-corruption efforts.Keywords: artificial intelligence, civil society organization, corruption, open data, transparency
Procedia PDF Downloads 20824233 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 35424232 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 16524231 PVDF-HFP Based Nanocomposite Gel Polymer Electrolytes Dispersed with Zro2 for Li-Ion Batteries
Authors: R. Sharma, A. Sil, S. Ray
Abstract:
Nanocomposites gel polymer electrolytes are gaining more and more attention among the researchers worldwide due to their possible applications in various electrochemical devices particularly in solid-state Li-ion batteries. In this work we have investigated the effect of nanofibers on the electrical properties of PVDF-HFP based gel electrolytes. The nanocomposites polymer electrolytes have been synthesized by solution casting technique with 10wt% of ZrO2. By analysis of impedance spectroscopy it has been demonstrated that the incorporation of ZrO2 into PVDF-HFP–(PC+DEC)–LiClO4 gel polymer electrolyte system significantly enhances the ionic conductivity of the electrolyte. The enhancement of ionic conductivity seems to be correlated with the fact that the dispersion of ZrO2 to PVDF-HFP prevents polymer chain reorganization due to the high aspect ratio of ZrO2, resulting in reduction in polymer crystallinity, which gives rise to an increase in ionic conductivity. The decrease of crystallinity of PVDF-HFP due the addition of ZrO2 has been confirmed by XRD. The interaction of ZrO2 with various constituents of polymer electrolytes has been studied by FTIR spectroscopy. TEM results show that the fillers (ZrO2) has distributed uniformly in the polymer electrolytes. Moreover, ZrO2 added gel polymer electrolytes offer better thermal stability as compared to that of ZrO2 free electrolytes as confirmed by TGA analysis.Keywords: polymer electrolytes, ZrO2, ionic conductivity, FTIR
Procedia PDF Downloads 48124230 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance
Procedia PDF Downloads 39524229 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing
Authors: Alona Faktor
Abstract:
In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.Keywords: cognitive science, attentin, deep learning, generalization
Procedia PDF Downloads 20424228 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture
Authors: Sajjad Akbar, Rabia Bashir
Abstract:
With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.Keywords: agent based web content mining, content centric networking, information centric networking
Procedia PDF Downloads 47824227 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 2824226 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera
Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis
Abstract:
We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.Keywords: voxel, octree, computer vision, XR, floating origin
Procedia PDF Downloads 13724225 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution
Authors: Masomeh Jamshid Nejad
Abstract:
Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.Keywords: statistics, excel-based instruction, data visualization, pedagogy
Procedia PDF Downloads 5824224 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 29524223 The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag
Authors: Jiaxu Huang
Abstract:
The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%.Keywords: crushing atmosphere, cooling methods, sieving particle size, TiC
Procedia PDF Downloads 14024222 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data
Procedia PDF Downloads 35324221 A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles
Authors: Essam Shalaby, Alexander Churyumov, Malak Abou El-Khair, Atef Daoud
Abstract:
A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications.Keywords: metal-matrix composite, squeeze, microstructure, thermal conductivity, compressive properties
Procedia PDF Downloads 385