Search results for: technological components
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5600

Search results for: technological components

890 Effect of Phytohormones on the Development and Nutraceutical Characteristics of the Fruit Capsicum annuum

Authors: Rossy G. Olan Villegas, Gerardo Acosta Garcia, Aurea Bernardino Nicanor, Leopoldo Gonzalez Cruz, Humberto Ramirez Medina

Abstract:

Capsicum annuum is a crop of agricultural and economic importance in Mexico and other countries. The fruit (pepper) contains bioactive components such as carotenoids, phenolic compounds and capsaicinoids that improve health. However, pepper cultivation is affected by biotic and abiotic factors that decrease yield. Some phytohormones like gibberellins and auxins induce the formation and development of fruit in several plants. In this study, we evaluated the effect of the exogenous application of phytohormones like gibberellic acid and indolbutyric acid on fruit development of jalapeno pepper plants, the protein profile of plant tissues, the accumulation of bioactive compounds and antioxidant activity in the pericarp and seeds. For that, plants were sprinkled with these phytohormones. The fruit collection for the control, indolbutyric acid and gibberellic acid treatments was 7 peppers per plant; however, for the treatment that combines indolbutyric acid and gibberellic acid, a fruit with the shortest length (1.52 ± 1.00 cm) and weight (0.41 ± 1.0 g) was collected compared to fruits of plants grown under other treatments. The length (4,179 ± 0,130 cm) and weight of the fruit (8,949 ± 0.583 g) increased in plants treated with indolbutyric acid, but these characteristics decreased with the application of GA3 (length of 3,349 ± 0.127 cm and a weight 4,429 ± 0.144 g). The content of carotenes and phenolic compounds increased in plants treated with GA3 (1,733 ± 0.092 and 1,449 ± 0.009 mg / g, respectively) or indolbutyric acid (1,164 ± 0.042 and 0.970 ± 0.003 mg / g). However, this effect was not observed in plants treated with both phytohormones (0.238 ± 0.021 and 0.218 ± 0.004 mg / g). Capsaicin content was higher in all treatments; but it was more noticeable in plants treated with both phytohormones, the value being 0.913 ± 0.001 mg / g (three times greater in amount). The antioxidant activity was measured by 3 different assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant power of ferric reduction (FRAP) and 2,2'-Azinobis-3-ethyl-benzothiazoline-6-sulfonic acid ( ABTS) to find the minimum inhibitory concentration of the reducing radical (IC50 and EC50). Significant differences were observed from the application of the phytohormone, being the fruits treated with gibberellins, which had a greater accumulation of bioactive compounds. Our results suggest that the application of phytohormones modifies the development of fruit and its content of bioactive compounds.

Keywords: auxins, capsaicinoids, carotenoids, gibberellins

Procedia PDF Downloads 106
889 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 431
888 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: data analysis, demand modeling, healthcare, medical facilities

Procedia PDF Downloads 138
887 The Mediation Impact of Demographic and Clinical Characteristics on the Relationship between Trunk Control and Quality of Life among the Sub-Acute Stroke Population: A Cross-Sectional Study

Authors: Kumar Gular, Viswanathan S., Mastour Saeed Alshahrani, Ravi Shankar Reddy, Jaya Shanker Tedla, Snehil Dixit, Ajay Prasad Gautam, Venkata Nagaraj Kakaraparthi, Devika Rani Sangadala

Abstract:

Background: Despite trunk control’s significant contribution to improving various functional activity components, the independent effect of trunk performance on quality of life is yet to be estimated in stroke survivors. Ascertaining the correlation between trunk control and self-reported quality of life while evaluating the effect of demographic and clinical characteristics on their relationship will guide concerned healthcare professionals in designing ideal rehabilitation protocols during the late sub-acute stroke stage of recovery. The aims of the present research were to (1) investigate the associations of trunk performance with self-rated quality of life and (2) evaluate if age, body mass index (BMI), and clinical characteristics mediate the relationship between trunk motor performance and perceived quality of life in the sub-acute stroke population. Methods: Trunk motor functions and quality of life among the late sub-acute stroke population aged 57.53 ± 6.42 years were evaluated through the trunk Impairment Scale (TIS) and Stroke specific quality of life (SSQOL) questionnaire, respectively. Pearson correlation coefficients and mediation analysis were performed to elucidate the relationship of trunk motor function with quality of life and determine the mediation impact of demographic and clinical characteristics on their association, respectively. Results: The current study observed significant correlations between trunk motor functions (TIS) and quality of life (SSQOL) with r=0.68 (p<0.001). Age, BMI, and type of stroke were detected as potential mediating factors in the association between trunk performance and quality of life. Conclusion: Validated associations between trunk motor functions and perceived quality of life among the late sub-acute stroke population emphasize the importance of comprehensive evaluation of trunk control. Rehabilitation specialists should focus on appropriate strategies to enhance trunk performance anticipating the potential effects of age, BMI, and type of stroke to improve health-related quality of life in stroke survivors.

Keywords: sub-acute stroke, quality of life, functional independence, trunk control

Procedia PDF Downloads 70
886 Predicting Child Attachment Style Based on Positive and Safe Parenting Components and Mediating Maternal Attachment Style in Children With ADHD

Authors: Alireza Monzavi Chaleshtari, Maryam Aliakbari

Abstract:

Objective: The aim of this study was to investigate the prediction of child attachment style based on a positive and safe combination parenting method mediated by maternal attachment styles in children with attention deficit hyperactivity disorder. Method: The design of the present study was descriptive of correlation and structural equations and applied in terms of purpose. The population of this study includes all children with attention deficit hyperactivity disorder living in Chaharmahal and Bakhtiari province and their mothers. The sample size of the above study includes 165children with attention deficit hyperactivity disorder in Chaharmahal and Bakhtiari province with their mothers, who were selected by purposive sampling method based on the inclusion criteria. The obtained data were analyzed in two sections of descriptive and inferential statistics. In the descriptive statistics section, statistical indices of mean, standard deviation, frequency distribution table and graph were used. In the inferential section, according to the nature of the hypotheses and objectives of the research, the data were analyzed using Pearson correlation coefficient tests, Bootstrap test and structural equation model. findings:The results of structural equation modeling showed that the research models fit and showed a positive and safe combination parenting style mediated by the mother attachment style has an indirect effect on the child attachment style. Also, a positive and safe combined parenting style has a direct relationship with child attachment style, and She has a mother attachment style. Conclusion:The results and findings of the present study show that there is a significant relationship between positive and safe combination parenting methods and attachment styles of children with attention deficit hyperactivity disorder with maternal attachment style mediation. Therefore, it can be expected that parents using a positive and safe combination232 parenting method can effectively lead to secure attachment in children with attention deficit hyperactivity disorder.

Keywords: child attachment style, positive and safe parenting, maternal attachment style, ADHD

Procedia PDF Downloads 58
885 Barriers to Health Promotion Advice Delivered by Paramedics and Emergency Department Nurses – Promoted Study

Authors: B. Schofield, F. Gul, S. McClean, R. Hoskins, R. Terry, U. Rolfe, A. Gibson, S. Voss, J. Benger

Abstract:

Aim: The aim of this study is to determine whether and how health promotion activities are undertaken by paramedics and emergency department nurses and investigate ways of overcoming potential barriers. Background: Paramedics and emergency department nurses are uniquely placed to reach millions of people and could use these contacts as positive opportunities to help people improve their health by identifying people with risk factors and provide information, brief interventions, and signposting to locally provided services. These interventions can be carried out when the opportunity arises, typically take no more than a few minutes, have a low financial cost and can be a highly efficient method of health promotion. Methodology: Three NHS Emergency Departments and four Ambulance Trusts in England were recruited to the study. A link to an online survey was distributed to paramedics and emergency department nurses at participating sites. Staff were invited to participate in virtual semi-structured interviews. Patients seen, treated, and discharged at the participating sites were invited to virtual semistructured interviews. Findings: A total of 331 survey responses were received, 21 virtual semi-structured staff interviews and 11 patient interviews were completed. Staff reported lack of time to prioritise, lack of knowledge, resources, and confidence as barriers. Receptiveness of patients guided their decision to undertake health promotion activities. They reported a desire to learn how to undertake health promotion conversations. Emergency department nurses felt more supported than paramedics by their organisations to undertake health promotion activities. Patients were not aware of health promotion activities and reported fear and lack of privacy as barriers. Conclusions: These results will guide the development of an intervention to support the provision of health promotion by staff in urgent and emergency care settings. The components of the intervention will be mapped to a framework which will consider the needs of staff working within these settings, patients they treat, and organisational issues and practices related to the implementation of such an intervention.

Keywords: emergency service, hospital, nursing, allied health personnel, emergency medical services, health promotion

Procedia PDF Downloads 52
884 From Over-Tourism to Over-Mobility: Understanting the Mobility of Incoming City Users in Barcelona

Authors: José Antonio Donaire Benito, Konstantina Zerva

Abstract:

Historically, cities have been places where people from many nations and cultures have met and settled together, while population flows and density have had a significant impact on urban dynamics. Cities' high density of social, cultural, business offerings, everyday services, and other amenities not intended for tourists draw not only tourists but a wide range of city users as well. With the coordination of city rhythms and the porosity of the community, city users order and frame their urban experience. From one side, recent literature focuses on the shift in urban tourist experience from 'having' a holiday through 'doing' activities to 'becoming' a local by experiencing a part of daily life. On the other hand, there is a debate on the 'touristification of everyday life', where middle and upper class urban dwellers display attitudes and behaviors that are virtually undistinguishable from those of visitors. With the advent of globalization and technological advances, modern society has undergone a radical transformation that has altered mobility patterns within it, blurring the boundaries between tourism and everyday life, work and leisure, and "hosts" and "guests". Additionally, the presence of other 'temporary city' users, such as commuters, digital nomads, second home owners, and migrants, contributes to a more complex transformation of tourist cities. Moving away from this traditional clear distinction between 'hosts' and 'guests', which represents a more static view of tourism, and moving towards a more liquid narrative of mobility, academics on tourism development are embracing the New Mobilities Paradigm. The latter moves beyond the static structures of the modern world and focuses on the ways in which social entities are made up of people, machines, information, and images in a moving system. In light of this fluid interdependence between tourists and guests, a question arises as to whether overtourism, which is considered as the underlying cause of citizens' perception of a lower urban quality of life, is a fair representation of perceived mobility excessiveness, place consumption disruptiveness, and residents displacement. As a representative example of an overtourism narrative, Barcelona was chosen as a study area for this purpose, focusing on the incoming city users to reflect in depth the variety of people who contribute to mobility flows beyond those residents already have. Several statistical data have been analyzed to determine the number of national and international visitors to Barcelona at some point during the day in 2019. Specifically, tracking data gathered from mobile phone users within the city are combined with tourist surveys, urban mobility data, zenithal data capture, and information about the city's attractions. The paper shows that tourists are only a small part of the different incoming city users that daily enter Barcelona; excursionists, commuters, and metropolitans also contribute to a high mobility flow. Based on the diversity of incoming city users and their place consumption, it seems that the city's urban experience is more likely to be impacted by over-mobility tan over-tourism.

Keywords: city users, density, new mobilities paradigm, over-tourism.

Procedia PDF Downloads 74
883 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer

Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa

Abstract:

Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.

Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer

Procedia PDF Downloads 161
882 Using the Synchronous Online Flipped Learning Approach to Facilitate Student Podcasting

Authors: Yasmeen Coaxum

Abstract:

The year 2020 became synonymous with the words “Emergency Remote Teaching,” which was imposed upon educators during the COVID-19 pandemic. Consequently, teachers were compelled to find new and engaging ways to educate their students outside of the face-to-face classroom setting. Now online instruction has become more of the norm rather than a way to manage educational expectations during a crisis. Therefore, implementing a strategic way to create online environments for students to thrive, create, and fully engage in their learning process is essential. The Synchronous Online Flipped Learning Approach or SOFLA® is a distance learning model that most closely replicates actual classroom teaching. SOFLA® includes structured, interactive, multimodal activities in an eight-step learning cycle with both asynchronous and synchronous components that foster autonomous and interactive learning among today’s online learners. The results of a pilot study in an Intensive English Program at a university, using SOFLA® methodology to facilitate podcasting in an online learning environment will be shared. Previous findings on student-produced podcasting projects have shown that students felt they improved their pronunciation, vocabulary, and speaking skills. However, few if any studies have been conducted on using a structured online flipped learning approach to facilitate such projects. Therefore, the purpose of this study is to assess the effect of using the SOFLA® framework to enhance optimum engagement in the online environment while using podcasts as the primary tool of instruction. Through data from interviews, questionnaires, and the results of formative and summative assessments, this study also investigates the affective and academic impact this flipped learning method combined with podcasting has on the students in terms of speaking confidence and vocabulary retention, and production. The steps of SOFLA will be illustrated, a video demonstration of the Anchor podcasting app will be shown, and final student projects and questionnaire responses will be shared. The specific context is a 14-week advanced level conversation and listening class. Participants vary in age but are all adult language learners representing a diverse array of countries.

Keywords: mall online flipped learning, podcasting, productive vocabulary

Procedia PDF Downloads 169
881 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 240
880 Effects of Soil Organic Amendment Types and Rates on Growth and Yield of Amaranthus cruentus, Southern Guinea Savannah of Nigeria

Authors: S. Yussuf Abdulmaliq

Abstract:

Experiment was conducted for two years (2013 and 2014) at Ibrahim Badamasi Babangida University, Lapai, Teaching and Research Farm to study the effects of soil organic amendment types and rates on soil chemical fertility improvement, growth and yield of Amarathus cruentus in the southern guinea savannah, lapai, Niger state, Nigeria. Soil and manure samples were collected and analysed for physical and chemical components. The experiments were laid out in 3 x 4 factorial in a randomized complete block design (RCBD). Consisting of three (3) levels of soil amendment types (Poultry manure, goat manure and cowdung) and four (4) levels of amendment rates (0, 6, 12 and 18 t ha-1). Data collected include plant height/plant (cm), number of leaves/plant, leaf area/ plant (cm2) at 2, 4, 6 and 8WAT, fresh vegetable yield/plant, fresh vegetable yield/plot and fresh vegetable yield in tons ha-1. The result obtained showed that, Amaranthus cruentus height, number of leaves and leaf area were not significantly affected by the type of organic amendment and rates at 2WAT in 2013 and 2014 cropping seasons. However, at 4, 6 and 8 WAT, significant differences were observed among the types of amendment and their rates. Application of poultry manure as soil amendment supported taller, large number of leaves and wider leaf area, and higher marketable vegetable yield in 2013 and 2014 cropping seasons (Pα 0.05) which was closely followed by goat manure in the two (2) cropping seasons. In addition, the application of 18 t ha-1 was superior to 12, 6 and the control by producing tallest amaranthus plants, higher number of leaves, wider leaf area and higher marketable vegetable yield in 2013 and 2014 cropping seasons (Pα 0.05). In conclusion, the use of 18 t ha-1poultry manure is therefore recommended as soil amendment for Amaranthus cruentus in southern guinea savannah of Nigeria.

Keywords: Amaranthus cruentus, cowdung, goat manure, poultry manure, soil amendment

Procedia PDF Downloads 366
879 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 209
878 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport

Authors: Aamir Shahzad, Mao-Gang He

Abstract:

Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.

Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow

Procedia PDF Downloads 268
877 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company

Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez

Abstract:

Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.

Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation

Procedia PDF Downloads 155
876 Dynamic Modeling of the Impact of Chlorine on Aquatic Species in Urban Lake Ecosystem

Authors: Zhiqiang Yan, Chen Fan, Yafei Wang, Beicheng Xia

Abstract:

Urban lakes play an invaluable role in urban water systems such as flood control, water supply, and public recreation. However, over 38% of the urban lakes have suffered from severe eutrophication in China. Chlorine that could remarkably inhibit the growth of phytoplankton in eutrophic, has been widely used in the agricultural, aquaculture and industry in the recent past. However, little information has been reported regarding the effects of chlorine on the lake ecosystem, especially on the main aquatic species.To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model was developed based on the competition and predation of main aquatic species and total phosphorus circulation. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos, spiroggra and total phosphorus in water and sediment were used as variables in the model,while the interference of chlorine on phytoplankton was represented by an exponential attenuation equation. Furthermore, the eco-exergy expressing the development degree of ecosystem was used to quantify the complexity of the shallow urban lake. The model was validated using the data collected in the Lotus Lake in Guangzhoufrom1 October 2015 to 31 January 2016.The correlation coefficient (R), root mean square error-observations standard deviation ratio (RSR) and index of agreement (IOA) were calculated to evaluate accuracy and reliability of the model.The simulated values showed good qualitative agreement with the measured values of all components. The model results showed that chlorine had a notable inhibitory effect on Microcystis aeruginos,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra.spp. inhibited the growth of Vallisneria natans (Lour.) Hara, leading to a gradual decrease of eco-exergy and the breakdown of ecosystem internal equilibria. This study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.

Keywords: system dynamic model, urban lake, chlorine, eco-exergy

Procedia PDF Downloads 229
875 Development of a Sprayable Piezoelectric Material for E-Textile Applications

Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby

Abstract:

E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.

Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile

Procedia PDF Downloads 460
874 Relevance of Copyright and Trademark in the Gaming Industry

Authors: Deeksha Karunakar

Abstract:

The gaming industry is one of the biggest industries in the world. Video games are interactive works of authorship that require the execution of a computer programme on specialized hardware but which also incorporate a wide variety of other artistic mediums, such as music, scripts, stories, video, paintings, and characters, into which the player takes an active role. Therefore, video games are not made as singular, simple works but rather as a collection of elements that, if they reach a certain level of originality and creativity, can each be copyrighted on their own. A video game is made up of a wide variety of parts, all of which combine to form the overall sensation that we, the players, have while playing. The entirety of the components is implemented in the form of software code, which is then translated into the game's user interface. Even while copyright protection is already in place for the coding of software, the work that is produced because of that coding can also be protected by copyright. This includes the game's storyline or narrative, its characters, and even elements of the code on their own. In each sector, there is a potential legal framework required, and the gaming industry also requires legal frameworks. This represents the importance of intellectual property laws in each sector. This paper will explore the beginnings of video games, the various aspects of game copyrights, and the approach of the courts, including examples of a few different instances. Although the creative arts have always been known to draw inspiration from and build upon the works of others, it has not always been simple to evaluate whether a game has been cloned. The video game business is experiencing growth as it has never seen before today. The majority of today's video games are both pieces of software and works of audio-visual art. Even though the existing legal framework does not have a clause specifically addressing video games, it is clear that there is a great many alternative means by which this protection can be granted. This paper will represent the importance of copyright and trademark laws in the gaming industry and its regulations with the help of relevant case laws via utilizing doctrinal methodology to support its findings. The aim of the paper is to make aware of the applicability of intellectual property laws in the gaming industry and how the justice system is evolving to adapt to such new industries. Furthermore, it will provide in-depth knowledge of their relationship with each other.

Keywords: copyright, DMCA, gaming industry, trademark, WIPO

Procedia PDF Downloads 61
873 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 361
872 Identifying Risk Factors for Readmission Using Decision Tree Analysis

Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka

Abstract:

This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.

Keywords: decision tree, hospital, internal medicine, readmission

Procedia PDF Downloads 253
871 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats

Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen

Abstract:

With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 gr. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.

Keywords: fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan

Procedia PDF Downloads 72
870 Hydrogeomatic System for the Economic Evaluation of Damage by Flooding in Mexico

Authors: Alondra Balbuena Medina, Carlos Diaz Delgado, Aleida Yadira Vilchis Fránces

Abstract:

In Mexico, each year news is disseminated about the ravages of floods, such as the total loss of housing, damage to the fields; the increase of the costs of the food, derived from the losses of the harvests, coupled with health problems such as skin infection, etc. In addition to social problems such as delinquency, damage in education institutions and the population in general. The flooding is a consequence of heavy rains, tropical storms and or hurricanes that generate excess water in drainage systems that exceed its capacity. In urban areas, heavy rains can be one of the main factors in causing flooding, in addition to excessive precipitation, dam breakage, and human activities, for example, excessive garbage in the strainers. In agricultural areas, these can hardly achieve large areas of cultivation. It should be mentioned that for both areas, one of the significant impacts of floods is that they can permanently affect the livelihoods of many families, cause damage, for example in their workplaces such as farmlands, commercial or industry areas and where services are provided. In recent years, Information and Communication Technologies (ICT) have had an accelerated development, being reflected in the growth and the exponential evolution of the innovation giving; as a result, the daily generation of new technologies, updates, and applications. Innovation in the development of Information Technology applications has impacted on all areas of human activity. They influence all the orders of life of individuals, reconfiguring the way of perceiving and analyzing the world such as, for instance, interrelating with people as individuals and as a society, in the economic, political, social, cultural, educational, environmental, etc. Therefore the present work describes the creation of a system of calculation of flood costs for housing areas, retail establishments and agricultural areas from the Mexican Republic, based on the use and application of geotechnical tools being able to be useful for the benefit of the sectors of public, education and private. To generate analysis of hydrometereologic affections and with the obtained results to realize the Geoinformatics tool was constructed from two different points of view: the geoinformatic (design and development of GIS software) and the methodology of flood damage validation in order to integrate a tool that provides the user the monetary estimate of the effects caused by the floods. With information from the period 2000-2014, the functionality of the application was corroborated. For the years 2000 to 2009 only the analysis of the agricultural and housing areas was carried out, incorporating for the commercial establishment's information of the period 2010 - 2014. The method proposed for the resolution of this research project is a fundamental contribution to society, in addition to the tool itself. Therefore, it can be summarized that the problems that are in the physical-geographical environment, conceiving them from the point of view of the spatial analysis, allow to offer different alternatives of solution and also to open up slopes towards academia and research.

Keywords: floods, technological innovation, monetary estimation, spatial analysis

Procedia PDF Downloads 219
869 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 88
868 Elaboration of Ceramic Metal Accident Tolerant Fuels by Additive Manufacturing

Authors: O. Fiquet, P. Lemarignier

Abstract:

Additive manufacturing may find numerous applications in the nuclear industry, for the same reason as for other industries, to enlarge design possibilities and performances and develop fabrication methods as a flexible route for future innovation. Additive Manufacturing applications in the design of structural metallic components for reactors are already developed at a high Technology Readiness Level (TRL). In the case of a Pressured Water Reactor using uranium oxide fuel pellets, which are ceramics, the transposition of already optimized Additive Manufacturing (AM) processes to UO₂ remains a challenge, and the progress remains slow because, to our best knowledge, only a few laboratories have the capability of developing processes applicable to UO₂. After the Fukushima accident, numerous research fields emerged with the study of ATF (Accident tolerant Fuel) fuel concepts, which aimed to improve fuel behaviour. One item concerns the increase of the pellet thermal performance by, for example, the addition of high thermal conductivity material into fissile UO₂. This additive phase may be metallic, and the end product will constitute a CERMET composite. Innovative designs of an internal metallic framework are proposed based on predictive calculations. However, because the well-known reference pellet manufacturing methods impose many limitations, manufacturing such a composite remains an arduous task. Therefore, the AM process appears as a means of broadening the design possibilities of CERMET manufacturing. If the external form remains a standard cylindrical fuel pellet, the internal metallic design remains to be optimized based on process capabilities. This project also considers the limitation to a maximum of 10% volume of metal, which is a constraint neutron physics considerations impose. The AM technique chosen for this development is robocasting because of its simplicity and low-cost equipment. It remains, however, a challenge to adapt a ceramic 3D printing process for the fabrication of UO₂ fuel. The investigation starts with surrogate material, and the optimization of slurry feedstock is based on alumina. The paper will present the first printing of Al2O3-Mo CERMET and the expected transition from ceramic-based alumina to UO₂ CERMET.

Keywords: nuclear, fuel, CERMET, robocasting

Procedia PDF Downloads 60
867 Psychological Factors of Readiness of Defectologists to Professional Development: On the Example of Choosing an Educational Environment

Authors: Inna V. Krotova

Abstract:

The study pays special attention to the definition of the psychological potential of a specialist-defectologist, which determines his desire to increase the level of his or her professional competence. The group included participants of the educational environment – an additional professional program 'Technologies of psychological and pedagogical assistance for children with complex developmental disabilities' implemented by the department of defectology and clinical psychology of the KFU jointly with the Support Fund for the Deafblind people 'Co-Unity'. The purpose of our study was to identify the psychological aspects of the readiness of the specialist-defectologist to his or her professional development. The study assessed the indicators of psychological preparedness, and its four components were taken into account: motivational, cognitive, emotional and volitional. We used valid and standardized tests during the study. As a result of the factor analysis of data received (from Extraction Method: Principal Component Analysis, Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 12 iterations), there were identified three factors with maximum factor load from 24 indices, and their correlation coefficients with other indicators were taken into account at the level of reliability p ≤ 0.001 and p ≤ 0.01. Thus the system making factor was determined – it’s a 'motivation to achieve success'; it formed a correlation galaxy with two other factors: 'general internality' and 'internality in the field of achievements', as well as with such psychological indicators as 'internality in the field of family relations', 'internality in the field of interpersonal relations 'and 'low self-control-high self-control' (the names of the scales used is the same as names in the analysis methods. In conclusion of the article, we present some proposals to take into account the psychological model of readiness of specialists-defectologists for their professional development, to stimulate the growth of their professional competence. The study has practical value for all providers of special education and organizations that have their own specialists-defectologists, teachers-defectologists, teachers for correctional and ergotherapeutic activities, specialists working in the field of correctional-pedagogical activity (speech therapists) to people with special needs who need true professional support.

Keywords: psychological readiness, defectologist, professional development, psychological factors, special education, professional competence, innovative educational environment

Procedia PDF Downloads 171
866 Effects of Brewer's Yeast Peptide Extract on the Growth of Probiotics and Gut Microbiota

Authors: Manuela Amorim, Cláudia S. Marques, Maria Conceição Calhau, Hélder J. Pinheiro, Maria Manuela Pintado

Abstract:

Recently it has been recognized peptides from different food sources with biological activities. However, no relevant study has proven the potential of brewer yeast peptides in the modulation of gut microbiota. The importance of human intestinal microbiota in maintaining host health is well known. Probiotics, prebiotics and the combination of these two components, can contribute to support an adequate balance of the bacterial population in the human large intestine. The survival of many bacterial species inhabiting the large bowel depends essentially on the substrates made available to them, most of which come directly from the diet. Some of these substrates can be selectively considered as prebiotics, which are food ingredients that can stimulate beneficial bacteria such as Lactobacilli or Bifidobacteria growth in the colon. Moreover, conventional food can be used as vehicle to intake bioactive compounds that provide those health benefits and increase people well-being. In this way, the main objective of this work was to study the potential prebiotic activity of brewer yeast peptide extract (BYP) obtained via hydrolysis of yeast proteins by cardosins present in Cynara cardunculus extract for possible use as a functional ingredient. To evaluate the effect of BYP on the modulation of gut microbiota in diet-induced obesity model, Wistar rats were fed either with a standard or a high-fat diet. Quantified via 16S ribosomal RNA (rRNA) expression by quantitative PCR (qPCR), genera of beneficial bacteria (Lactobacillus spp. and Bifidobacterium spp.) and three main phyla (Firmicutes, Bacteroidetes and Actinobacteria) were assessed. Results showed relative abundance of Lactobacillus spp., Bifidobacterium spp. and Bacteroidetes was significantly increased (P < 0.05) by BYP. Consequently, the potential health-promoting effects of WPE through modulation of gut microbiota were demonstrated in vivo. Altogether, these findings highlight the possible intervention of BYP as gut microbiota enhancer, promoting healthy life style, and the incorporation in new food products, leads them bringing associated benefits endorsing a new trend in the improvement of new value-added food products.

Keywords: functional ingredients, gut microbiota, prebiotics, brewer yeast peptide extract

Procedia PDF Downloads 490
865 Classical Music Unplugged: The Future of Classical Music Performance: Tradition, Technology, and Audience Engagement

Authors: Orit Wolf

Abstract:

Classical music performance is undergoing a profound transformation, marked by a confluence of technological advancements and evolving cultural dynamics. This academic paper explores the multifaceted changes and challenges faced by classical music performance, considering the impact of artificial intelligence (AI) along with other vital factors shaping this evolution. In the contemporary era, classical music is experiencing shifts in performance practices. This paper delves into these changes, emphasizing the need for adaptability within the classical music world. From repertoire selection and concert formats to artistic expression, performers and institutions navigate a delicate balance between tradition and innovation. We explore how these changes impact the authenticity and vitality of classical music performances. Furthermore, the influence of AI in the classical music concert world cannot be underestimated. AI technologies are making inroads into various aspects, from composition assistance to rehearsal and live performances. This paper examines the transformative effects of AI, considering how it enhances precision, adaptability, and creative exploration for musicians. We explore the implications for composers, performers, and the overall concert experience while addressing ethical concerns and creative opportunities. In addition to AI, there is the importance of cross-genre interactions within the classical music sphere. Mash-ups and collaborations with artists from diverse musical backgrounds are redefining the boundaries of classical music and creating works that resonate with a wider and more diverse audience. The benefits of cross-pollination in classical music seem crucial, offering a fresh perspective to listeners. As an active concert artist, Orit Wolf will share how the expectations of classical music audiences are evolving. Modern concertgoers seek not only exceptional musical performances but also immersive experiences that may involve technology, multimedia, and interactive elements. This paper examines how classical musicians and institutions are adapting to these changing expectations, using technology and innovative concert formats to deliver a unique and enriched experience to their audiences. As these changes and challenges reshape the classical music world, the need for a harmonious coexistence of tradition, technology, and innovation becomes evident. Musicians, composers, and institutions are striving to find a balance that ensures classical music remains relevant in a rapidly changing cultural landscape while maintaining the value it brings to compositions and audiences. This paper, therefore, aims to explore the evolving trends in classical music performance. It considers the influence of AI as one element within the broader context of change, highlighting the necessity of adaptability, cross-genre interactions, and a response to evolving audience expectations. By doing so, the classical music world can navigate this transformative period while preserving its timeless traditions and adding value to both performers and listeners. Orit Wolf, an international concert pianist, fulfils her vision to bring this music in new ways to mass audiences and will share her personal and professional experience as an artist who goes on stage and makes disruptive concerts.

Keywords: cross culture collaboration, music performance and ai, classical music in the digital age, classical concerts, innovation and technology, performance innovation, audience engagement in classical concerts

Procedia PDF Downloads 55
864 Seismic Response of Structure Using a Three Degree of Freedom Shake Table

Authors: Ketan N. Bajad, Manisha V. Waghmare

Abstract:

Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.

Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed

Procedia PDF Downloads 130
863 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: circular economy, electric mobility, lithium ion batteries, remanufacturing

Procedia PDF Downloads 352
862 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 90
861 Production of High Purity Cellulose Products from Sawdust Waste Material

Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole

Abstract:

Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.

Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp

Procedia PDF Downloads 179