Search results for: hanging veneer cladding systems
4790 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand
Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui
Abstract:
Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage
Procedia PDF Downloads 5624789 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.Keywords: data mining, knowledge discovery in databases, prediction models, student success
Procedia PDF Downloads 4074788 Requirements for a Shared Management of State-Owned Building in the Archaeological Park of Pompeii
Authors: Maria Giovanna Pacifico
Abstract:
Maintenance, in Italy, is not yet a consolidated practice despite the benefits that could come from. Among the main reasons, there are the lack of financial resources and personnel in the public administration and a general lack of knowledge about how to activate and to manage a prevented and programmed maintenance. The experimentation suggests that users and tourists could be involved in the maintenance process from the knowledge phase to the monitoring ones by using mobile devices. The goal is to increase the quality of Facility Management for cultural heritage, prioritizing usage needs, and limiting interference between the key stakeholders. The method simplifies the consolidated procedures for the Information Systems, avoiding a loss in terms of quality and amount of information by focusing on the users' requirements: management economy, user safety, accessibility, and by receiving feedback information to define a framework that will lead to predictive maintenance. This proposal was designed to be tested in the Archaeological Park of Pompeii on the state property asset.Keywords: asset maintenance, key stakeholders, Pompeii, user requirement
Procedia PDF Downloads 1254787 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions
Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven
Abstract:
In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.Keywords: health services research, qualitative research, NHS workforce, primary care
Procedia PDF Downloads 584786 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 1284785 The Nature and Impact of Trojan Horses in Cybersecurity
Authors: Mehrab Faraghti
Abstract:
Trojan horses, a form of malware masquerading as legitimate software, pose significant cybersecurity threats. These malicious programs exploit user trust, infiltrate systems, and can lead to data breaches, financial loss, and compromised privacy. This paper explores the mechanisms through which Trojan horses operate, including delivery methods such as phishing and software vulnerabilities. It categorizes various types of Trojan horses and their specific impacts on individuals and organizations. Additionally, the research highlights the evolution of Trojan threats and the importance of user awareness and proactive security measures. By analyzing case studies of notable Trojan attacks, this study identifies common vulnerabilities that can be exploited and offers insights into effective countermeasures, including behavioral analysis, anomaly detection, and robust incident response strategies. The findings emphasize the need for comprehensive cybersecurity education and the implementation of advanced security protocols to mitigate the risks associated with Trojan horses.Keywords: Trojan horses, cybersecurity, malware, data breach
Procedia PDF Downloads 114784 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.Keywords: energy-efficient, fog computing, IoT, telehealth
Procedia PDF Downloads 864783 Analytical Solution for Thermo-Hydro-Mechanical Analysis of Unsaturated Porous Media Using AG Method
Authors: Davood Yazdani Cherati, Hussein Hashemi Senejani
Abstract:
In this paper, a convenient analytical solution for a system of coupled differential equations, derived from thermo-hydro-mechanical analysis of three-phase porous media such as unsaturated soils is developed. This kind of analysis can be used in various fields such as geothermal energy systems and seepage of leachate from buried municipal and domestic waste in geomaterials. Initially, a system of coupled differential equations, including energy, mass, and momentum conservation equations is considered, and an analytical method called AGM is employed to solve the problem. The method is straightforward and comprehensible and can be used to solve various nonlinear partial differential equations (PDEs). Results indicate the accuracy of the applied method for solving nonlinear partial differential equations.Keywords: AGM, analytical solution, porous media, thermo-hydro-mechanical, unsaturated soils
Procedia PDF Downloads 2294782 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 4144781 Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data
Authors: Navya Saira George, Patroba Achola Odera
Abstract:
This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s.Keywords: Geographical Information Systems, Kochi City, Land use/cover, Remote Sensing, Urban Sprawl
Procedia PDF Downloads 1294780 Petri Net Modeling and Simulation of a Call-Taxi System
Authors: T. Godwin
Abstract:
A call-taxi system is a type of taxi service where a taxi could be requested through a phone call or mobile app. A schematic functioning of a call-taxi system is modeled using Petri net, which provides the necessary conditions for a taxi to be assigned by a dispatcher to pick a customer as well as the conditions for the taxi to be released by the customer. A Petri net is a graphical modeling tool used to understand sequences, concurrences, and confluences of activities in the working of discrete event systems. It uses tokens on a directed bipartite multi-graph to simulate the activities of a system. The Petri net model is translated into a simulation model and a call-taxi system is simulated. The simulation model helps in evaluating the operation of a call-taxi system based on the fleet size as well as the operating policies for call-taxi assignment and empty call-taxi repositioning. The developed Petri net based simulation model can be used to decide the fleet size as well as the call-taxi assignment policies for a call-taxi system.Keywords: call-taxi, discrete event system, petri net, simulation modeling
Procedia PDF Downloads 4244779 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network
Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani
Abstract:
Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking
Procedia PDF Downloads 884778 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad S. Daba, J. P. Dubois
Abstract:
Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution
Procedia PDF Downloads 3724777 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 6444776 Floating Building Potential for Adaptation to Rising Sea Levels: Development of a Performance Based Building Design Framework
Authors: Livia Calcagni
Abstract:
Most of the largest cities in the world are located in areas that are vulnerable to coastal erosion and flooding, both linked to climate change and rising sea levels (RSL). Nevertheless, more and more people are moving to these vulnerable areas as cities keep growing. Architects, engineers and policy makers are called to rethink the way we live and to provide timely and adequate responses not only by investigating measures to improve the urban fabric, but also by developing strategies capable of planning change, exploring unusual and resilient frontiers of living, such as floating architecture. Since the beginning of the 21st century we have seen a dynamic growth of water-based architecture. At the same time, the shortage of land available for urban development also led to reclaim the seabed or to build floating structures. In light of these considerations, time is ripe to consider floating architecture not only as a full-fledged building typology but especially as a full-fledged adaptation solution for RSL. Currently, there is no global international legal framework for urban development on water and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, the research intends to identify the technological, morphological, functional, economic, managerial requirements that must be considered in a the development of the PBBD framework conceived as a meta-design tool. As it is expected that floating urban development is mostly likely to take place as extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than of the offshore industry. Therefor, the identification and categorization of parameters takes the urban-architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics, from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of performance guidelines and regulatory systems that are effective in different countries around the world addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, this paper highlights how inhabiting water is not only a viable response to the problem of RSL, thus a resilient frontier for urban development, but also a response to energy insecurity, clean water and food shortages, environmental concerns and urbanization, in line with Blue Economy principles and the Agenda 2030. Moreover, the discipline of architecture is presented as a fertile field for investigating solutions to cope with climate change and its effects on life safety and quality. Future research involves the development of a decision support system as an information tool to guide the user through the decision-making process, emphasizing the logical interaction between the different potential choices, based on the PBBD.Keywords: adaptation measures, floating architecture, performance based building design, resilient architecture, rising sea levels
Procedia PDF Downloads 864775 Variation of Clinical Manifestations of COVID-19 Over Time of Pandemic
Authors: Mahdi Asghari Ozma, Fatemeh Aghamohammadzadeh, Mahin Ahangar Oskouee
Abstract:
In late 2019, the people of the world were involved with a new infection by the coronavirus, named SARS-COV-2 (COVID-19), which disseminated around the world quickly. This infection has the ability to affect various systems of the body, including respiratory, gastrointestinal, urinary, and hematology, which can be transmitted by various body samples in different ways. To control this fast-transmitted infection by preventing its transmission to other people, rapid diagnosis is vital, which can be done by examining the patient's clinical symptoms and also using various serological, molecular, and radiological methods. Symptoms caused by COVID-19 in patients include fever, cough, sore throat, headache, fatigue, shortness of breath, loss of taste or smell, skin rash, myalgia, and conjunctivitis. These clinical features were appearing gradually in different time periods from the onset of the infection, and patients showed varied and new symptoms at different times, which show the variety of symptoms over time during the spread of the infection.Keywords: COVID-19, diagnosis, symptom, variation, novel coronavirus
Procedia PDF Downloads 874774 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 574773 Some Probiotic Traits of Lactobacillus Strains Isolated from Pollen
Authors: Hani Belhadj, Daoud Harzallah, Seddik Khennouf, Saliha Dahamna, Mouloud Ghadbane
Abstract:
In this study, Lactobacillus strains isolated from pollen were identified by means of phenotypic and genotypic methods, At pH 2, most strains proved to be acid resistants, with losses in cell viability ranging from 0.77 to 4.04 Log orders. In addition, at pH 3 all strains could grew and resist the acidic conditions, with losses in cell viability ranging from 0.40 to 3.61 Log orders. It seems that, 0.3% and 0.5% of bile salts does not affect greatly the survival of most strains, excluding Lactobacillus sp. BH1398. Survival ranged from 81.0±3.5 to 93.5±3.9%. In contrast, in the presence of 1.0% bile salts, survival of five strains was decreased by more than 50%. Lactobacillus fermentum BH1509 was considered the most tolerant strain (77.5% for 1% bile) followed by Lactobacillus plantarum BH1541 (59.9% for 1% bile). Furthermore, all strains were resistant to colistine, clindamycine, chloramphenicol, and ciprofloxacine, but most of the strains were susceptible to Peniciline, Oxacillin, Oxytetracyclin, and Amoxicillin. Functionally interesting Lactobacillus isolates may be used in the future as probiotic cultures for manufacturing fermented foods and as bioactive delivery systems.Keywords: probiotics, lactobacillus, pollen, bile, acid tolerance
Procedia PDF Downloads 4204772 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V.K.Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier
Procedia PDF Downloads 4914771 All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators
Authors: Isao Tomita
Abstract:
The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2.Keywords: All-Silicon Raman Laser, FTTH, GE-PON, Quasi-Phase-Matched Structure, resonator
Procedia PDF Downloads 2544770 Small Target Recognition Based on Trajectory Information
Authors: Saad Alkentar, Abdulkareem Assalem
Abstract:
Recognizing small targets has always posed a significant challenge in image analysis. Over long distances, the image signal-to-noise ratio tends to be low, limiting the amount of useful information available to detection systems. Consequently, visual target recognition becomes an intricate task to tackle. In this study, we introduce a Track Before Detect (TBD) approach that leverages target trajectory information (coordinates) to effectively distinguish between noise and potential targets. By reframing the problem as a multivariate time series classification, we have achieved remarkable results. Specifically, our TBD method achieves an impressive 97% accuracy in separating target signals from noise within a mere half-second time span (consisting of 10 data points). Furthermore, when classifying the identified targets into our predefined categories—airplane, drone, and bird—we achieve an outstanding classification accuracy of 96% over a more extended period of 1.5 seconds (comprising 30 data points).Keywords: small targets, drones, trajectory information, TBD, multivariate time series
Procedia PDF Downloads 474769 Sliding Mode Control of Bilateral Teleoperation System with Time Delay
Authors: Ahmad Forouzantabar, Mohammad Azadi
Abstract:
This paper presents sliding mode controller for bilateral teleoperation systems with robotic master and slave under constant communication delays. We extend the passivity-based coordination architecture to enhance position and force tracking in the presence of offset in initial conditions, environmental contacts and unknown parameters such as friction coefficient. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of master and slave robots and improve both position and force tracking. Using the Lyapunov theory, the boundedness of master- slave tracking errors and the stability of the teleoperation system are also guaranteed. Numerical simulations show that proposed controller position and force tracking performances are superior to that of conventional coordination controller tracking performances.Keywords: Lyapunov stability, teleoperation system, time delay, sliding mode controller
Procedia PDF Downloads 3854768 Towards Interconnectedness: A Study of Collaborative School Culture and Principal Curriculum Leadership
Authors: Fan Chih-Wen
Abstract:
The Ministry of Education (2014) released the 12-year National Basic Education Curriculum Syllabus. Curriculum implementation has evolved from a loose connection of cooperation to a closely structured relationship of coordination and collaboration. Collaboration opens the door to teachers' culture of isolation and classrooms and allows them to discuss educational issues from multiple perspectives and achieve shared goals. The purpose of study is to investigate facilitating factors of collaborative school culture and implications for principal curriculum leadership. The development and implementation of the new curriculum involves collaborative governance across systems and levels, including cooperation between central governments and schools. First, it analyzes the connotation of the 12-year National Basic Education Curriculum; Second, it analyzes the meaning of collaborative culture; Third, it analyzes the motivating factors of collaborative culture. Finally, based on this, it puts forward relevant suggestions for principal curriculum leadership.Keywords: curriculum leadership, collaboration culture, tracher culture, school improvement
Procedia PDF Downloads 224767 The Representation of J. D. Salinger’s Views on Changes in American Society in the 1940s in The Catcher in the Rye
Authors: Jessadaporn Achariyopas
Abstract:
The objectives of this study aim to analyze both the protagonist in The Catcher in the Rye in terms of ideological concepts and narrative techniques which influence the construction of the representation and the relationship between the representation and J. D. Salinger’s views on changes in American society in the 1940s. This area of study might concern two theories: namely, a theory of representation and narratology. In addition, this research is intended to answer the following three questions. Firstly, how is the production of meaning through language in The Catcher in the Rye constructed? Secondly, what are J. D. Salinger’s views on changes in American society in the 1940s? Lastly, how is the relationship between the representation and J. D. Salinger’s views? The findings showed that the protagonist’s views, J. D. Salinger’s views, and changes in American society in the 1940s are obviously interrelated. The production of meaning which is the representation of the protagonist’s views was constructed of narrative techniques. J. D. Salinger’s views on changes in American society in the 1940s were the same antisocial perspectives as Holden Caulfield’s which are phoniness, alienation and meltdown.Keywords: representation, construction of the representation, systems of representation, phoniness, alienation, meltdown
Procedia PDF Downloads 3214766 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric
Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah
Abstract:
Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.Keywords: image registration, mutual information, image gradients, image transformations
Procedia PDF Downloads 2484765 Reliability Analysis for the Functioning of Complete and Low Capacity MLDB Systems in Piston Plants
Authors: Ramanpreet Kaur, Upasana Sharma
Abstract:
The purpose of this paper is to address the challenges facing the water supply for the Machine Learning Database (MLDB) system at the piston foundry plant. In the MLDB system, one main unit, i.e., robotic, is connected by two sub-units. The functioning of the system depends on the robotic and water supply. Lack of water supply causes system failure. The system operates at full capacity with the help of two sub-units. If one sub-unit fails, the system runs at a low capacity. Reliability modeling is performed using semi-Markov processes and regenerative point techniques. Several system effects such as mean time to system failure, availability at full capacity, availability at reduced capacity, busy period for repair and expected number of visits have been achieved. Benefits have been analyzed. The graphical study is designed for a specific case using programming in C++ and MS Excel.Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique
Procedia PDF Downloads 1034764 Remodeling English Language Arts Lessons: Critical Thinking- Based Pedagogy
Authors: Majed Al-Quran
Abstract:
Language arts, as a domain of learning, principally covers the study of literature and the arts of reading and writing. These three areas deal with the art of conceptualizing and representing in language how people live and might live their lives. And all three are significantly concerned with gaining command of language and expression. Of course, there is no command of language separate from the command of thought. The paper addresses how EFL learners can develop insight and sense into what can be earned from literature and a sense of putting experiences into words. It further shows how critical thinking-based instruction helps students develop command of their own ideas, which consequently requires command over the words in which they express them. Critical thinking stipulates that in words and ideas, there is the power to create systems of beliefs and multiple conceptions of life. Remodeling language lessons aim at overcoming the challenge of stimulating learners to cultivate a new and different conception of language skills, including those of reading and writing.Keywords: language arts, remodeling, critical thinking, pedagogy
Procedia PDF Downloads 764763 Effectiveness of Public Health Laws and Study of Social Aspects: With Special Reference to India
Authors: Arun Karoriya, Mrinal Agrawal
Abstract:
Health is one of the basic requirements of human being. And today India is facing a major degradation of health at every age group. As society evolves and flourishes, there are different types of rules, norms, standards which are required to control the conduct of the human being for its well-being and growth. Right to health is one of those aspects that can be counted, discovered and examined under the purview of constitutional provisions of India. The condition of health is at downfall despite the fact that there are several policies framed by the government. There is an urgent call for rigid public health laws to ensure safe and disease free society. The effectiveness of health law has to be examined by keeping in mind that it is hampering growth and economy and society establishment. Health in any society is a main social aspect as it plays a major role for economic development. The multidimensional approach to determine it is by discussing i) rational selection and use of medicines ii) sustainable adequate financing iii) affordable prices iv)reliable health and supply systems.Keywords: degradation, flourish, multidimensional, policies
Procedia PDF Downloads 3534762 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX
Procedia PDF Downloads 3934761 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.Keywords: human motion capture, computer vision, vision-based, tracking
Procedia PDF Downloads 320