Search results for: rate fragments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8302

Search results for: rate fragments

3682 Hidden Markov Movement Modelling with Irregular Data

Authors: Victoria Goodall, Paul Fatti, Norman Owen-Smith

Abstract:

Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data.

Keywords: hidden Markov Models, irregular observations, animal movement modelling, nocturnal predator

Procedia PDF Downloads 250
3681 Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions

Authors: Silvana Caglieri

Abstract:

Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol.

Keywords: amides, amines, DFT, MP2

Procedia PDF Downloads 287
3680 Non-Parametric Changepoint Approximation for Road Devices

Authors: Loïc Warscotte, Jehan Boreux

Abstract:

The scientific literature of changepoint detection is vast. Today, a lot of methods are available to detect abrupt changes or slight drift in a signal, based on CUSUM or EWMA charts, for example. However, these methods rely on strong assumptions, such as the stationarity of the stochastic underlying process, or even the independence and Gaussian distributed noise at each time. Recently, the breakthrough research on locally stationary processes widens the class of studied stochastic processes with almost no assumptions on the signals and the nature of the changepoint. Despite the accurate description of the mathematical aspects, this methodology quickly suffers from impractical time and space complexity concerning the signals with high-rate data collection, if the characteristics of the process are completely unknown. In this paper, we then addressed the problem of making this theory usable to our purpose, which is monitoring a high-speed weigh-in-motion system (HS-WIM) towards direct enforcement without supervision. To this end, we first compute bounded approximations of the initial detection theory. Secondly, these approximating bounds are empirically validated by generating many independent long-run stochastic processes. The abrupt changes and the drift are both tested. Finally, this relaxed methodology is tested on real signals coming from a HS-WIM device in Belgium, collected over several months.

Keywords: changepoint, weigh-in-motion, process, non-parametric

Procedia PDF Downloads 84
3679 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature

Authors: M. Malekian, M. E. Heydari, M. Irani Estyar

Abstract:

Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.

Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction

Procedia PDF Downloads 135
3678 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions

Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes

Abstract:

Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.

Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture

Procedia PDF Downloads 278
3677 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation

Authors: Mahmut Yildirim

Abstract:

This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.

Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection

Procedia PDF Downloads 77
3676 Hybrid Fixation in Management of Proximal Diaphyseal Forearm Bone Fractures in Children

Authors: Tarek Aly

Abstract:

Introduction: Maintenance of the length, providing rotational stability, and preserving functional range of forearm motion is the mainstay of both bone forearm fractures treatment. Conservative treatment in older children may lead to malunion with poor remodeling capacity. Recent studies emphasized that the rate of complications with IM nailing was obviously increased in old children. Open reduction and internal fixation have been criticized for the amount of soft tissue dissection and periosteal stripping needed for fixation and excessive scar formation. The aim of this study was to evaluate the anatomical and functional outcomes of hybrid fixation in the treatment of closed proximal radius and ulna fractures in adolescents between 12 and 17 years of age. Patients and Methods: 30 cases of diaphyseal both bone forearm fractures treated with hybrid fixation (Nail radius – Plate ulna) and were available for a follow-up period of fewer than 24 months. Results: Clinically, 72% of cases had an excellent function, 22% had a good function, 4% had a fair function, and 2% had a poor function. Radiologically, signs of the union had appeared in the radius 2weeks earlier than in the ulna in 55% of cases. Conclusion: A hybrid fixation technique in adolescent proximal both-bones forearm fractures could be a viable option in managing these injuries.

Keywords: hyprid fixation, both bones, forearm, fractures

Procedia PDF Downloads 103
3675 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020

Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon

Abstract:

Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.

Keywords: epidemiology, maternal death, hospital, Haiti

Procedia PDF Downloads 94
3674 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 887
3673 Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis

Authors: D. S. Fardhyanti, M. Megawati, H. Prasetiawan, U. Mediaty

Abstract:

Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively.

Keywords: bio-oil, pyrolysis, bagasse, sugar cane, gas chromatography-mass spectroscopy

Procedia PDF Downloads 144
3672 COVID in Pregnancy: Evaluating Maternal and Neonatal Complications

Authors: Alexa L. Walsh, Christine Hartl, Juliette Ferdschneider, Lezode Kipoliongo, Eleonora Feketeova

Abstract:

The investigation of COVID-19 and its effects has been at the forefront of clinical research since its emergence in the United States in 2020. Although the possibility of severe infection in immunocompromised individuals has been documented, within the general population of pregnant individuals, there remains to be vaccine hesitancy and uncertainty regarding how the virus may affect the individual and fetus. To combat this hesitancy, this study aims to evaluate the effects of COVID-19 infection on maternal and neonatal complication rates. This retrospective study was conducted by manual chart review of women who were diagnosed with COVID-19 during pregnancy (n = 78) and women who were not diagnosed with COVID-19 during pregnancy (n = 1,124) that gave birth at Garnet Health Medical Centers between 1/1/2019-1/1/2021. Both the COVID+ and COVID- groups exhibited similar median ages, BMI, and parity. The rates of complications were compared between the groups and statistical significance was determined using Chi-squared analysis. Results demonstrated a statistically higher rate of PROM, polyhydramnios, oligohydramnios, GDM, DVT/PE, preterm birth, and the overall incidence of any birth complication in the population that was infected with COVID-19 during their pregnancy. With this information, obstetrical providers can be better prepared for the management of COVID-19+ pregnancies and continue to educate their patients on the benefits of vaccination.

Keywords: complications, COVID-19, Gynecology, Obstetrics

Procedia PDF Downloads 83
3671 Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques

Authors: Freddy Patricio Moncayo-Matute, Pablo Gerardo Peña-Tapia, Vázquez-Silva Efrén, Paúl Bolívar Torres-Jara, Diana Patricia Moya-Loaiza, Gabriela Abad-Farfán

Abstract:

This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure.

Keywords: surgical planning, additive manufacturing, rapid prototyping, fused deposition modeling, custom anatomical model

Procedia PDF Downloads 105
3670 Prediction of Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 340
3669 Jesus’ Approach in Liberation of the Poor, Luke 4:18-19: Lesson for Nigerian Leaders

Authors: Aboekwe, Mary Emilia

Abstract:

Jesus’ mission was not only a religious one but had social and political implications. From the birth to the death of Jesus, God’s message of liberation is proclaimed in and through Jesus. This work studied Jesus’ inaugural mission in Luke 4: 18 -19 in the context of Nigerian leaders. A theological interpretation was adopted and it was discovered that Luke 4: 18-19 unfolded Jesus’ mission statement. This mission statement centered in preaching the good news to the poor, the release of the captives, healing the sick, liberation to the oppressed, and favour and abundance in the land. Related to the Jewish-Roman world of Jesus and the Nigerian nation, it was discovered that most of the maladies enumerated in Jesus’ inaugural mission statement were prevalent in Nigerian society. Maladies like poverty, oppression, violence, sickness and diseases are widespread in Nigeria. Poverty affects all, irrespective of gender, religion, or ethnicity. There is insecurity everywhere. Unemployment bites harder on Nigeria’s youthful population, and they are unable to find a job at the prevailing wage rate. To this effect, therefore, this study proposes Jesus’ liberative technique as a solution to these maladies prevalent in the country. The work equally challenged the Nigerian leaders to emulate Jesus’ mission statement and take proactive measures in fighting against these social challenges resident in Nigeria today.

Keywords: liberation, leadership, maladies, poverty

Procedia PDF Downloads 82
3668 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 474
3667 Visible Light Communication and Challenges

Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil

Abstract:

Visible light communication is an emerging technology for almost a decade now; there is a growing need for VLC systems to overcome the challenges faced by radio frequency RF communication systems. With the advancement in the development of solid-state sources, in the future would replace incandescent and fluorescent light sources. These solid-state devices are not only to be used for illumination but can also be employed for communication and navigational purposes. The replacement of conventional illumination sources with highly efficient light-emitting diodes (LED's) (generally white light) will reduce energy consumption as well as environmental pollution. White LEDs dissipate very less power as compared to conventional light sources. The use of LED's is not only beneficial in terms of power consumption, but it also has an intrinsic capability for indoor wireless communication as compared to indoor RF communication. It is considerably low in cost to operate than the RF systems such as Wi-Fi routers, allows convenient means of reusing the bandwidth, and there is a huge potential for high data rate transmissions with enhanced data security. This paper provides an overview of some of the current challenges with VLC and proposes a possible solution to deal with these challenges; it also examines some joint protocols to optimize the joint illumination and communication functionality.

Keywords: visible light communication, line of sight, root mean square delay spread, light emitting diodes

Procedia PDF Downloads 76
3666 Multiple Shoot Induction and Plant Regeneration of Kepuh (Sterculia foetida L.) Tissue Culture

Authors: Titin Handayani, Endang Yuniastuti

Abstract:

Kepuh (Sterculia foetida L.) is a potential plant contain mainly oil seeds that can be used as a source of alternative bioenergy and medicine. The main problem of kepuh cultivation is the limited supply of seed plants. Seeds development were very easy, but to produce fruit have to wait for approximately 5 years. The objective of this research was to obtain kepuh plants through direct in vitro regeneration. Hypocotyls and shoot tips explants were excised from sterile germinated seedlings and placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of plant growth regulators. The results showed that shoots induction from the apical and axillary buds on MS medium + 1.5 and 2 mg/L BAP and 0.5 and 1 mg/L IAA was growth very slowly. Increasing of BAP concentrations was increased shoot formation. The first subcultures were increased the rate of shoots growth on MS medium supplemented with 2 mg/L BAP and 0.5 mg/L IAA. The second of shoots subculture on MS medium + 1.5 to 2 mg/L BAP + 0.5 mg/L IAA was increased the number of shoots up to 4.8 in average. The best medium of shoots elongation were MS + 1 mgL-1 kinetin + 5 mg/L GA3. The highest percentage of roots (65%) occurred on MS medium with 5 mg/L IBA which average number of roots was 3.1. High percentages of survival and plants of normal appearance were obtained after five weeks of acclimatization.

Keywords: Kepuh, Sterculia foetida L, shoot multiplication, rooting, acclimatization, bioenergy, medicine

Procedia PDF Downloads 300
3665 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 115
3664 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 95
3663 Maternal-Fetal Outcome in Pregnant Women with Ebola Virus Disease: A Systematic Review

Authors: Garba Iliyasu, Lamaran Dattijo

Abstract:

Introduction: Ebola virus disease (EVD) is a disease of humans and other primates caused by Ebola viruses. The most widespread epidemic of EVD in history occurred recently in several West African countries. The burden and outcome of EVD in pregnant women remains uncertain. There are very few studies to date reporting on maternal and fetal outcomes among pregnant women with EVD, hence the justification for this comprehensive review of these published studies. Methods: Published studies in English that reported on maternal and or fetal outcome among pregnant women with EVD up to May 2016 were searched in electronic databases (Google Scholar, Medline, Embase, PubMed, AJOL, and Scopus). Studies that did not satisfy the inclusion criteria were excluded. We extracted the following variables from each study: geographical location, year of the study, settings of the study, participants, maternal and fetal outcome.Result: There were 12 studies that reported on 108 pregnant women and 110 fetal outcomes. Six of the studies were case reports, 3 retrospective studies, 2 cross-sectional studies and 1 was a technical report. There were 91(84.3%) deaths out of the 108 pregnant women, while only 1(0.9%) fetal survival was reported out of 110. Survival rate among the 15 patients that had spontaneous abortion/stillbirth or induced delivery was 100%. Conclusion: There was a poor maternal and fetal outcome among pregnant women with EVD, and fetal evacuation significantly improves maternal survival.

Keywords: Africa, ebola, maternofetal, outcome

Procedia PDF Downloads 267
3662 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution

Procedia PDF Downloads 236
3661 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 416
3660 Real Interest Rates and Real Returns of Agricultural Commodities in the Context of Quantitative Easing

Authors: Wei Yao, Constantinos Alexiou

Abstract:

In the existing literature, many studies have focused on the implementation and effectiveness of quantitative easing (QE) since 2008, but only a few have evaluated QE’s effect on commodity prices. In this context, by following Frankel’s (1986) commodity price overshooting model, we study the dynamic covariation between the expected real interest rates and six agricultural commodities’ real returns over the period from 2000:1 to 2018 for the US economy. We use wavelet analysis to investigate the causal relationship and co-movement of time series data by calculating the coefficient of determination in different frequencies. We find that a) US unconventional monetary policy may cause more positive and significant covariation between the expected real interest rates and agricultural commodities’ real returns over the short horizons; b) a lead-lag relationship that runs from agricultural commodities’ real returns to the expected real short-term interest rates over the long horizons; and c) a lead-lag relationship from agricultural commodities’ real returns to the expected real long-term interest rates over short horizons. In the realm of monetary policy, we argue that QE may shift the negative relationship between most commodities’ real returns and the expected real interest rates to a positive one over a short horizon.

Keywords: QE, commodity price, interest rate, wavelet coherence

Procedia PDF Downloads 93
3659 Factors Affecting Cost Efficiency of Municipal Waste Services in Tuscan Municipalities: An Empirical Investigation by Accounting for Different Management

Authors: María Molinos-Senante, Giulia Romano

Abstract:

This paper aims at investigating the effect of ownership in the efficiency assessment of municipal solid waste management. In doing so, the Data Envelopment Analysis meta-frontier approach integrating unsorted waste as undesirable output was applied. Three different clusters of municipalities have been created on the basis of the ownership type of municipal waste operators. In the second stage of analysis, the paper investigates factors affecting efficiency, in order to provide an outlook of levers to be used by policy and decision makers to improve efficiency, taking into account different management models in force. Results show that public waste management firms have better performance than mixed and private ones since their efficiency scores are significantly larger. Moreover, it has been demonstrated that the efficiency of waste management firms is statistically influenced by the age of population, population served, municipal size, population density and tourism rate. It evidences the importance of economies of scale on the cost efficiency of waste management. This issue is relevant for policymakers to define and implement policies aimed to improve the long-term sustainability of waste management in municipalities.

Keywords: data envelopment analysis, efficiency, municipal solid waste, ownership, undesirable output

Procedia PDF Downloads 166
3658 Modeling Anisotropic Damage Algorithms of Metallic Structures

Authors: Bahar Ayhan

Abstract:

The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.

Keywords: anisotropic damage, finite element method, plasticity, coupling

Procedia PDF Downloads 211
3657 Impact Analysis of Cultivation of Jatropha Tree on Fuel Prices and Environment

Authors: Saba Arif, Anam Nadeem, Roman Kalvin, Muzaffar Ali, Burhan Ali, Juntakan Taweekun

Abstract:

Globally transportation sector accounts for around 25% of energy demand and nearly 62% of oil consumed. Therefore, new energy sources are required to introduce for this huge demand replenishment of depleting conventional energy sources. Currently, biofuels such as Jatropha trees as an energy carrier for transportation sector are being utilized effectively round the globe. However, climate conditions at low altitudes with an average annual temperature above 20 degrees Celsius and rainfall of 300-1000mm are considered the most suitable environment for the efficient growth of Jatropha trees. The current study is providing a theoretical survey-based analysis to investigate the effect of rate of cultivation of jatropha trees on the reduction of fuel prices and its environmental benefits. The resulted study shows that jatropha tree’s 100 kg seeds give 80kg oil and the conversion process cost is very small as 890 PKR. Moreover, the extraction of oil from Jatropha tree is tax-free compared to other fuels. The analysis proved very essential for potential assessment of Jatropha regarding future energy fuel for transportation sector at global level. Additionally, it can be very beneficial for increment in the total amount of transportation fuel in Pakistan.

Keywords: jatropha tree, environmental impact, energy contents, theoretical survey

Procedia PDF Downloads 224
3656 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 110
3655 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis

Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong

Abstract:

A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.

Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell

Procedia PDF Downloads 347
3654 Safe Limits Concentration of Ammonia at Work Environments through CD8 Expression in Rats

Authors: Abdul Rohim Tualeka, Erick Caravan K. Betekeneng, Ramdhoni Zuhro, Reko Triyono, M. Sahri

Abstract:

It has been widely reported incidence caused by acute and chronic effects of exposure to ammonia in the working environment in Indonesia, but ammonia concentration was found to be below the threshold value. The purpose of this study was to determine the safety limit concentration of ammonia in the working environment through the expression of CD8 as a reference for determining the threshold value of ammonia in the working environment. This research was a laboratory experimental with post test only control group design using experimental animals as subjects experiment. From homogeneity test results indicated that the weight of white rats exposed and control groups had a homogeneous variant with a significant level of p (0.701) > α (0.05). Description of the average breathing rate is 0.0013 m³/h. Average weight rats based group listed exposure is 0.1405 kg. From the calculation IRS CD8, CD8 highest score in the doses contained 0.0154, with the location of the highest dose of ammonia without any effect on the lungs of rats is 0.0154 mg/kg body weight of mice. Safe Human Dose (SHD) ammonia is 0.002 mg/kg body weight workers. The conclusion of this study is the safety limit concentration of ammonia gas in the working environment of 0,025 ppm.

Keywords: ammonia, CD8, rats, safe limits concentration

Procedia PDF Downloads 226
3653 Effect of Planting Techniques on Mangrove Seedling Establishment in Kuwait Bay

Authors: L. Al-Mulla, B. M. Thomas, N. R. Bhat, M. K. Suleiman, P. George

Abstract:

Mangroves are halophytic shrubs habituated in the intertidal zones in the tropics and subtropics, forming a complex and highly dynamic coastal ecosystem. Historical evidence indicating the existence followed by the extinction of mangrove in Kuwait; hence, continuous projects have been established to reintroduce this plant to the marine ecosystem. One of the major challenges in establishing large-scale mangrove plantations in Kuwait is the very high rate of seedling mortality, which should ideally be less than 20%. This study was conducted at three selected locations in the Kuwait bay during 2016-2017, to evaluate the effect of four planting techniques on mangrove seedling establishment. Coir-pillow planting technique, comp-mat planting technique, and anchored container planting technique were compared with the conventional planting method. The study revealed that the planting techniques significantly affected the establishment of mangrove seedlings in the initial stages of growth. Location-specific difference in seedling establishment was also observed during the course of the study. However, irrespective of the planting techniques employed, high seedling mortality was observed in all the planting locations towards the end of the study; which may be attributed to the physicochemical characteristics of the mudflats selected.

Keywords: Avicennia marina (Forsk.) Vierh, coastal pollution, heavy metal accumulation, marine ecosystem, sedimentation, tidal inundation

Procedia PDF Downloads 153