Search results for: artificial intelligence and genetic algorithms
1058 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1391057 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL
Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson
Abstract:
The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.Keywords: PCR, optimisation, microfluidics, COMSOL
Procedia PDF Downloads 1611056 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum
Authors: Lidia Kowalska, Edward Arseniuk
Abstract:
Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding
Procedia PDF Downloads 1201055 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction
Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani
Abstract:
A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide
Procedia PDF Downloads 2401054 Potentially Toxic Cyanobacteria and Quantification of Microcystins/Nodularins and Cylindspermopsine in Four Dams of Guanajuato, Mexico
Authors: Laura Valdés-Santiago, José Luis Castro-Guillén, Jorge Noé García-Chávez, Rosalba Alonso-Rodríguez, Rafael Vargas-Bernal
Abstract:
The quality and availability of the water contained in dams (artificial bodies of water) are at risk due to the presence of uncontrolled growths of cyanobacteria capable of producing cyanotoxins that affect the ecosystem and harm the health of humans and animals. The physicochemical properties were measured, and the degree of eutrophy of four dams from Guanajuato was determined. They presented a pH of 6.1 to 8.4, conductivity of 121 to 415 μS/cm², chlorophyll of 0.43-42.43 μg/L, NO₃- 0-1.2 mg/L and PO₄3- 0.11 to 0.84 mg/L; considering these parameters, the prey most prone to the development of cyanobacterial blooms were El Palote dam, La Purísima dam, and Allende dam, but not El Conejo dam. The potentially toxic cyanobacteria identified were Planktothrix agardhii, Oscillatoria sp., Raphidiopsis sp., and Microcystis sp., Microcystin-LR, Nodularin, and Cylindrospermopsin were quantified, presenting values between 0.08-0.42 and 0.02-2.05 ppb, respectively, the water bodies with the highest concentration were El Palote dam and La Purísima dam. Microcystin-LR and/or Nodularin levels are within the guideline values for human consumption in drinking water established by the World Health Organization for Microcystin-LR and for Cylindrospermopsin by the Oregon Health Authority (OHA) in all dams. This work is relevant due to the use of these bodies of water for agriculture and human consumption in the state, and the presence of toxin-producing cyanobacteria can represent an environmental, ecotoxicological, and health problem, so it is recommended to establish a program of frequent monitoring of cyanobacteria and cyanotoxins in the state's dams.Keywords: Planktrothrix agardhii, Raphidiopsis sp., Microcystis sp., Cyanobacterial blooms, Cyanotoxins
Procedia PDF Downloads 801053 Molecular Detection of Helicobacter Pylori and Its Association with TNFα-308 Polymorphism in Cardiovascular Diseases
Authors: Azar Sharafianpor, Hossein Rassi, Fahimeh Nemati Mansur
Abstract:
Cardiovascular diseases (CVD) are the most important cause of death in industrialized and developing countries such as Iran. The most important risk factors for the CVD, genetic factors and chronic infectious agents, such as Helicobacter pylori, can be mentioned. The TNFα gene is one of the most important anti-inflammatory cytokines that can affect the sensitivity, efficacy, and ability of the immune response to chronic infections. Some TNF-α gene polymorphisms, including the replacement of the G nucleotide G with A at position 308 in the promoter region of TNF-α, increase the transcription of cytokines in the target cells and thus predispose a person to chronic infections. This study examines the TNF-α 308 polymorphism and its association with Helicobacter pylori infection in this disease. This study was a case-control study in which 154 patients were examined as cases or patients with symptoms of myocardial infarction or angina and 160 as controls or healthy subjects. All of the subjects at different ages were given venous blood and age, BMI, cholesterol, LDL, and HDL were determined. DNA was extracted from the specimens, and the cagA gene from H. pylori and the TNF-α-308 polymorphism were determined by PCR in patients and healthy subjects. Statistical analysis was performed with Epi Info software. The results showed that the frequency of H. pylori infection in the patients and healthy group were 53.23% (82 out of 154) and 47.5% (76 out of 160). There was no significant difference in H. pylori outbreak between the two groups. The frequencies of TNF-α-308 genotype for GG, GA, and AA in patients were 0.17, 0.49, and 0.34, respectively, whereas for controls 0.47, 0.35, and 0.18 for GG, GA, and AA, respectively. The frequency of genotype analysis of TNF-α-308 polymorphisms in both patients and healthy groups showed that there was a significant difference in the frequency of genotypes and the AA genotype was higher in the affected individuals. Also, there was a significant relationship between the genotype and the contamination with H. pylori and changes in cholesterol, LDL, and HDL levels were observed. The results of the study indicate that H. pylori detection in individuals with AA genotype in people under 50 years of age can play an important role in early diagnosis and treatment of cardiovascular disease.Keywords: Helicobacter pylori, TNFα gene, cardiovascular diseases, TNFα-308 polymorphism
Procedia PDF Downloads 1521052 How Envisioning Process Is Constructed: An Exploratory Research Comparing Three International Public Televisions
Authors: Alexandre Bedard, Johane Brunet, Wendellyn Reid
Abstract:
Public Television is constantly trying to maintain and develop its audience. And to achieve those goals, it needs a strong and clear vision. Vision or envision is a multidimensional process; it is simultaneously a conduit that orients and fixes the future, an idea that comes before the strategy and a mean by which action is accomplished, from a business perspective. Also, vision is often studied from a prescriptive and instrumental manner. Based on our understanding of the literature, we were able to explain how envisioning, as a process, is a creative one; it takes place in the mind and uses wisdom and intelligence through a process of evaluation, analysis and creation. Through an aggregation of the literature, we build a model of the envisioning process, based on past experiences, perceptions and knowledge and influenced by the context, being the individual, the organization and the environment. With exploratory research in which vision was deciphered through the discourse, through a qualitative and abductive approach and a grounded theory perspective, we explored three extreme cases, with eighteen interviews with experts, leaders, politicians, actors of the industry, etc. and more than twenty hours of interviews in three different countries. We compared the strategy, the business model, and the political and legal forces. We also looked at the history of each industry from an inertial point of view. Our analysis of the data revealed that a legitimacy effect due to the audience, the innovation and the creativity of the institutions was at the cornerstone of what would influence the envisioning process. This allowed us to identify how different the process was for Canadian, French and UK public broadcasters, although we concluded that the three of them had a socially constructed vision for their future, based on stakeholder management and an emerging role for the managers: ideas brokers.Keywords: envisioning process, international comparison, television, vision
Procedia PDF Downloads 1321051 Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts
Authors: Mengying Wang, Dongjing Liu, Holger Schwender, Ping Wang, Hongping Zhu, Tao Wu, Terri H Beaty
Abstract:
Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies.Keywords: Gene-Gene Interaction, Maternal Smoking, Nicotine Dependence, Non-Syndromic Cleft Lip with or without Cleft Palate
Procedia PDF Downloads 3371050 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals
Procedia PDF Downloads 3791049 An Integrated Framework for Seismic Risk Mitigation Decision Making
Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani
Abstract:
One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.Keywords: decision making, demolition, construction management, seismic retrofit
Procedia PDF Downloads 2371048 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing
Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi
Abstract:
Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management
Procedia PDF Downloads 61047 An Approach for Association Rules Ranking
Authors: Rihab Idoudi, Karim Saheb Ettabaa, Basel Solaiman, Kamel Hamrouni
Abstract:
Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain.Keywords: association rule, conceptual clusters, interestingness measures, ontology knowledge mining, ranking
Procedia PDF Downloads 3221046 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy
Authors: Sriram Kashyap Prasad, Ionut Florescu
Abstract:
This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning
Procedia PDF Downloads 1511045 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis
Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif
Abstract:
Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling
Procedia PDF Downloads 1521044 Associations of Gene Polymorphism of IL-17 a (C737T) with Its Level in Patients with Erysipelas Kazakh Population
Authors: Nazira B. Bekenova, Lydia A. Mukovozova, Andrej M. Grjibovski, Alma Z. Tokayeva, Yerbol M. Smail, Nurlan E. Aukenov
Abstract:
Erysipelas is an infectious disease with socio-economic significance and prone to prolonged recurrent course (30%). Contribution of genetic factors, in particular the gene polymorphism of cytokines, can be essential in disease etiology and pathogenesis. Interleukin – 17 A are produced by T helpers of 17 type and plays a key role in development of local inflammation process. Local inflammatory process is a dominant in the clinic of erysipelas. Established that the skin and mucosas are primary areas of migration (homing) Th17-cell and their cytokines are stimulate the barrier function of the epithelium. We studied associations between gene polymorphism of IL-17A (C737T) rs 8193036 and IL-17A level in patients with erysipelas Kazakh population. Altogether, 90 cases with erysipelas and 90 healthy controls from an ethnic Kazakh population comprised the sample. Cases were identified at Clinical Infectious Diseases Hospital of Semey (Kazakhstan). The IL-17A (rs8193036) polymorphism was analyzed by a real time polymerase chain reaction. Plasma levels of IL-17 A were assessed by immuneenzyme analysis method using ‘Vector-Best’ test-system (Russia). Differences in levels of IL-17 A between CC, TT, CT groups were studied using Kruskal — Wallis test. Pairwise comparisons were performed using Mann-Whitney tests with Bonferroni correction (New significance level was set to 0.025). We found, that in patients with erysipelas with CC genotype the level of IL-17 A was higher (p= 0, 010) compared to the carriers of CT genotype. When compared the level of IL – 17 A between the patients with TT genotype and patients with CC genotype, also between the patients with CT genotype and patients with TT genotype statistically significant differences are not revealed (p = 0.374 and p = 0.043, respectively). Comparisons of IL-17 A plasma levels between the CC and CT genotypes, between the CC and TT genotypes, and between the TT and CT in healthy patients did not reveal significant differences (p = 0, 291). Therefore, we are determined the associations of gene polymorphism of IL-17 A (C737T) with its level in patients erysipelas carriers CC genotype.Keywords: erysipelas, interleukin – 17 A, Kazakh, polymorphism
Procedia PDF Downloads 4351043 Family Quality of Life in the Context of Pediatric Sickle Cell Disease in Oman
Authors: Wafa Al Jabri
Abstract:
Sickle cell disease (SCD) is a genetic blood disorder that is characterized by a severe painful crisis. SCD among children requires long term dependencies and high caregiving demands that increase the overall family burdens. It is, therefore, essential to examine, support, and promote the well-being of families of children with SCD. Although there has been considerable progress in the international research on family quality of life (FQOL) in recent years; however, research in this field is relatively recent and diverse. Oman is a country in which family quality of life has definitely been under-researched. Therefore, the purpose of the study is to describe the FQOL in families of children with SCD in Oman. The study will also examine the relationships between child, mother, and family-related factors that may influence the overall FQOL. Theoretical Framework: The study is guided by the unified theory of family quality of life to help in understanding the concept of FQOL and the factors that shape it. Method:A convenience sample of 98 mothers of children with SCD will be recruited from the pediatric hematology clinic at Sultan Qaboos University Hospital in Oman to participate in this descriptive, cross sectional, correlational study. Data will be obtained using a self-administered questionnaire that includes child and mother socio-demographic data, questions about the number of visits and admissions to health care facilities for vaso- occlusive crises (VOCs), the Perceived Stress Scale-10, and the Beachcenter-FQOL scale. Anticipated Results: It is expected to find an association among frequency of VOCs, mother’s perceived stress level, and FQOL in families of children with SCD in Oman. Family type, socio-economic status, and number of SCD children in the family are also expected to influence the overall FQOL. Conclusion: The findings of the study might be pivotal in designing and implementing tailored family-based interventions to improve families’ wellbeing.Keywords: family quality of life, sickle cell disaes, children, family well-being
Procedia PDF Downloads 1381042 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System
Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu
Abstract:
The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.Keywords: fatigue, test rig, crack initiation, life, rail, squats
Procedia PDF Downloads 5151041 Performances and Activities of Urban Communities Leader Based on Sufficiency Economy Philosophy in Dusit District, Bangkok Metropolitan
Authors: Phusit Phukamchanoad
Abstract:
The research studies the behaviors based on sufficiency economy philosophy at individual and community levels as well as the satisfaction of the urban community leaders by collecting data with purposive sampling technique. For in-depth interviews with 26 urban community leaders, the result shows that the urban community leaders have good knowledge and understanding about sufficiency economy philosophy. Especially in terms of money spending, they must consider the need for living and be economical. The activities in the community or society should not take advantage of the others as well as colleagues. At present, most of the urban community leaders live in a sufficient way. They often spend time with public service, but many families are dealing with debt. Many communities have some political conflict and high family allowances because of living in the urban communities with rapid social and economic changes. However, there are many communities that leaders have applied their wisdom in development for their people by gathering and grouping the professionals to form activities such as making chili sauce, textile organization, making artificial flowers worshipping the sanctity. The most prominent group is the foot massage business in Wat Pracha Rabue Tham. This professional group is supported continuously by the government. One of the factors in terms of satisfaction used for evaluating community leaders is the customary administration in brotherly, interdependent way rather than using the absolute power or controlling power, but using the roles of leader to perform the activities with their people intently, determinedly and having a public mind for people.Keywords: performance and activities, sufficiency economy, urban communities leader, Dusit district
Procedia PDF Downloads 3641040 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry
Procedia PDF Downloads 3641039 Miracle Fruit Application in Sour Beverages: Effect of Different Concentrations on the Temporal Sensory Profile and Overall Linking
Authors: Jéssica F. Rodrigues, Amanda C. Andrade, Sabrina C. Bastos, Sandra B. Coelho, Ana Carla M. Pinheiro
Abstract:
Currently, there is a great demand for the use of natural sweeteners due to the harmful effects of the high sugar and artificial sweeteners consumption on the health. Miracle fruit, which is known for its unique ability to modify the sour taste in sweet taste, has been shown to be a good alternative sweetener. However, it has a high production cost, being important to optimize lower contents to be used. Thus, the aim of this study was to assess the effect of different miracle fruit contents on the temporal (Time-intensity - TI and Temporal Dominance of Sensations - TDS) sensory profile and overall linking of lemonade, to determine the better content to be used as a natural sweetener in sour beverages. TI and TDS results showed that the concentrations of 150 mg, 300 mg and 600 mg miracle fruit were effective in reducing the acidity and promoting the sweet perception in lemonade. Furthermore, the concentrations of 300 mg and 600 mg obtained similar profiles. Through the acceptance test, the concentration of 300 mg miracle fruit was shown to be an efficient substitute for sucrose and sucralose in lemonade, once they had similar hedonic values between ‘I liked it slightly’ and ‘I liked it moderately’. Therefore, 300mg miracle fruit consists in an adequate content to be used as a natural sweetener of lemonade. The results of this work will help the food industry on the efficient application of a new natural sweetener- the Miracle fruit extract in sour beverages, reducing costs and providing a product that meets the consumer desires.Keywords: acceptance, natural sweetener, temporal dominance of sensations, time-intensity
Procedia PDF Downloads 2491038 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 1131037 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 1631036 Effect of Fines on Liquefaction Susceptibility of Sandy Soil
Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz
Abstract:
Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure.Keywords: liquefaction, bentonite, slag, brittleness index
Procedia PDF Downloads 2211035 The Impact of CYP2C9 Gene Polymorphisms on Warfarin Dosing
Authors: Weaam Aldeeban, Majd Aljamali, Lama A. Youssef
Abstract:
Background & Objective: Warfarin is considered a problematic drug due to its narrow therapeutic window and wide inter-individual response variations, which are attributed to demographic, environmental, and genetic factors, particularly single nucleotide polymorphism (SNPs) in the genes encoding VKORC1 and CYP2C9 involved in warfarin's mechanism of action and metabolism, respectively. CYP2C9*2rs1799853 and CYP2C9*3rs1057910 alleles are linked to reduced enzyme activity, as carriers of either or both alleles are classified as moderate or slow metabolizers, and therefore exhibit higher sensitivity of warfarin compared with wild type (CYP2C9*1*1). Our study aimed to assess the frequency of *1, *2, and *3 alleles in the CYP2C9 gene in a cohort of Syrian patients receiving a maintenance dose of warfarin for different indications, the impact of genotypes on warfarin dosing, and the frequency of adverse effects (i.e., bleedings). Subjects & Methods: This retrospective cohort study encompassed 94 patients treated with warfarin. Patients’ genotypes were identified by sequencing the polymerase chain reaction (PCR) specific products of the gene encoding CYP2C9, and the effects on warfarin therapeutic outcomes were investigated. Results: Sequencing revealed that 43.6% of the study population has the *2 and/or *3 SNPs. The mean weekly maintenance dose of warfarin was 37.42 ± 15.5 mg for patients with the wild-type allele (CYP2C9*1*1), whereas patients with one or both variants (*2 and/or *3) demanded a significantly lower dose (28.59 ±11.58 mg) of warfarin, (P= 0.015). A higher percentage (40.7%) of patients with allele *2 and/or *3 experienced hemorrhagic accidents compared with only 17.9% of patients with the wild type *1*1, (P = 0.04). Conclusions: Our study proves an association between *2 and *3 genotypes and higher sensitivity to warfarin and a tendency to bleed, which necessitates lowering the dose. These findings emphasize the significance of CYP2C9 genotyping prior to commencing warfarin therapy in order to achieve optimal and faster dose control and to ensure effectiveness and safety.Keywords: warfarin, CYP2C9, polymorphisms, Syrian, hemorrhage
Procedia PDF Downloads 1461034 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1551033 Comparative Study of Properties of Iranian Historical Gardens by Focusing on Climate
Authors: Malihe Ahmadi
Abstract:
Nowadays, stress, tension and neural problems are among the most important concerns of the present age. The environment plays key role on improving mental health and reducing stress of citizens. Establishing balance and appropriate relationship between city and natural environment is of the most important approaches of present century. Type of approach and logical planning for urban green spaces as one of the basic sections of integration with nature, not only plays key role on quality and efficiency of comprehensive urban planning; but also it increases the system of distributing social activities and happiness and lively property of urban environments that leads to permanent urban development. The main purpose of recovering urban identity is considering culture, history and human life style in past. This is a documentary-library research that evaluates the historical properties of Iranian gardens in compliance with climate condition. Results of this research reveal that in addition to following Iranian gardens from common principles of land lot, structure of flowers and plants, water, specific buildings during different ages, the role of climate at different urban areas is among the basics of determining method of designing green spaces and different buildings located at diverse areas i.e. Iranian gardens are a space for merging natural and artificial elements that has inseparable connection with semantic principles and guarantees different functions. Some of the necessities of designing present urban gardens are including: recognition and recreation.Keywords: historical gardens, climate, properties of Iranian gardens, Iran
Procedia PDF Downloads 3971032 Exclusive Value Adding by iCenter Analytics on Transient Condition
Authors: Zhu Weimin, Allegorico Carmine, Ruggiero Gionata
Abstract:
During decades of Baker Hughes (BH) iCenter experience, it is demonstrated that in addition to conventional insights on equipment steady operation conditions, insights on transient conditions can add significant and exclusive value for anomaly detection, downtime saving, and predictive maintenance. Our work shows examples from the BH iCenter experience to introduce the advantages and features of using transient condition analytics: (i) Operation under critical engine conditions: e.g., high level or high change rate of temperature, pressure, flow, vibration, etc., that would not be reachable in normal operation, (ii) Management of dedicated sub-systems or components, many of which are often bottlenecks for reliability and maintenance, (iii) Indirect detection of anomalies in the absence of instrumentation, (iv) Repetitive sequences: if data is properly processed, the engineering features of transients provide not only anomaly detection but also problem characterization and prognostic indicators for predictive maintenance, (v) Engine variables accounting for fatigue analysis. iCenter has been developing and deploying a series of analytics based on transient conditions. They are contributing to exclusive value adding in the following areas: (i) Reliability improvement, (ii) Startup reliability improvement, (iii) Predictive maintenance, (iv) Repair/overhaul cost down. Illustrative examples for each of the above areas are presented in our study, focusing on challenges and adopted techniques ranging from purely statistical approaches to the implementation of machine learning algorithms. The obtained results demonstrate how the value is obtained using transient condition analytics in the BH iCenter experience.Keywords: analytics, diagnostics, monitoring, turbomachinery
Procedia PDF Downloads 741031 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple
Authors: Hasan Basaran, Emre Unal
Abstract:
Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode
Procedia PDF Downloads 1051030 Phenotypical and Genotypical Diagnosis of Cystic Fibrosis in 26 Cases from East and South Algeria
Authors: Yahia Massinissa, Yahia Mouloud
Abstract:
Cystic fibrosis (CF), the most common lethal genetic disease in the Europe population, is caused by mutations in the transmembrane conductance regulator gene (CFTR). It affects most organs including an epithelial tissue, base of hydroelectrolytic transepithelial transport, notably that aerial ways, the pancreas, the biliary ways, the intestine, sweat glands and the genital tractus. The gene whose anomalies are responsible of the cystic fibrosis codes for a protein Cl channel named CFTR (cystic fibrosis transmembrane conductance regulator) that exercises multiple functions in the cell, one of the most important in control of sodium and chlorine through epithelia. The deficient function translates itself notably by an abnormal production of viscous secretion that obstructs the execrator channels of this target organ: one observes then a dilatation, an inflammation and an atrophy of these organs. It also translates itself by an increase of the concentration in sodium and in chloride in sweat, to the basis of the sweat test. In order to do a phenotypical and genotypical diagnosis at a part of the Algerian population, our survey has been carried on 16 patients with evocative symptoms of the cystic fibrosis at that the clinical context has been confirmed by a sweat test. However, anomalies of the CFTR gene have been determined by electrophoresis in gel of polyacrylamide of the PCR products (polymerase chain reaction), after enzymatic digestion, then visualized to the ultraviolet (UV) after action of the ethidium bromide. All mutations detected at the time of our survey have already been identified at patients attained by this pathology in other populations of the world. However, the important number of found mutation with regard to the one of the studied patients testifies that the origin of this big clinical variability that characterizes the illness in the consequences of an enormous diversity of molecular defects of the CFTR gene.Keywords: cystic fibrosis, CFTR gene, polymorphism, algerian population, sweat test, genotypical diagnosis
Procedia PDF Downloads 3101029 [Keynote Talk]: sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: classifiers, feature selection, locomotion, sEMG
Procedia PDF Downloads 293