Search results for: healthcare data security
23333 Walls against Legal Identity: A Qualitative Study on Children of Refugees without Birth Registration in Malaysia
Authors: Rodziana M. Razali, Tamara J. Duraisingham
Abstract:
Malaysia is not a signatory to the 1951 Refugee Convention and its 1967 Protocol despite receiving the largest share of refugee inflows in Southeast Asia aside from Thailand. In Peninsular Malaysia, the majority of refugees and asylum seekers are from Myanmar, with Rohingya refugees recording the highest number compared to all other ethnicities. In the eastern state of Sabah, the presence of refugees who have long established themselves in the state is connected to those who escaped military persecution in southern Philippines in the 1970’s and 1980’s. A combination of legal and non-legal factors has created and sustained an adverse atmosphere of deprivation of legal identity for children of migrants including refugees born in Malaysia. This paper aims to qualitatively analyse the barriers to birth registration as the cornerstone of every person’s legal identity for children of refugees born in this country, together with the associated human rights implications. Data obtained through semi-structured interviews with refugees in Kota Kinabalu, Sabah and Rohingya refugees in Peninsular Malaysia shall be studied alongside secondary sources. Results show that births out of medical facilities, suspension of birth records, illiteracy, lack of awareness on the importance and procedures of birth registration, inability to meet documentary requirements, as well as fear of immigration enforcement, are the key factors hindering birth registration. These challenges exist against the backdrop of restrictive integration policy to avoid destabilising demographic and racial balance, political sentiment stirring xenophobic prejudices, as well as other economic and national security considerations. With no proof of their legal identity, the affected children grow up in a legal limbo, facing multiple human rights violations across generations. This research concludes that the country’s framework and practice concerning birth registration is in need of serious reform and improvement to reflect equality and universality of access to its birth registration system. Such would contribute significantly towards meeting its commitments to the post-2015 sustainable development agenda that pledges to 'Leave no one behind', as well as its recently announced National Human Rights Action Plan.Keywords: birth registration, children, Malaysia, refugees
Procedia PDF Downloads 17523332 A Method to Estimate Wheat Yield Using Landsat Data
Authors: Zama Mahmood
Abstract:
The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.Keywords: landsat, NDVI, remote sensing, satellite images, yield
Procedia PDF Downloads 33723331 The Role and Challenges of Social Workers in Child Protection: The Case of Indonesia
Authors: B. Rusyidi
Abstract:
Since 2009, the Indonesian Ministry of Social Affairs has been implementing Program Kesejahteraan Sosial Anak (PKSA) (Child Welfare Program) a conditional cash transfer program that targets neglected children, children with disabilities, street children, children in conflict with the law, and children in need of special protection, all from poor households. PKSA integrates three elements: Transfer of cash, care and social services through social workers, and institutional childcare assistance. This qualitative study analyzed the roles and the challenges of social workers in implementing PKSA and lays out recommendations to inform policy changes. Data were collected in late 2014 from national and local government and non-government child welfare agencies, social workers, and childcare institution representatives through interviews and Focused Group Discussions (FGDs). Field work took place in six districts in the provinces of Jakarta, Central Java and South Sulawesi. The study found that the social workers’ role was significant in facilitating cash transfer, providing education and guidance, and linking children and families to basic social services. This improved utilization of basic social services enhanced children and families’ behaviors and contributed to the well being of the children. However, only a small number of childcare institutions have social workers, leaving many children and families without care and social service linkages, depriving them of rehabilitative components to help them regain their social functions. Some social workers reported their struggles with heavy workloads, lack of professional competencies and training, limited job security, and inadequate professional acknowledgment from other professions. Parts of those challenges were due to the centralized nature of the program and the lack of shared vision and commitment about the child protection system among related government agencies both at the national and local levels. The study highlights the necessity to implement an integrated child protection system, decentralize the PKSA program, and increase the number, competence, case management, and management and monitoring of social workers. The most recent progress of the program and its impacts on social workers are also discussed.Keywords: child protection, conditional cash transfer, program decentralization, social worker, working conditions
Procedia PDF Downloads 21923330 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services
Authors: Giada Feletti, Daniela Tedesco, Paolo Trucco
Abstract:
The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning the indicators currently used for the performance measurement of EMS systems. From this literature analysis, it emerged that current studies focus on two distinct perspectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). The perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal focuses on the entire healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid to the dependency of decisions that in current EMS management models tend to be neglected or underestimated. In particular, the integration of the two processes enables the evaluation of the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in the extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating the ones firstly not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draws us to exclude additional indicators due to the unavailability of data required for their computation. The final dashboard, which was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness of EDs accessibility in real-time. By associating each KPI to the EMS phase it refers to, it was also possible to design a well-balanced dashboard covering both efficiency and effective performance of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient’s care are covered by traditional KPIs compared to the subsequent phases taking place in the hospital ED. This could be taken into consideration for the potential future development of the dashboard. Moreover, the research could proceed by building a multi-layer dashboard composed of the first level with a minimal set of KPIs to measure the basic performance of the EMS system at an aggregate level and further levels with KPIs that can bring additional and more detailed information.Keywords: dashboard, decision support, emergency medical services, key performance indicators
Procedia PDF Downloads 11523329 Artificial Intelligence and Police
Authors: Mehrnoosh Abouzari
Abstract:
Artificial intelligence has covered all areas of human life and has helped or replaced many jobs. One of the areas of application of artificial intelligence in the police is to detect crime, identify the accused or victim and prove the crime. It will play an effective role in implementing preventive justice and creating security in the community, and improving judicial decisions. This will help improve the performance of the police, increase the accuracy of criminal investigations, and play an effective role in preventing crime and high-risk behaviors in society. This article presents and analyzes the capabilities and capacities of artificial intelligence in police and similar examples used worldwide to prove the necessity of using artificial intelligence in the police. The main topics discussed include the performance of artificial intelligence in crime detection and prediction, the risk capacity of criminals and the ability to apply arbitray institutions, and the introduction of artificial intelligence programs implemented worldwide in the field of criminal investigation for police.Keywords: police, artificial intelligence, forecasting, prevention, software
Procedia PDF Downloads 21323328 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile
Procedia PDF Downloads 17623327 Potential of Detailed Environmental Data, Produced by Information and Communication Technology Tools, for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility
Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić
Abstract:
Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.Keywords: information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes
Procedia PDF Downloads 13923326 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 14223325 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country
Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni
Abstract:
Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country
Procedia PDF Downloads 7423324 Developing a South African Model of Neuropsychological Rehabilitation for Adults After Acquired Brain Injury
Authors: Noorjehan Joosub-Vawda
Abstract:
Objectives: The aim of this poster presentation is to examine cultural contextual understandings of ABI that could aid conceptualisation and the development of a model for neuropsychological rehabilitation in this context. Characteristics of the South African context that make the implementation of international NR practices difficult include socioeconomic disparities, sociocultural influences, lack of accessibility to healthcare services, and poverty and unemployment levels. NR services in the developed world have characteristics such as low staff-to-patient ratios and interdisciplinary teams that make them unsuitable for the resource-constrained South African context. Methods: An exploratory, descriptive research design based on programme theory is being followed in the development of a South African model of neuropsychological rehabilitation. Results: The incorporation of African traditional understandings and practices, such as beliefs about ancestral spirits in the etiology of Acquired Brain Injury are relevant to the planning of rehabilitation interventions. Community-Based Rehabilitation workers, psychoeducation, and cooperation among the different systemic levels especially in rural settings is also needed to improve services offered to patients living with ABI. Conclusions. The preliminary model demonstrated in this poster will attempt to build on the strengths of South African communities, incorporating valuable evidence from international models to serve those affected with brain injury in this context.Keywords: neuropsychological rehabilitation, South Africa, acquired brain injury, developing context
Procedia PDF Downloads 32723323 Islamic Finance and Trade Promotion in the African Continental Free Trade Area: An Exploratory Study
Authors: Shehu Usman Rano Aliyu
Abstract:
Despite the significance of finance as a major trade lubricant, evidence in the literature alludes to its scarcity and increasing cost, especially in developing countries where small and medium-scale enterprises are worst affected. The creation of the African Continental Free Trade Area (AFCFTA) in 2018, an organ of the African Union (AU), was meant to serve as a beacon for deepening economic integration through the removal of trade barriers inhibiting intra-African trade and movement of persons, among others. Hence, this research explores the role Islamic trade finance (ITF) could play in spurring intra- and inter-African trade. The study involves six countries; Egypt, Kenya, Malaysia, Morocco, Nigeria, and Saudi Arabia, and employs survey research, a total of 430 sample data, and SmartPLS Structural Equation Modelling (SEM) techniques in its analyses. We find strong evidence that Shari’ah, legal and regulatory compliance issues of the ITF institutions rhythm with the internal, national, and international compliance requirements equally as the unique instruments applied in ITF. In addition, ITF was found to be largely driven by global economic and political stability, socially responsible finance, ethical and moral considerations, risk-sharing, and resilience of the global Islamic finance industry. Further, SMEs, Governments, and Importers are the major beneficiary sectors. By and large, AfCFTA’s protocols align with the principles of ITF and are therefore suited for the proliferation of Islamic finance in the continent. And, while AML/KYC and BASEL requirements, compliance to AAOIFI and IFSB standards, paucity of Shari'ah experts, threats to global security, and increasing global economic uncertainty pose as major impediments, the future of ITF would be shaped by a greater need for institutional and policy support, global economic cum political stability, robust regulatory framework, and digital technology/fintech. The study calls for the licensing of more ITF institutions in the continent, participation of multilateral institutions in ITF, and harmonization of Shariah standards.Keywords: AfCFTA, islamic trade finance, murabaha, letter of credit, forwarding
Procedia PDF Downloads 6123322 Productivity and Household Welfare Impact of Technology Adoption: A Microeconometric Analysis
Authors: Tigist Mekonnen Melesse
Abstract:
Since rural households are basically entitled to food through own production, improving productivity might lead to enhance the welfare of rural population through higher food availability at the household level and lowering the price of agricultural products. Increasing agricultural productivity through the use of improved technology is one of the desired outcomes from sensible food security and agricultural policy. The ultimate objective of this study was to evaluate the potential impact of improved agricultural technology adoption on smallholders’ crop productivity and welfare. The study is conducted in Ethiopia covering 1500 rural households drawn from four regions and 15 rural villages based on data collected by Ethiopian Rural Household Survey. Endogenous treatment effect model is employed in order to account for the selection bias on adoption decision that is expected from the self-selection of households in technology adoption. The treatment indicator, technology adoption is a binary variable indicating whether the household used improved seeds and chemical fertilizer or not. The outcome variables were cereal crop productivity, measured in real value of production and welfare of households, measured in real per capita consumption expenditure. Results of the analysis indicate that there is positive and significant effect of improved technology use on rural households’ crop productivity and welfare in Ethiopia. Adoption of improved seeds and chemical fertilizer alone will increase the crop productivity by 7.38 and 6.32 percent per year of each. Adoption of such technologies is also found to improve households’ welfare by 1.17 and 0.25 percent per month of each. The combined effect of both technologies when adopted jointly is increasing crop productivity by 5.82 percent and improving welfare by 0.42 percent. Besides, educational level of household head, farm size, labor use, participation in extension program, expenditure for input and number of oxen positively affect crop productivity and household welfare, while large household size negatively affect welfare of households. In our estimation, the average treatment effect of technology adoption (average treatment effect on the treated, ATET) is the same as the average treatment effect (ATE). This implies that the average predicted outcome for the treatment group is similar to the average predicted outcome for the whole population.Keywords: Endogenous treatment effect, technologies, productivity, welfare, Ethiopia
Procedia PDF Downloads 66023321 The Shape of the Sculptor: Exploring Psychologist’s Perceptions of a Model of Parenting Ability to Guide Intervention in Child Custody Evaluations in South Africa
Authors: Anthony R. Townsend, Robyn L. Fasser
Abstract:
This research project provides an interpretative phenomenological analysis of a proposed conceptual model of parenting ability that has been designed to offer recommendations to guide intervention in child custody evaluations in South Africa. A recent review of the literature on child custody evaluations reveals that while there have been significant and valuable shifts in the capacity of the legal system aided by mental health professionals in understanding children and family dynamics, there remains a conceptual gap regarding the nature of parenting ability. With a view to addressing this paucity of a theoretical basis for considering parenting ability, this research project reviews a dimensional model for the assessment of parenting ability by conceiving parenting ability as a combination of good parenting and parental fitness. This model serves as a conceptual framework to guide child-custody evaluation and refine intervention in such cases to better meet the best interests of the child in a manner that bridges the professional gap between parties, legal entities, and mental health professionals. Using a model of good parenting as a point of theoretical departure, this model incorporates both intra-psychic and interpersonal attributes and behaviours of parents to form an impression of parenting ability and identify areas for potential enhancement. This research, therefore, hopes to achieve the following: (1) to provide nuanced descriptions of parents’ parenting ability; (2) to describe parents’ parenting potential; (3) to provide a parenting assessment tool for investigators in forensic family matters that will enable more useful recommendations and interventions; (4) to develop a language of consensus for investigators, attorneys, judges and parents, in forensic family matters, as to what comprises parenting ability and how this can be assessed; and (5) that all of the aforementioned will serve to advance the best interests of the children involved in such litigious matters. The evaluative promise and post-assessment prospects of this model are illustrated through three interlinking data sets: (1) the results of interviews with South African psychologists about the model, (2) retrospective analysis of care and contact evaluation reports using the model to determine if different conclusions or more specific recommendations are generated with its use and (3) the results of an interview with a psychologist who piloted this model by using it in care and contact evaluation.Keywords: alienation, attachment, best interests of the child, care and contact evaluation, children’s act (38 of 2005), child custody evaluation, civil forensics, gatekeeping, good parenting, good-enough parenting, health professions council of South Africa, family law, forensic mental healthcare practitioners, parental fitness, parenting ability, parent management training, parenting plan, problem-determined system, psychotherapy, support of other child-parent relationship, voice of the child
Procedia PDF Downloads 12023320 From Text to Data: Sentiment Analysis of Presidential Election Political Forums
Authors: Sergio V Davalos, Alison L. Watkins
Abstract:
User generated content (UGC) such as website post has data associated with it: time of the post, gender, location, type of device, and number of words. The text entered in user generated content (UGC) can provide a valuable dimension for analysis. In this research, each user post is treated as a collection of terms (words). In addition to the number of words per post, the frequency of each term is determined by post and by the sum of occurrences in all posts. This research focuses on one specific aspect of UGC: sentiment. Sentiment analysis (SA) was applied to the content (user posts) of two sets of political forums related to the US presidential elections for 2012 and 2016. Sentiment analysis results in deriving data from the text. This enables the subsequent application of data analytic methods. The SASA (SAIL/SAI Sentiment Analyzer) model was used for sentiment analysis. The application of SASA resulted with a sentiment score for each post. Based on the sentiment scores for the posts there are significant differences between the content and sentiment of the two sets for the 2012 and 2016 presidential election forums. In the 2012 forums, 38% of the forums started with positive sentiment and 16% with negative sentiment. In the 2016 forums, 29% started with positive sentiment and 15% with negative sentiment. There also were changes in sentiment over time. For both elections as the election got closer, the cumulative sentiment score became negative. The candidate who won each election was in the more posts than the losing candidates. In the case of Trump, there were more negative posts than Clinton’s highest number of posts which were positive. KNIME topic modeling was used to derive topics from the posts. There were also changes in topics and keyword emphasis over time. Initially, the political parties were the most referenced and as the election got closer the emphasis changed to the candidates. The performance of the SASA method proved to predict sentiment better than four other methods in Sentibench. The research resulted in deriving sentiment data from text. In combination with other data, the sentiment data provided insight and discovery about user sentiment in the US presidential elections for 2012 and 2016.Keywords: sentiment analysis, text mining, user generated content, US presidential elections
Procedia PDF Downloads 19523319 CVOIP-FRU: Comprehensive VoIP Forensics Report Utility
Authors: Alejandro Villegas, Cihan Varol
Abstract:
Voice over Internet Protocol (VoIP) products is an emerging technology that can contain forensically important information for a criminal activity. Without having the user name and passwords, this forensically important information can still be gathered by the investigators. Although there are a few VoIP forensic investigative applications available in the literature, most of them are particularly designed to collect evidence from the Skype product. Therefore, in order to assist law enforcement with collecting forensically important information from variety of Betamax VoIP tools, CVOIP-FRU framework is developed. CVOIP-FRU provides a data gathering solution that retrieves usernames, contact lists, as well as call and SMS logs from Betamax VoIP products. It is a scripting utility that searches for data within the registry, logs and the user roaming profiles in Windows and Mac OSX operating systems. Subsequently, it parses the output into readable text and html formats. One superior way of CVOIP-FRU compared to the other applications that due to intelligent data filtering capabilities and cross platform scripting back end of CVOIP-FRU, it is expandable to include other VoIP solutions as well. Overall, this paper reveals the exploratory analysis performed in order to find the key data paths and locations, the development stages of the framework, and the empirical testing and quality assurance of CVOIP-FRU.Keywords: betamax, digital forensics, report utility, VoIP, VoIPBuster, VoIPWise
Procedia PDF Downloads 30223318 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure
Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu
Abstract:
This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; Compared with LIPS-200 life test data, the results of the numerical model are in reasonable agreement with the measured data. Finally, we predict the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrates that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.Keywords: ion thruster, accelerator gird, sputter erosion, lifetime assessment
Procedia PDF Downloads 57023317 Preventing Discharge to No Fixed Address-Youth (NFA-Y)
Authors: Cheryl Forchuk, Sandra Fisman, Steve Cordes, Dan Catunto, Katherine Krakowski, Melissa Jeffrey, John D’Oria
Abstract:
The discharge of youth aged 16-25 from hospital into homelessness is a prevalent issue despite research indicating social, safety, health and economic detriments on both the individual and community. Lack of stable housing for youth discharged into homelessness results in long-term consequences, including exacerbation of health problems and costly health care service use and hospital readmission. People experiencing homelessness are four times more likely to be readmitted within one month of discharge and hospitals must spend $2,559 more per client. Finding safe housing for these individuals is imperative to their recovery and transition back to the community. People discharged from hospital to homelessness experience challenges, including poor health outcomes and increased hospital readmissions. Youth are the fastest-growing subgroup of people experiencing homelessness in Canada. The needs of youth are unique and include supports related to education, employment opportunities, and age-related service barriers. This study aims to identify the needs of youth at risk of homelessness by evaluating the efficacy of the “Preventing Discharge to No Fixed Address – Youth” (NFA-Y) program, which aims to prevent youth from being discharged from hospital into homelessness. The program connects youth aged 16-25 who are inpatients at London Health Sciences Centre and St. Joseph’s Health Care London to housing and financial support. Supports are offered through collaboration with community partners: Youth Opportunities Unlimited, Canadian Mental Health Association Elgin Middlesex, City of London Coordinated Access, Ontario Works, and Salvation Army’s Housing Stability Bank. This study was reviewed and approved by Western University’s Research Ethics Board. A series of interviews are being conducted with approximately ninety-three youth participants at three time points: baseline (pre-discharge), six, and twelve months post-discharge. Focus groups with participants, health care providers, and community partners are being conducted at three-time points. In addition, administrative data from service providers will be collected and analyzed. Since homelessness has a detrimental effect on recovery, client and community safety, and healthcare expenditure, locating safe housing for psychiatric patients has had a positive impact on treatment, rehabilitation, and the system as a whole. If successful, the findings of this project will offer safe policy alternatives for the prevention of homelessness for at-risk youth, help set them up for success in their future years, and mitigate the rise of the homeless youth population in Canada.Keywords: youth homelessness, no-fixed address, mental health, homelessness prevention, hospital discharge
Procedia PDF Downloads 10823316 Nutrient Foramina of the Lunate Bone of the Hand – an Anatomical Study
Authors: P.J. Jiji, B.V. Murlimanju, Latha V. Prabhu, Mangala M. Pai
Abstract:
Background: The lunate bone dislocation can lead to the compression of the median nerve and subsequent carpal tunnel syndrome. The dislocation can interrupt the vasculature and would cause avascular necrosis. The objective of the present study was to study the morphology and number of the nutrient foramina in the cadaveric dried lunate bones of the Indian population. Methods: The present study included 28 lunate bones (13 right sided and 15 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular surfaces. The foramina were observed only over the palmar and dorsal surfaces of the lunate bones. The foramen ranged between 2 and 10. The foramina were more in number over the dorsal surface (average number 3.3) in comparison to the palmar surface (average number 2.4). Conclusion: We believe that the present study has provided important data about the nutrient foramina of the lunate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The morphological knowledge of the vasculature, their foramina of entry and their number is required to understand the concepts in the lunatomalacia and Kienbock’s disease.Keywords: avascular necrosis, foramen, lunate, nutrient
Procedia PDF Downloads 24823315 Micro Celebrities in Social Media Instagram and Their Personal Influence in Business Perspective
Authors: Yoga Maulana Putra, Herry Hudrasyah
Abstract:
The Internet has now become an important part of human life; it can be accessed through a computer or even a smartphone almost anywhere and anytime. The Internet has created many social media such as Facebook, Twitter, and Instagram. Instagram has been acquired by Facebook in 2012. Since then, Instagram is growing fast. And now, Instagram is transforming from photo-sharing social media into business tools. As the result, some new behavior has been discovered. Some of Instagram user is becoming popular. These people also being called minor celebrity and they are also being used as marketing tools by many companies to influencing or promoting their product or service. This minor celebrity is existing because of their behavior in using Instagram. The company is using the personal influence of the minor celebrity to promoting and influencing their product or service, and the minor celebrity gets paid as much as their rate card. And their rate card based on their followers and insight. This research is using a qualitative method. An interview is being done to 6 minor celebrities from many different categories such as photographer, travel blogger, lifestyle, food blogger, fashion, and healthcare. Theory of reasoned behavior is being used as the grounded theory to discover the reason for their behavior and personal influence to describe their way to influencing people. The result of the interview is most of the minor celebrities is influenced by their friend’s circle in the process of using Instagram. They also had a different way to use their personal influence to affect their followers when the company employs them.Keywords: humanities and social sciences, Instagram, minor celebrity, social media
Procedia PDF Downloads 17023314 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images
Authors: Ki Moo Lim, Iman R. Tayibnapis
Abstract:
According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis
Procedia PDF Downloads 33223313 Understanding Human Rights Violations in the Fight against Boko Haram: A Historical Perspective
Authors: Anthony Mpiani
Abstract:
Recent media and NGO reports suggest that human rights violations have been a salient characteristic of the government Joint Task Force (JTF) in the war on Boko Haram. However, there has been relatively scant scholarly engagement with the forms of abuses committed by the JTF against civilians and why such human rights violations occur. The focus of this paper is to analyse the various human rights violations committed by JTF in the war against Boko Haram. Employing a historical approach, it argues that the JTF's human rights violations is shaped by the philosophy of colonial policing in Nigeria. Consequently, the failure of successive post-colonial governments to ideologically transform policing is accountable for the human rights abuses being witnessed in Nigeria today. A philosophical transformation in Nigeria's security forces especially the police and military is a prerequisite for ending human rights abuses in the fight against Boko Haram.Keywords: colonialism, policing, joint task force, counterinsurgency, Boko Haram, human rights violations
Procedia PDF Downloads 16723312 Four Phase Methodology for Developing Secure Software
Authors: Carlos Gonzalez-Flores, Ernesto Liñan-García
Abstract:
A simple and robust approach for developing secure software. A Four Phase methodology consists in developing the non-secure software in phase one, and for the next three phases, one phase for each of the secure developing types (i.e. self-protected software, secure code transformation, and the secure shield). Our methodology requires first the determination and understanding of the type of security level needed for the software. The methodology proposes the use of several teams to accomplish this task. One Software Engineering Developing Team, a Compiler Team, a Specification and Requirements Testing Team, and for each of the secure software developing types: three teams of Secure Software Developing, three teams of Code Breakers, and three teams of Intrusion Analysis. These teams will interact among each other and make decisions to provide a secure software code protected against a required level of intruder.Keywords: secure software, four phases methodology, software engineering, code breakers, intrusion analysis
Procedia PDF Downloads 40123311 ISME: Integrated Style Motion Editor for 3D Humanoid Character
Authors: Ismahafezi Ismail, Mohd Shahrizal Sunar
Abstract:
The motion of a realistic 3D humanoid character is very important especially for the industries developing computer animations and games. However, this type of motion is seen with a very complex dimensional data as well as body position, orientation, and joint rotation. Integrated Style Motion Editor (ISME), on the other hand, is a method used to alter the 3D humanoid motion capture data utilised in computer animation and games development. Therefore, this study was carried out with the purpose of demonstrating a method that is able to manipulate and deform different motion styles by integrating Key Pose Deformation Technique and Trajectory Control Technique. This motion editing method allows the user to generate new motions from the original motion capture data using a simple interface control. Unlike the previous method, our method produces a realistic humanoid motion style in real time.Keywords: computer animation, humanoid motion, motion capture, motion editing
Procedia PDF Downloads 38523310 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.Keywords: speed, Kriging, arterial, traffic volume
Procedia PDF Downloads 35723309 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO
Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu
Abstract:
Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO
Procedia PDF Downloads 9623308 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 3823307 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 17023306 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 13023305 Endocrine Disruptors In Odontostomatology
Authors: Beghdadi Chafika, Mrabet Sonia, Kassas Ahmed, Bensadok Saadia, Ahmed Fouatih Noureddine, Moulai Aissa
Abstract:
Increasing daily exposure to a wide range of chemical substances is impacting the health of human beings and ecosystems. These include endocrine-disrupting substances. "An endocrine disruptor is an exogenous substance or mixture that alters the functions of the endocrine system and induces harmful effects on the health of an intact organism. Unfortunately, endocrine disruptors (ED) are everywhere, even in certain materials and products used in healthcare. The oral manifestations of endocrinopathies may initially be discovered by the dental surgeon during a routine consultation. The dental surgeon must be advised to recognize the clinical picture and evoke the underlying endocrine pathology. A endocrine disruptor can affect facial growth by interfering with the production or action of these hormones. They are associated with reduced facial size, altered facial shape and abnormal tooth development. Failed or delayed eruption leads to insufficient vertical height and length of the arches, resulting in crowding. Molar hypomineralization (MIH) has been linked to exposure to endocrine disruptors. Another problem is that dentists use materials available to them that are ED (amalgam, composite resin, adhesives, resin prostheses, certain toothpastes). Lastly, prevention means first and foremost implementing technologies that eliminate endocrine disruptors or use less dangerous substitutes, and taking action on processes that eliminate or limit as far as possible atmospheric emissions or the use of endocrine disruptors.Keywords: endocrine disruptors, facial growth, mih, hormones de croissance
Procedia PDF Downloads 2123304 Annual Water Level Simulation Using Support Vector Machine
Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury
Abstract:
In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.Keywords: simulation, water level fluctuation, urmia lake, support vector machine
Procedia PDF Downloads 372