Search results for: self-forming structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7775

Search results for: self-forming structure

3305 Effects of Soil Erosion on Vegetation Development

Authors: Josephine Wanja Nyatia

Abstract:

The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity, and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems

Keywords: soil erosion, vegetation, development, seed availability

Procedia PDF Downloads 92
3304 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers

Authors: Fayyaz Rasool, Shakeela Parveen

Abstract:

The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.

Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita

Procedia PDF Downloads 451
3303 Change in Food Choice Behavior: Trend and Challenges

Authors: Gargi S. Kumar, Mrinmoyi Kulkarni

Abstract:

Food choice behavior is complex and determined by biological, psychological, socio-cultural, and economic factors. The past two decades, have seen dramatic changes in food consumption patterns among urban Indian consumers. The objective of the current study was to evaluate perceptions about changes with respect to food choice behavior. Ten participants [urban men and women] ranging in age from 40 to 65 were selected and in-depth interviews were conducted with a set of open ended questions. The recorded interviews were transcribed and thematically analyzed using inductive, open and axial coding. The results identified themes that act as drivers and consequences of change in food choice behavior. Drivers such as globalization [sub themes of urbanization, education, income, and work environment], media and advertising, changing gender roles, women in the workforce, and change in family structure have influenced food choice, both at an individual and national level. The consequences of changes in food choice were health implications, processed food consumption, food decisions driven by children and eating out among others. The study reveals that, over time, food choices change and evolve. However it is interesting to note how market forces and culture interact to influence individual behavior and the overall food environment which subsequently affects food choice and the health of the people.

Keywords: change, consequences, drivers, food choice, globalization

Procedia PDF Downloads 231
3302 Analysis of Experimentally Designed Soundproof Gypsum Partition Wall's Sections in Terms of Structural Engineering

Authors: Abdulkerim Ilgun, Ahmad Javid Zia

Abstract:

In developing countries, the urban populations are increasing rapidly and with this increment the residential areas are experiencing major problems. Construction of high-rise buildings in confined spaces is one of the most practical solutions for this problem. However, by living in high-rise buildings and sharing common residential areas, residents will face many problems. Irritating sound problem which is known as noise is one of the major problems mentioned above. The second most important problem is the weight of the high-rise buildings which makes the structure more vulnerable to earthquakes. To decrease earthquake loads it’s very important to decrease the weight of the buildings. To solve the problem of noise and keep the building weight at minimum level, experimentally designed soundproof gypsum partition wall which has optimum thickness has been used in high-rise story building and the results have been compared with ordinary brick partition walls. In this compression the effect of weights of soundproof gypsum walls and ordinary brick walls in accordance to structural engineering have been investigated.

Keywords: cellubor, gypsum board, gypsum partition walls, light partition walls, noise, sound

Procedia PDF Downloads 308
3301 The Effect of the Addition of Additives on the Properties of Bisamide Organogels

Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal

Abstract:

Organogels are formed by the assembly of low molecular weight gelators (LMWG) into fibrous structures. The assembly of these molecules into crystalline fibrous structures occurs as a result of reversible interactions such as π-stacking, hydrogen-bonding, and van der Waals interactions. Bisamide organogelators with two amide groups have been used as one of LMWGs which show efficient assembly behavior via hydrogen bonding for network formation, the formation of a crystalline network for solvent entrapment. In this study, different bisamide gelators with different lengths of alkyl chains have been added to the bisamide parent gels. The effect of the addition of bisamide additives on the gelation of bisamide gels is described. Investigation of the thermal properties of the gels by differential scanning calorimetry and dropping ball techniques indicated that the bisamide gels can be formed by the addition of a high concentration of the second bisamide components. The microstructure of the gels with different gelator components has been visualized with scanning electron microscopy (SEM) which has shown systematic woven, platelet-like, and a combination of those morphologies for different gels. Examining the addition of a range of bisamide additives with different structural characteristics than the parent bisamide gels has confirmed the effect of the molecular structure on the morphology of the bisamide gels and their final properties.

Keywords: bisamide organogelator additives, gel morphology, gel properties, self-assembly

Procedia PDF Downloads 207
3300 Analysis of Secondary School Students' Perceptions about Information Technologies through a Word Association Test

Authors: Fetah Eren, Ismail Sahin, Ismail Celik, Ahmet Oguz Akturk

Abstract:

The aim of this study is to discover secondary school students’ perceptions related to information technologies and the connections between concepts in their cognitive structures. A word association test consisting of six concepts related to information technologies is used to collect data from 244 secondary school students. Concept maps that present students’ cognitive structures are drawn with the help of frequency data. Data are analyzed and interpreted according to the connections obtained as a result of the concept maps. It is determined students associate most with these concepts—computer, Internet, and communication of the given concepts, and associate least with these concepts—computer-assisted education and information technologies. These results show the concepts, Internet, communication, and computer, are an important part of students’ cognitive structures. In addition, students mostly answer computer, phone, game, Internet and Facebook as the key concepts. These answers show students regard information technologies as a means for entertainment and free time activity, not as a means for education.

Keywords: word association test, cognitive structure, information technology, secondary school

Procedia PDF Downloads 417
3299 One-off Separation of Multiple Types of Oil-in-Water Emulsions with Surface-Engineered Graphene-Based Multilevel Structure Materials

Authors: Han Longxiang

Abstract:

In the process of treating industrial oil wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM has a wide range of applications in oil-in-water emulsions separation in industry and environmental science.

Keywords: emulsion, filtration, graphene, one-step

Procedia PDF Downloads 86
3298 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure.

Keywords: lithium disilicate, hot pressing, dental crown, microstructure

Procedia PDF Downloads 331
3297 Molecular Survey and Genetic Diversity of Bartonella henselae Strains Infecting Stray Cats from Algeria

Authors: Naouelle Azzag, Nadia Haddad, Benoit Durand, Elisabeth Petit, Ali Ammouche, Bruno Chomel, Henri J. Boulouis

Abstract:

Bartonella henselae is a small, gram negative, arthropod-borne bacterium that has been shown to cause multiple clinical manifestations in humans including cat scratch disease, bacillary angiomatosis, endocarditis, and bacteremia. In this research, we report the results of a cross sectional study of Bartonella henselae bacteremia in stray cats from Algiers. Whole blood of 227 stray cats from Algiers was tested for the presence of Bartonella species by culture and for the evaluation of the genetic diversity of B. henselae strains by multi-locus variable number of tandem repeats assay (MLVA). Bacteremia prevalence was 17% and only B. henselae was identified. Type I was the predominant type (64%). MLVA typing of 259 strains from 30 bacteremic cats revealed 52 different profiles. 51 of these profiles were specific to Algerian cats/identified for the first time. 20/30 cats (67%) harbored 2 to 7 MLVA profiles simultaneously. The similarity of MLVA profiles obtained from the same cat, neighbor-joining clustering and structure-neighbor clustering showed that such a diversity likely results from two different mechanisms occurring either independently or simultaneously independent infections and genetic drift from a primary strain.

Keywords: Bartonella, cat, MLVA, genetic

Procedia PDF Downloads 155
3296 Peltier Air Conditioning System for Preventing Ambient Heating: An Alternative to Gas Air Conditioners

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

After discovering and using Freon as refrigerant in refrigerators and air conditioners, researchers have been working hard to minimize massive environmental damage caused by this type of systems, including ozone depletion, heat production, and urban warming. However, there is a growing concern for global warming and climate change and its impacts on climates. Although gas air conditioners can provide comfort in short term, there are long-term consequences and effects, including global warming, polar ice melting, sea level rising, rising sea surface temperatures, reduction in seasonal precipitation, tropical storms, and drought. In this theoretical and practical study, Peltier electronic chip was used with no gas in the structure and operation. In fact, cooling and heating are based on bipolar electronics. With an innovative method, Peltier air conditioners provide cooling in warm seasons and heating in cold seasons in buildings. Such a system prevents ambient warming. The problem of air circulation between high buildings in large cities and draught will be considerably resolved through the use of the silent fan in the system. In addition, the system is designed and developed in accordance with international standards such as LEED and Energy Star.

Keywords: energy, Building cooling and heating, peltier, leed, energy star

Procedia PDF Downloads 198
3295 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature

Authors: J. O. Bodunrin, S. J. Moloi

Abstract:

This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.

Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD

Procedia PDF Downloads 136
3294 Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work.

Keywords: catalytic muffler, perforated inlet cone, catalysts, perforated pipe, flow uniformity, pressure drop

Procedia PDF Downloads 330
3293 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 355
3292 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles

Authors: Sonjida Mustafia

Abstract:

Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.

Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure

Procedia PDF Downloads 102
3291 the fairness of meritocracy and Korean Democracy-What makes the Korean youth accept the fairness of meritocracy??

Authors: WooJin KANG

Abstract:

Contrary to the ideal, in the cartelized democracy, meritocracy is revealed to be a system that gives arrogance to the winners and humiliation to the losers, and more and more studies are asserting the upper-class bias of meritocracy. However, only some studies have analyzed the determinants of the perception of meritocracy and fairness among young people. This article was an attempt to fill this gap. According to the empirical results of this article, the determinants of fairness of the meritocracy in the youth were multidimensional. The social status model, the political ideology model, and the future prospect model all significantly impacted the perception of meritocracy fairness among young people. Contrary to the predictions of the system justification theory and the compensatory control theory of previous studies, the lower-class youth were critical of meritocracy. In addition, the more negative the future outlook, the less they accepted the fairness of meritocracy. In addition, ideological debates over solutions to inequality of opportunity, which began in earnest during the 20th presidential election, turned out to be a variable that significantly influenced the perception of fairness based on meritocracy among young people. The results of the empirical analysis in this article reaffirmed the multidimensional structure of the youth. This suggests the need for policy responses leading to education tailored to various subgroups within the youth.

Keywords: Meritocracy, Exam-Meritocracy, Fairness, Multiple-inequality

Procedia PDF Downloads 68
3290 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper

Procedia PDF Downloads 211
3289 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

Abstract:

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Keywords: ontologies, relational databases, SPARQL, web interface

Procedia PDF Downloads 275
3288 The Effect of Yb3+ Concentration on Spectroscopic properties of Strontium Cerate Doped with Tm3+ and Yb3+

Authors: Yeon Woo Seo, Haeyoung Choi, Jung Hyun Jeong

Abstract:

Recently, the UC phosphors have attracted much attention owing to their wide applicability in areas such as biological fluorescence labeling, three-dimensional color displays, temperature sensor, solar cells, white light emitting diodes (WLEDs), fiber optic communication, anti-counterfeiting and other areas. The UC efficiency is mainly dependent on the host lattice and the interaction between the host lattice and doped ions. Up to date, various host matrices, such as oxides, fluorides, vanadates and phosphates, have been investigated as efficient UC luminescent hosts. Recently, oxide materials with low phonon energy have been investigated as the host matrices of UC materials due to their high chemical durability and physical stability. A series of Sr2CeO4: Tm3+/Yb3+ phosphors with different concentrations of Yb3+ ions have been successfully prepared using the high-energy ball milling method. In this study, we reported the UC luminescent properties of Tm3+/Yb3+ ions co-doped Sr2CeO4 phosphors under an excitation wavelength of 975 nm. Furthermore, the structural and morphological characteristics, as well as the UC luminescence mechanism were investigated in detail. The X-ray diffraction patterns confirmed their orthorhombic structure. Under 975 nm excitation, the emission peaks were observed at 478 nm (blue) and 652 nm (red), corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+, respectively. The optimized doping concentration of Yb3+ ion was 10 mol%.

Keywords: Strontium Cerate, up-conversion, luminescence, Tm3+, Yb3+

Procedia PDF Downloads 269
3287 The Path to Ruthium: Insights into the Creation of a New Element

Authors: Goodluck Akaoma Ordu

Abstract:

Ruthium (Rth) represents a theoretical superheavy element with an atomic number of 119, proposed within the context of advanced materials science and nuclear physics. The conceptualization of Rth involves theoretical frameworks that anticipate its atomic structure, including a hypothesized stable isotope, Rth-320, characterized by 119 protons and 201 neutrons. The synthesis of Ruthium (Rth) hinges on intricate nuclear fusion processes conducted in state-of-the-art particle accelerators, notably utilizing Calcium-48 (Ca-48) as a projectile nucleus and Einsteinium-253 (Es-253) as a target nucleus. These experiments aim to induce fusion reactions that yield Ruthium isotopes, such as Rth-301, accompanied by neutron emission. Theoretical predictions outline various physical and chemical properties attributed to Ruthium (Rth). It is envisaged to possess a high density, estimated at around 25 g/cm³, with melting and boiling points anticipated to be exceptionally high, approximately 4000 K and 6000 K, respectively. Chemical studies suggest potential oxidation states of +2, +3, and +4, indicating a versatile reactivity, particularly with halogens and chalcogens. The atomic structure of Ruthium (Rth) is postulated to feature an electron configuration of [Rn] 5f^14 6d^10 7s^2 7p^2, reflecting its position in the periodic table as a superheavy element. However, the creation and study of superheavy elements like Ruthium (Rth) pose significant challenges. These elements typically exhibit very short half-lives, posing difficulties in their stabilization and detection. Research efforts are focused on identifying the most stable isotopes of Ruthium (Rth) and developing advanced detection methodologies to confirm their existence and properties. Specialized detectors are essential in observing decay patterns unique to Ruthium (Rth), such as alpha decay or fission signatures, which serve as key indicators of its presence and characteristics. The potential applications of Ruthium (Rth) span across diverse technological domains, promising innovations in energy production, material strength enhancement, and sensor technology. Incorporating Ruthium (Rth) into advanced energy systems, such as the Arc Reactor concept, could potentially amplify energy output efficiencies. Similarly, integrating Ruthium (Rth) into structural materials, exemplified by projects like the NanoArc gauntlet, could bolster mechanical properties and resilience. Furthermore, Ruthium (Rth)--based sensors hold promise for achieving heightened sensitivity and performance in various sensing applications. Looking ahead, the study of Ruthium (Rth) represents a frontier in both fundamental science and applied research. It underscores the quest to expand the periodic table and explore the limits of atomic stability and reactivity. Future research directions aim to delve deeper into Ruthium (Rth)'s atomic properties under varying conditions, paving the way for innovations in nanotechnology, quantum materials, and beyond. The synthesis and characterization of Ruthium (Rth) stand as a testament to human ingenuity and technological advancement, pushing the boundaries of scientific understanding and engineering capabilities. In conclusion, Ruthium (Rth) embodies the intersection of theoretical speculation and experimental pursuit in the realm of superheavy elements. It symbolizes the relentless pursuit of scientific excellence and the potential for transformative technological breakthroughs. As research continues to unravel the mysteries of Ruthium (Rth), it holds the promise of reshaping materials science and opening new frontiers in technological innovation.

Keywords: superheavy element, nuclear fusion, bombardment, particle accelerator, nuclear physics, particle physics

Procedia PDF Downloads 44
3286 Protective Effect of Herniarin on Ionizing Radiation-Induced Impairments in Brain

Authors: Sophio Kalmakhelidze, Eka Shekiladze, Tamar Sanikidze, Mikheil Gogebashvili, Nazi Ivanishvili

Abstract:

Radiation-induced various degrees of brain injury and cognitive impairment have been described after cranial radiotherapy of brain tumors. High doses of ionizing radiation have a severe impact on the central nervous system, resulting in morphological and behavioral impairments. Structures of the limbic system are especially sensitive to radiation exposure. Hence, compounds or drugs that can reduce radiation-induced impairments can be used as promising antioxidants or radioprotectors. In our study Mice whole-body irradiation with 137Cs was performed at a dose rate of 1,1 Gy/min for a total dose of 5 Gy with a “Gamma-capsule-2”. Irradiated mice were treated with Herniarin (20 mg/kg) for five days before irradiation and the same dose was administrated after one hour of irradiation. The immediate and delayed effects of ionizing radiation, as well as, protective effect of Herniarin was evaluated during early and late post-irradiation periods. The results reveal that ionizing radiation (5 Gy) alters the structure of the hippocampus in adult mice during the late post-irradiation period resulting in the decline of memory formation and learning process. Furthermore, Simple Coumarin-Herniarin reveals a radiosensitizing effect reducing morphological and behavioral alterations.

Keywords: ionizing radiation, cognitive impairments, hippocampus, limbic system, Herniarin

Procedia PDF Downloads 78
3285 Analysis of Cannabinol and Cannabidiol affinity with GBRA1

Authors: Hamid Hossein Khezri, Afsaneh Javdani-Mallak

Abstract:

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Cannabidiol (CBD) is one of the members of cannabinoid compounds found in cannabis. CBD and Cannabinol (CBN), as the other extract of plant Cannabis were able to reduce myofascial pain in rats with immunosuppressive and anti-inflammatory activities. In this study, we accomplished protein-protein BLAST, and the sequence was found to be for Gamma-aminobutyric acid receptor subunit alpha-1 (GBRA1) chain A and its 3D structure was subsequently downloaded from Protein Data Bank. The structures of the ligands, cannabinol, and cannabidiol, were obtained from PubChem. After the necessary process of the obtained files, AutoDock Vina was used to perform molecular docking. Docking between the ligands and GBRA1 chain A revealed that cannabinol has a higher affinity to GBRA1 (binding energy = -7.5 kcal/mol) compared to cannabidiol (binding energy = -6.5 kcal/mol). Furthermore, cannabinol seems to be able to interact with 10 residues of the protein, out of which 3 are in the neurotransmitter-gated ion-channel transmembrane domain of GBRA1, whereas cannabidiol interacts with two other residues. Although the results of this project do not indicate the activating /or inhibitory capability of the studied compounds, it suggests that cannabinol can act as a relatively strong ligand for GBRA1.

Keywords: protein-ligand docking, cannabinol, cannabidiol, GBRA1

Procedia PDF Downloads 114
3284 Evaluation of Greenhouse Covering Materials

Authors: Mouustafa A. Fadel, Ahmed Bani Hammad, Faisal Al Hosany, Osama Iwaimer

Abstract:

Covering materials of greenhouses is the most governing component of the construction which controls two major parameters the amount of light and heat diffused from the surrounding environment into the internal space. In hot areas, balancing between inside and outside the greenhouse consumes most of the energy spent in production systems. In this research, a special testing apparatus was fabricated to simulate the structure of the greenhouse provided with a 400W full spectrum light. Tests were carried out to investigate the effectiveness of different commercial covering material in light and heat diffusion. Twenty one combinations of Fiberglass, Polyethylene, Polycarbonate, Plexiglass and Agril (PP nonwoven fabric) were tested. It was concluded that Plexiglass was the highest in light transparency of 87.4% where the lowest was 33% and 86.8% for Polycarbonate sheets. The enthalpy of the air moving through the testing rig was calculated according to air temperature differences between inlet and outlet openings. The highest enthalpy value was for one layer of Fiberglass and it was 0.81 kj/kg air while it was for both Plexiglass and blocked Fiberglass with a value of 0.5 kj/kg air. It is concluded that, although Plexiglass has high level of transparency which is indeed very helpful under low levels of solar flux, it is not recommended under hot arid conditions where solar flux is available most of the year. On the other hand, it might be a disadvantage to use Plixeglass specially in summer where it helps to accumulate more heat inside the greenhouse.

Keywords: greenhouse, covering materials, aridlands, environmental control

Procedia PDF Downloads 480
3283 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation

Procedia PDF Downloads 261
3282 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 222
3281 Morphometry of Cervical Spinal Cord in Rabbit Using Design-Based Stereology

Authors: Hamed Chavoshi Pour, Javad Sadeghinejad

Abstract:

The spinal cord is a long structure that starts at the end of the medulla oblongata and is located within the vertebral canal. Physiologically, the spinal cord connects the brain with the peripheral nervous system for sensory and motor activities. The cervical spinal cord is an area of particular interest in medicine and veterinary medicine due to the high prevalence of diseases in this region. This study describes the morphometric features of the cervical spinal cord in rabbits using design-unbiased stereology. The cervical spinal cords of five male rabbits were dissected, and slabs were taken according to systematic uniform random sampling. Each slab was embedded in paraffin and cut into a 6-µm thick section, and stained with cresyl violet 0.1% for stereological estimations. The total spinal cord volume, volume fraction of grey and white matter, and also dorsal and ventral horns were estimated using point counting and Cavalieri's estimator. The total cervical spinal cord volume was 0.98 ± 0.07 cm³. The relative volume of white matter and grey matter was 70.6 ± 1.7% and 29.31 ± 1.67%, respectively. The dorsal horn and ventral horn volume were 13.86 ± 1.36% and 14.9 ± 0.62% of the whole cervical spinal cord. This knowledge of rabbit spinal cord findings may serve as a foundation for a translational model in spinal cord experimental research and provide basic findings for the diagnosis and treatment of spinal cord disorders.

Keywords: stereology, spinal cord, rabbit, cervical

Procedia PDF Downloads 80
3280 Efficient Photocatalytic Degradation of Tetracycline Hydrochloride Using Modified Carbon Nitride CCN/Bi₂WO₆ Heterojunction

Authors: Syed Najeeb-Uz-Zaman Haider, Yang Juan

Abstract:

Antibiotic overuse raises environmental concerns, boosting the demand for efficient removal from pharmaceutical wastewater. Photocatalysis, particularly using semiconductor photocatalysts, offers a promising solution and garners significant scientific interest. In this study, a Z-scheme 0.15BWO/CCN heterojunction was developed, analyzed, and employed for the photocatalytic degradation of tetracycline hydrochloride (TC) under visible light. The study revealed that the dosage of 0.15BWO@CCN and the presence of coexisting ions significantly influenced the degradation efficiency, achieving up to 87% within 20 minutes under optimal conditions (at pH 9-11/strongly basic conditions) while maintaining 84% efficiency under standard conditions (unaltered pH). Photoinduced electrons gathered on the conduction band of BWO while holes accumulated on the valence band of CCN, creating more favorable conditions to produce superoxide and hydroxyl radicals. Additionally, through comprehensive experimental analysis, the degradation pathway and mechanism were thoroughly explored. The superior photocatalytic performance of 0.15BWO@CCN was attributed to its Z-scheme heterojunction structure, which significantly reduced the recombination of photoinduced electrons and holes. The radicals produced were identified using ESR, and their involvement in tetracycline degradation was further analyzed through active species trapping experiments.

Keywords: CCN, Bi₂WO₆, TC, photocatalytic degradation, heterojunction

Procedia PDF Downloads 49
3279 Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs

Authors: Ashish Soni, Suman Kalyan Pal

Abstract:

Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices.

Keywords: transient absorption, optoelectronics, 2D materials, TMDCs, exciton

Procedia PDF Downloads 72
3278 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 288
3277 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability

Procedia PDF Downloads 225
3276 South Asia as an Emerging Region of the World in the 21st Century

Authors: Shazia Shinwari

Abstract:

In the 21st century, South Asia is becoming one of the rising sub-regions of the world. In the whole of Asia, South Asia is going to be the center part of opportunities, development, and challenges. The increasing economy and its geopolitical importance are changing the landscape of South Asia. Despite intensifying the opportunities and development, the region is also facing the challenges of security, poverty, and conflicts. It is one of the most populated sub-regions and has many internal conflicts because of which the region remains for a long time a least developed region in the world. But now South Asia is transforming into the developing process and trying to utilize its potentials and to remove the hurdles in the way of development. South Asia is one of the distinctive regions of the world and could play an important role at the global level if the potentials of the region are properly utilized. South Asia is one of the most important regions of the world and assumed more importance after the British withdrawal from the region. Now South Asia is playing an important role in world politics due to its strategic and geographical location. That is why the importance of this region in the international political systems cannot be ignored. Day by day, changes have been taking place in the structure of the global economy, and South Asia could take advantage of these changes to advance as an economic region. For this, South Asia will need to look at its history, and that changes, particularly in the India and Pakistan relations, are necessary for the development of the South Asian region. Despite having challenges in the region, South Asia is also rising as the land of opportunities and development if the potentials of the region are properly utilized and smoothen the way for regional integration.

Keywords: challenges, development, opportunities, South Asia

Procedia PDF Downloads 194