Search results for: automated feeding
1078 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas
Authors: Sahithi Yarlagadda
Abstract:
The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm
Procedia PDF Downloads 1091077 Image Based Landing Solutions for Large Passenger Aircraft
Authors: Thierry Sammour Sawaya, Heikki Deschacht
Abstract:
In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing
Procedia PDF Downloads 1011076 Enhancing the Quality of Silage Bales Produced by a Commercial Scale Silage Producer in Northern province, Sri Lanka: A Step Toward Supporting Smallholder Dairy Farmers in the Northern Province Sri Lanka
Authors: Harithas Aruchchunan
Abstract:
Silage production is an essential aspect of dairy farming, used to provide high-quality feed to ruminants. However, dairy farmers in Northern Province Sri Lanka are facing multiple challenges that compromise the quality and quantity of silage produced. To tackle these challenges, promoting silage feeding has become an essential component of sustainable dairy farming practices. In this study, silage bale samples were collected from a newly started silage baling factory in Jaffna, Northern province and their quality was analysed at the Veterinary Research Institute laboratory in Kandy in March 2023. The results show the nutritional composition of three Napier grass cultivars: Super Napier, CO6, and Indian Red Napier (BH18). The main parameters analysed were dry matter, pH, lactic acid, soluble carbohydrate, ammonia nitrogen, ash, crude protein, NDF, and ADF. The results indicate that Super Napier and CO6 have higher crude protein content and lower ADF levels, making them suitable for producing high-quality silage. The pH levels of all three cultivars were safe, and the ammonia nitrogen levels were considered appropriate. However, laboratory results indicate that the quality of silage bales produced can be further enhanced. Dairy farmers should be encouraged to adopt these cultivars to achieve better yields as they are high in protein and are better suited to Northern Province's soil and climate. Therefore, it is vital to educate small-scale fodder producers, who supply the raw material to silage factories, on the best practices of cultivating these new cultivars. To improve silage bale production and quality in Northern Province Sri Lanka, we recommend increasing public awareness about silage feeding, providing education and training to dairy farmers and small-scale fodder producers on modern silage production techniques and improving the availability of raw materials for silage production. Additionally, Napier grass cultivars need to be promoted among dairy farmers for better production and quality of silage bales. Failing to improve the quality and quantity of silage bale production could not only lead to the decline of dairy farming in Northern Province Sri Lanka but also the negative impact on the economyKeywords: silage bales, dairy farming, economic crisis, Sri Lanka
Procedia PDF Downloads 921075 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 1301074 Development of an Optimised, Automated Multidimensional Model for Supply Chains
Authors: Safaa H. Sindi, Michael Roe
Abstract:
This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.Keywords: Leagile, automation, heuristic learning, supply chain models
Procedia PDF Downloads 3881073 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model
Authors: Gholba Niranjan Dilip, Anil Kumar
Abstract:
Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector
Procedia PDF Downloads 1601072 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1411071 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes
Authors: Chih-Jer Lin, Jian-Hong Hou
Abstract:
Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance
Procedia PDF Downloads 1461070 Sertraline Chronic Exposure: Impact on Reproduction and Behavior on the Key Benthic Invertebrate Capitella teleta
Authors: Martina Santobuono, Wing Sze Chan, Elettra D'Amico, Henriette Selck
Abstract:
Chemicals in modern society are fundamental in many different aspects of daily human life. We use a wide range of substances, including polychlorinated compounds, pesticides, plasticizers, and pharmaceuticals, to name a few. These compounds are excessively produced, and this has led to their introduction to the environment and food resources. Municipal and industrial effluents, landfills, and agricultural runoffs are a few examples of sources of chemical pollution. Many of these compounds, such as pharmaceuticals, have been proven to mimic or alter the performance of the hormone system, thus disrupting its normal function and altering the behavior and reproductive capability of non-target organisms. Antidepressants are pharmaceuticals commonly detected in the environment, usually in the range of ng L⁻¹ and µg L⁻¹. Since they are designed to have a biological effect at low concentrations, they might pose a risk to the native species, especially if exposure lasts for long periods. Hydrophobic antidepressants, like the selective serotonin reuptake inhibitor (SSRI) Sertraline, can sorb to the particles in the water column and eventually accumulate in the sediment compartment. Thus, deposit-feeding organisms may be at particular risk of exposure. The polychaete Capitella teleta is widespread in estuarine organically enriched sediments, being a key deposit-feeder involved in geochemistry processes happening in sediments. Since antidepressants are neurotoxic chemicals and endocrine disruptors, the aim of this work was to test if sediment-associated Sertraline impacts burrowing- and feeding behavior as well as reproduction capability in Capitella teleta in a chronic exposure set-up, which could better mimic what happens in the environment. 7 days old juveniles were selected and exposed to different concentrations of Sertraline for an entire generation until the mature stage was reached. This work was able to show that some concentrations of Sertraline altered growth and the time of first reproduction in Capitella teleta juveniles, potentially disrupting the population’s capability of survival. Acknowledgments: This Ph.D. position is part of the CHRONIC project “Chronic exposure scenarios driving environmental risks of Chemicals”, which is an Innovative Training Network (ITN) funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions (MSCA).Keywords: antidepressants, Capitella teleta, chronic exposure, endocrine disruption, sublethal endpoints, neurotoxicity
Procedia PDF Downloads 951069 A Qualitative Research of Online Fraud Decision-Making Process
Authors: Semire Yekta
Abstract:
Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.Keywords: online fraud, data mining, manual review, social construction
Procedia PDF Downloads 3431068 Financial Ethics: A Review of 2010 Flash Crash
Authors: Omer Farooq, Salman Ahmed Khan, Sadaf Khalid
Abstract:
Modern day stock markets have almost entirely became automated. Even though it means increased profits for the investors by algorithms acting upon the slightest price change in order of microseconds, it also has given birth to many ethical dilemmas in the sense that slightest mistake can cause people to lose all of their livelihoods. This paper reviews one such event that happened on May 06, 2010 in which $1 trillion dollars disappeared from the Dow Jones Industrial Average. We are going to discuss its various aspects and the ethical dilemmas that have arisen due to it.Keywords: flash crash, market crash, stock market, stock market crash
Procedia PDF Downloads 5191067 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements
Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus
Abstract:
The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.Keywords: T-RTM technology, composite, automotive, class A surface
Procedia PDF Downloads 1391066 Development of Technologies for the Treatment of Nutritional Problems in Primary Care
Authors: Marta Fernández Batalla, José María Santamaría García, Maria Lourdes Jiménez Rodríguez, Roberto Barchino Plata, Adriana Cercas Duque, Enrique Monsalvo San Macario
Abstract:
Background: Primary Care Nursing is taking more autonomy in clinical decisions. One of the most frequent therapies to solve is related to the problems of maintaining a sufficient supply of food. Nursing diagnoses related to food are addressed by the nurse-family and community as the first responsible. Objectives and interventions are set according to each patient. To improve the goal setting and the treatment of these care problems, a technological tool is developed to help nurses. Objective: To evaluate the computational tool developed to support the clinical decision in feeding problems. Material and methods: A cross-sectional descriptive study was carried out at the Meco Health Center, Madrid, Spain. The study population consisted of four specialist nurses in primary care. These nurses tested the tool on 30 people with ‘need for nutritional therapy’. Subsequently, the usability of the tool and the satisfaction of the professional were sought. Results: A simple and convenient computational tool is designed for use. It has 3 main entrance fields: age, size, sex. The tool returns the following information: BMI (Body Mass Index) and caloric consumed by the person. The next step is the caloric calculation depending on the activity. It is possible to propose a goal of BMI or weight to achieve. With this, the amount of calories to be consumed is proposed. After using the tool, it was determined that the tool calculated the BMI and calories correctly (in 100% of clinical cases). satisfaction on nutritional assessment was ‘satisfactory’ or ‘very satisfactory’, linked to the speed of operations. As a point of improvement, the options of ‘stress factor’ linked to weekly physical activity. Conclusion: Based on the results, it is clear that the computational tools of decision support are useful in the clinic. Nurses are not only consumers of computational tools, but can develop their own tools. These technological solutions improve the effectiveness of nutrition assessment and intervention. We are currently working on improvements such as the calculation of protein percentages as a function of protein percentages as a function of stress parameters.Keywords: feeding behavior health, nutrition therapy, primary care nursing, technology assessment
Procedia PDF Downloads 2271065 Microbial Contamination of Haemolymph of Honeybee (Apis mellifera intermissa) Parasitized by Varroa Destructor
Authors: Messaouda Belaid, Salima Kebbouche-Gana
Abstract:
The negative effect of the Varroa bee colony is very important. They cause morphological and physiological changes, causing a decrease in performance of individuals and long-term death of the colony. Indirectly, they weaken the bees become much more sensitive to the different pathogenic organisms naturally present in the colony. This work aims to research secondary infections of microbial origin occurred in the worker bee nurse due to parasitism by Varroa destructor. The feeding behaviour of Varroa may causes damaging host integument. The results show that the microbial contamination enable to be transmitted into honeybee heamocoel are Bacillus sp, Pseudomonas sp, Enterobacter, Aspergillus.Keywords: honeybee, Apis mellifera intermissa, microbial contamination, Varroa destructor
Procedia PDF Downloads 4011064 Hypergraph for System of Systems modeling
Authors: Haffaf Hafid
Abstract:
Hypergraphs, after being used to model the structural organization of System of Sytems (SoS) at macroscopic level, has recent trends towards generalizing this powerful representation at different stages of complex system modelling. In this paper, we first describe different applications of hypergraph theory, and step by step, introduce multilevel modeling of SoS by means of integrating Constraint Programming Langages (CSP) dealing with engineering system reconfiguration strategy. As an application, we give an A.C.T Terminal controlled by a set of Intelligent Automated Vehicle.Keywords: hypergraph model, structural analysis, bipartite graph, monitoring, system of systems, reconfiguration analysis, hypernetwork
Procedia PDF Downloads 4881063 Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis
Authors: Kittiphop Promdee, Somruedee Satitkune, Chakkrich Boonmee, Tharapong Vitidsant
Abstract:
Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass.Keywords: pyrolysis, tropical wood, bio-oil, charcoal, heating value, SEM
Procedia PDF Downloads 4801062 From the Perspective of a Veterinarian: The Future of Plant Raw Materials Used in the Feeding of Farm Animals
Authors: Ertuğrul Yılmaz
Abstract:
One of the most important occupational groups in the food chain from farm to fork is a veterinary medicine. This occupational group, which has important duties in the prevention of many zoonotic diseases and in public health, takes place in many critical control points from soil to our kitchen. It has important duties from mycotoxins transmitted from the soil to slaughterhouses or milk processing facilities. Starting from the soil, which constitutes 70% of mycotoxin contamination, up to the TMR made from raw materials obtained from the soil, there are all critical control points from feeding to slaughterhouses and milk production enterprises. We can take the precaution of mycotoxins such as Aflatoxin B1, Ochratoxin, Zearalenone, and Fumonisin, which we encounter on farms while in the field. It has been reported that aflatoxin B1 is a casenerogen and passes into milk in studies. It is likely that many mycotoxins pose significant threats to public health and will turn out to be even more dangerous over time. Even raw material storage and TMR preparation are very important for public health. The danger of fumonisin accumulating in the liver will be understood over time. Zoonotic diseases are also explained with examples. In this study, how important veterinarians are in terms of public health is explained with examples. In the two-year mycotoxin screenings, fumonisin mycotoxin was found to be very high in corn and corn by-products, and it was determined that it accumulated in the liver for a long time and remained cornic in animals. It has been determined that mycotoxins are present in all livestock feeds, poultry feeds, and raw materials, not alone, but in double-triple form. Starting from the end, mycotoxin scans should be carried out from feed to raw materials and from raw materials to soil. In this way, we prevent the transmission of mycotoxins to animals and from animals to humans. Liver protectors such as toxin binders, beta-glucan, mannan oligosaccharides, activated carbon, prebiotics, and silymarin were used in certain proportions in the total mixed ratio, and positive results were obtained. Humidity and temperature controls of raw material silos were made at certain intervals. Necropsy was performed on animals that died as a result of mycotoxicosis, and macroscopic photographs were taken of the organs. We have determined that the mycotoxin screening in experimental animals and the feeds made without detecting the presence and amount of bacterial factors affect the results of the project to be made. For this, a series of precautionary plans have been created, starting from the production processes.Keywords: mycotoxins, feed safety, processes, public health
Procedia PDF Downloads 831061 Arterial Compliance Measurement Using Split Cylinder Sensor/Actuator
Authors: Swati Swati, Yuhang Chen, Robert Reuben
Abstract:
Coronary stents are devices resembling the shape of a tube which are placed in coronary arteries, to keep the arteries open in the treatment of coronary arterial diseases. Coronary stents are routinely deployed to clear atheromatous plaque. The stent essentially applies an internal pressure to the artery because its structure is cylindrically symmetrical and this may introduce some abnormalities in final arterial shape. The goal of the project is to develop segmented circumferential arterial compliance measuring devices which can be deployed (eventually) in vivo. The segmentation of the device will allow the mechanical asymmetry of any stenosis to be assessed. The purpose will be to assess the quality of arterial tissue for applications in tailored stents and in the assessment of aortic aneurism. Arterial distensibility measurement is of utmost importance to diagnose cardiovascular diseases and for prediction of future cardiac events or coronary artery diseases. In order to arrive at some generic outcomes, a preliminary experimental set-up has been devised to establish the measurement principles for the device at macro-scale. The measurement methodology consists of a strain gauge system monitored by LABVIEW software in a real-time fashion. This virtual instrument employs a balloon within a gelatine model contained in a split cylinder with strain gauges fixed on it. The instrument allows automated measurement of the effect of air-pressure on gelatine and measurement of strain with respect to time and pressure during inflation. Compliance simple creep model has been applied to the results for the purpose of extracting some measures of arterial compliance. The results obtained from the experiments have been used to study the effect of air pressure on strain at varying time intervals. The results clearly demonstrate that with decrease in arterial volume and increase in arterial pressure, arterial strain increases thereby decreasing the arterial compliance. The measurement system could lead to development of portable, inexpensive and small equipment and could prove to be an efficient automated compliance measurement device.Keywords: arterial compliance, atheromatous plaque, mechanical symmetry, strain measurement
Procedia PDF Downloads 2791060 Milk Curd Obstruction as a Mimic of Necrotising Enterocolitis (NEC)
Authors: Sofia Baldelli, Aman More
Abstract:
Milk curd obstruction is commonly reported as being misdiagnosed for NEC, and they predominantly mimic each other in clinical presentation, including abdominal distension, vomiting, constipation, feeding intolerance and frank or occult blood PR. Using the case of a pre-term neonate misdiagnosed with necrotising enterocolitis when in fact, they had milk curd obstruction, we compare the two diagnoses and why they are hard to differentiate, the risk factors for clinicians to consider and the different management options. The main diagnostic tool for these conditions remains the plain radiograph and here we present the original radiograph of the neonate and discuss the classical radiological features of both diagnoses. We conclude that further imaging techniques such as ultrasound might be used to improve diagnosis when X-ray is inconclusive.Keywords: milk curd obstruction, Necrotising Enterocolitis, radiology, pediatric surgery
Procedia PDF Downloads 1071059 In vivo Alterations in Ruminal Parameters by Megasphaera Elsdenii Inoculation on Subacute Ruminal Acidosis (SARA)
Authors: M. S. Alatas, H. D. Umucalilar
Abstract:
SARA is a common and serious metabolic disorder in early lactation in dairy cattle and in finishing beef cattle, caused by diets with high inclusion of cereal grain. This experiment was performed to determine the efficacy of Megasphaera elsdenii, a major lactate-utilizing bacterium in prevention/treatment of SARA in vivo. In vivo experimentation, it was used eight ruminally cannulated rams and it was applied the rapid adaptation with the mixture of grain based on wheat (%80 wheat, %20 barley) and barley (%80 barley, %20 wheat). During the systematic adaptation, it was followed the probability of SARA formation by being measured the rumen pH with two hours intervals after and before feeding. After being evaluated the data, it was determined the ruminal pH ranged from 5,2-5,6 on the condition of feeding with 60 percentage of grain mixture based on barley and wheat, that assured the definite form of subacute acidosis. In four days SARA period, M. elsdenii (1010 cfu ml-1) was inoculated during the first two days. During the SARA period, it was observed the decrease of feed intake with M. elsdenii inoculation. Inoculation of M. elsdenii was caused to differentiation of rumen pH (P < 0,0001), while it was found the pH level approximately 5,55 in animals applied the inoculation, it was 5,63 pH in other animals. It was observed that total VFA with the bacterium inoculation tended to change in terms of grain feed (P < 0,07). It increased with the effect of total VFA inoculation in barley based diet, but it was more stabilized in wheat based diet. Bacterium inoculation increased the ratio of propionic acid (18,33%-21,38%) but it caused to decrease the butyric acid, and acetic/propionic acid. During the rapid adaptation, the concentration of lactic acid in the rumen liquid increased depending upon grain level (P<0,0001). On the other hand bacterium inoculation did not have an effect on concentration of lactic acid. M. elsdenii inoculation did not affect ruminal ammonia concentration. In the group that did not apply inoculation, the level of ruminal ammonia concentration was higher than the others applied inoculation. M. elsdenii inoculation did not changed protozoa count in barley-based diet whereas it decreased in wheat-based diet. In the period of SARA, it was observed that the level of blood glucose, lactate and hematocrit increased greatly after inoculation (P < 0,0001). When it is generally evaluated, it is seen that M. elsdenii inoculation has not a positive impact on rumen parameters. Therefore, to reveal the full impact of the inoculation with different strains, feedstuffs and animal groups, further research is required.Keywords: In vivo, Subactute ruminal acidosis, Megasphaera elsdenii, Rumen fermentation
Procedia PDF Downloads 6451058 Relationship of Mean Platelets Volume with Ischemic Cerebrovascular Stroke
Authors: Pritam Kitey
Abstract:
Platelets play a key role in the development of atherothrombosis, a major contributor of cardiovascular evevts. The contributor of platelets to cardiovascular events has been noted for decades. Mean paltelets volume [MPV] is a marker of platelets size that is easily determined on routine automated haemograms and routinely available at low cost. Subjects with higher MPV have larger platelets that are metabolically and enzamatically more active and have greater prothombotic potential than smaller platelets. In fact several studies have demonstrated a significant association between higher MPV and an increased incidence of cerebrovascular events and all-cause mortality.Keywords: mean paltelets volume (MPV), platelets, cerebrovascular stroke, cardiovascular events
Procedia PDF Downloads 1851057 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes
Authors: Imad Khan, Imran Shafi, Sarmad Farooq
Abstract:
Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes
Procedia PDF Downloads 1101056 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 1191055 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 621054 Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator
Authors: Weiwei Shan, Wenjing Ding, Juan Ning, Chao He, Zijuan Wang
Abstract:
Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN2) gravity circulation loop including its equipment and layout is designed and has served as LN2 feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K.Keywords: cryopumps, gravity circulation loop, liquid nitrogen, two-phase
Procedia PDF Downloads 4011053 Do Immune Organ Weights Indicate Immunomodulation of Polyunsaturated Fatty Acids?
Authors: H. Al-Khalifa, A. Al-Nasser
Abstract:
The main immune organs in poultry are the thymus, spleen and bursa of Fabricius. During an immune response, mature lymphocytes and other immune cells interact with antigens in these tissues. Consequently, the mass of these organs can in some cases indicate immune status. The objective of the current study was to investigate the effect of feeding flaxseed on immune tissue weights. Cobb 500 broiler chickens were fed flaxseed at 15%, the control diet did not contain any flaxseed. Results showed that dietary supplementation with flaxseed did not affect the weights of the spleens of broiler chickens. However, it significantly lowered bursa weights (p<0.01), compared to the control diet. In addition, the bursae were thinner in appearance compared with bursii from chickens fed the control diets.Keywords: bursa of fabricius, flaxseed, spleen, thymus
Procedia PDF Downloads 4441052 A Single-Use Endoscopy System for Identification of Abnormalities in the Distal Oesophagus of Individuals with Chronic Reflux
Authors: Nafiseh Mirabdolhosseini, Jerry Zhou, Vincent Ho
Abstract:
The dramatic global rise in acid reflux has also led to oesophageal adenocarcinoma (OAC) becoming the fastest-growing cancer in developed countries. While gastroscopy with biopsy is used to diagnose OAC patients, this labour-intensive and expensive process is not suitable for population screening. This study aims to design, develop, and implement a minimally invasive system to capture optical data of the distal oesophagus for rapid screening of potential abnormalities. To develop the system and understand user requirements, a user-centric approach was employed by utilising co-design strategies. Target users’ segments were identified, and 38 patients and 14 health providers were interviewed. Next, the technical requirements were developed based on consultations with the industry. A minimally invasive optical system was designed and developed considering patient comfort. This system consists of the sensing catheter, controller unit, and analysis program. Its procedure only takes 10 minutes to perform and does not require cleaning afterward since it has a single-use catheter. A prototype system was evaluated for safety and efficacy for both laboratory and clinical performance. This prototype performed successfully when submerged in simulated gastric fluid without showing evidence of erosion after 24 hours. The system effectively recorded a video of the mid-distal oesophagus of a healthy volunteer (34-year-old male). The recorded images were used to develop an automated program to identify abnormalities in the distal oesophagus. Further data from a larger clinical study will be used to train the automated program. This system allows for quick visual assessment of the lower oesophagus in primary care settings and can serve as a screening tool for oesophageal adenocarcinoma. In addition, this system is able to be coupled with 24hr ambulatory pH monitoring to better correlate oesophageal physiological changes with reflux symptoms. It also can provide additional information on lower oesophageal sphincter functions such as opening times and bolus retention.Keywords: endoscopy, MedTech, oesophageal adenocarcinoma, optical system, screening tool
Procedia PDF Downloads 871051 The KAPSARC Energy Policy Database: Introducing a Quantified Library of China's Energy Policies
Authors: Philipp Galkin
Abstract:
Government policy is a critical factor in the understanding of energy markets. Regardless, it is rarely approached systematically from a research perspective. Gaining a precise understanding of what policies exist, their intended outcomes, geographical extent, duration, evolution, etc. would enable the research community to answer a variety of questions that, for now, are either oversimplified or ignored. Policy, on its surface, also seems a rather unstructured and qualitative undertaking. There may be quantitative components, but incorporating the concept of policy analysis into quantitative analysis remains a challenge. The KAPSARC Energy Policy Database (KEPD) is intended to address these two energy policy research limitations. Our approach is to represent policies within a quantitative library of the specific policy measures contained within a set of legal documents. Each of these measures is recorded into the database as a single entry characterized by a set of qualitative and quantitative attributes. Initially, we have focused on the major laws at the national level that regulate coal in China. However, KAPSARC is engaged in various efforts to apply this methodology to other energy policy domains. To ensure scalability and sustainability of our project, we are exploring semantic processing using automated computer algorithms. Automated coding can provide a more convenient input data for human coders and serve as a quality control option. Our initial findings suggest that the methodology utilized in KEPD could be applied to any set of energy policies. It also provides a convenient tool to facilitate understanding in the energy policy realm enabling the researcher to quickly identify, summarize, and digest policy documents and specific policy measures. The KEPD captures a wide range of information about each individual policy contained within a single policy document. This enables a variety of analyses, such as structural comparison of policy documents, tracing policy evolution, stakeholder analysis, and exploring interdependencies of policies and their attributes with exogenous datasets using statistical tools. The usability and broad range of research implications suggest a need for the continued expansion of the KEPD to encompass a larger scope of policy documents across geographies and energy sectors.Keywords: China, energy policy, policy analysis, policy database
Procedia PDF Downloads 3221050 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 651049 Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane
Authors: Deepali Lal, Sudha Summerwar, Jyoutsna Pandey
Abstract:
The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied.Keywords: distillation plant, acetone, alcohol, pipette, castor leaves, grams pods, larvae of helicoverpa armigera, plant extract, vails, jars, cotton
Procedia PDF Downloads 317