Search results for: chemical warfare agents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5792

Search results for: chemical warfare agents

1412 Pregnancy Outcomes in Patients With Inflammatory Bowel Disease: Retrospective Data From a Greek National Registry

Authors: Evgenia Papathanasiou, Georgios Kokkotis, Georgios Axiaris, Theodoros Argyropoulos, Nikos Viazis, Olga Giouleme, Konstantinos Gkoumas, Αnthia Gatopoulou, Αggelos Theodoulou, Georgios Theocharis, Αngeliki Theodoropoulou, Μaria Κalogirou, Pantelis Karatzas, Κonstantinos Κatsanos, Theodora Kafetzi, Κonstantinos Κarmiris, Αnastasia Κourikou, Ιoannis E Κoutroubakis, Christos Liatsos, Gerassimos J. Mantzaris, Νicoletta Μathou, Georgia Bellou, George Michalopoulos Αikaterini Μantaka, Penelope Nikolaou, Μichael Oikonomou, Dimitrios Polymeros, George Papatheodoridis, Εvdoxia Stergiou, Κonstantinos Soufleris, Εpameinondas Skouloudis, Μaria Tzouvala, Georgia Tsiolakidou, Εftychia Tsironi, Styliani Tsafaraki, Kalliopi Foteinogiannopoulou, Konstantina Chalakatevaki, Αngeliki Christidou, Dimitrios K. Christodoulou, Giorgos Bamias, Spyridon Michopoulos, Εvanthia Zampeli

Abstract:

Background: Inflammatory bowel disease (IBD) commonly affects female patients of reproductive age, making the interaction between fertility, pregnancy and IBD an important issue in disease management. The effect of disease activity on the outcome of pregnancy and its impact on neonatal growth is a field of intense research. Close follow-up of pregnant IBD patients by a multidisciplinary team improves maternal and neonatal outcomes. Aim – Methods: Α national retrospective study of pregnancies in women with IBD between 2010-2020 was carried out in 22 IBD reference centers in Greece. Patient characteristics such as disease profile, type of treatment, and disease activity during gestation were analyzed in correlation to the method of delivery, pregnancy outcomes, as well as breastfeeding and offspring health. Results: Two-hundred and twenty-three pregnancies in 175 IBD patients were registered in the study. 122 with Crohn’s disease (CD). Median age during diagnosis was 25.6 years (12-44), with median disease duration of 7.4 years (0-23). One-hundred and twenty-nine patients (58%) were recorded during their first pregnancy. Early pregnancy termination was reported by 48 patients (22%). Pregnancy as a result of in vitro fertilization (IVF) occurred in 15 cases (6.7%). At the beginning of gestation, 165 patients (74%) were under treatment: 48 with anti-TNF agents (29%), 43 with azathioprine (26%), 101 with 5-aminosalicylic acid formulations (61%) and 12 with steroids (7%). We recorded 49 cases of IBD flares (22%) during pregnancy. Two-thirds of them (n=30) were in remission at the onset of the pregnancy. Almost half of them (n=22) required corticosteroid treatment. Patients with ulcerative colitis (UC) were in greater risk of disease flare during pregnancy (p<0.001). All but 3 pregnancies (99.1%) resulted in uncomplicated delivery. In 147 cases (67.1%), cesarean delivery was performed. Two late fetal deaths (0.9%) were reported, both in patients with continuously active disease since the beginning of pregnancy. After delivery, 75 patients (34%) presented with a disease flare, which was associated with active disease at the beginning of pregnancy (p <0.001). Conclusion: The majority of female, Greek IBD patients, had a favorable pregnancy outcome. Active inflammation during gestation and UC diagnosis were associated with a negative impact on pregnancy outcomes. The results of this study are in favor of the continuation of IBD treatment during pregnancy.

Keywords: pregnancy, ulcerative colitis, Crohn disease, flare

Procedia PDF Downloads 73
1411 Bacteriophages for Sustainable Wastewater Treatment: Application in Black Water Decontamination with an Emphasis to DRDO Biotoilet

Authors: Sonika Sharma, Mohan G. Vairale, Sibnarayan Datta, Soumya Chatterjee, Dharmendra Dubey, Rajesh Prasad, Raghvendra Budhauliya, Bidisha Das, Vijay Veer

Abstract:

Bacteriophages are viruses that parasitize specific bacteria and multiply in metabolising host bacteria. Bacteriophages hunt for a single or a subset of bacterial species, making them potential antibacterial agents. Utilizing the ability of phages to control bacterial populations has several applications from medical to the fields of agriculture, aquaculture and the food industry. However, harnessing phage based techniques in wastewater treatments to improve quality of effluent and sludge release into the environment is a potential area for R&D application. Phage mediated bactericidal effect in any wastewater treatment process has many controlling factors that lead to treatment performance. In laboratory conditions, titer of bacteriophages (coliphages) isolated from effluent water of a specially designed anaerobic digester of human night soil (DRDO Biotoilet) was successfully increased with a modified protocol of the classical double layer agar technique. Enrichment of the same was carried out and efficacy of the phage enriched medium was evaluated at different conditions (specific media, temperature, storage conditions). Growth optimization study was carried out on different media like soybean casein digest medium (Tryptone soya medium), Luria-Bertani medium, phage deca broth medium and MNA medium (Modified nutrient medium). Further, temperature-phage yield relationship was also observed at three different temperatures 27˚C, 37˚C and 44˚C at laboratory condition. Results showed the higher activity of coliphage 27˚C and at 37˚C. Further, addition of divalent ions (10mM MgCl2, 5mM CaCl2) and 5% glycerol resulted in a significant increase in phage titer. Besides this, effect of antibiotics addition like ampicillin and kanamycin at different concentration on plaque formation was analysed and reported that ampicillin at a concentration of 1mg/ml ampicillin stimulates phage infection and results in more number of plaques. Experiments to test viability of phage showed that it can remain active for 6 months at 4˚C in fresh tryptone soya broth supplemented with fresh culture of coliforms (early log phase). The application of bacteriophages (especially coliphages) for treatment of effluent of human faecal matter contaminated effluent water is unique. This environment-friendly treatment system not only reduces the pathogenic coliforms, but also decreases the competition between nuisance bacteria and functionally important microbial populations. Therefore, the phage based cocktail to treat fecal pathogenic bacteria present in black water has many implication in wastewater treatment processes including ‘DRDO Biotoilet’, which is an ecofriendly appropriate and affordable human faecal matter treatment technology for different climates and situations.

Keywords: wastewater, microbes, virus, biotoilet, phage viability

Procedia PDF Downloads 424
1410 Potential for Biological Control of Postharvest Fungal Rot of White Yam (Dioscorea rotundata Poir) Tubers in Storage with Trichoderma harzianum

Authors: Victor Iorungwa Gwa, Ebenezer Jonathan Ekefan

Abstract:

Potential of Trichoderma harzianum for biological control of postharvest fungal rot of white yam (Dioscorea rotundata Poir) tubers in storage was studied. Pathogenicity test revealed the susceptibility of healthy looking yam tubers to Aspergillus niger, Botryodiplodia theobromae, and Fusarium oxysporum f. sp. melonganae after fourteen days of inoculation. Treatments comprising A. niger, B. theobromae, and F. oxysporum each paired with T. harzianum and were arranged in completely randomized design and stored for five months. Experiments were conducted between December 2015 and April 2016 and December 2016 and April 2017. Results showed that tubers treated with the pathogenic fungi alone caused mean percentage rot of between 6.67 % (F. oxysporum) and 22.22 % (A. niger) while the paired treatments produced only between 2.22 % (T. harzianum by F. oxysporum) and 6.67 % (T. harzianum by A. niger). In the second year of storage, mean percentage rot was found to be between 13.33 % (F. oxysporum) and 28.89 % (A. niger) while in the paired treatment rot was only between 6.67 % (F. oxysporum) and 8.89% (A. niger). Tubers treated with antagonist alone produced 0.00 % and 2.22 % in the first and second year, respectively. Result revealed that there was a significant difference (P ≤ 0.05) in mean percentage rot between the first year and the second year except where B. theobromae was inoculated alone, A. niger and T. harzianum paired and B. theobromae and T. harzianum paired. The most antagonised fungus in paired treatment for both years was F. oxysporum f. sp. melonganae, while the least antagonised, was A. niger and B. theobromae. It is, therefore, concluded that T. harzianum has potentials to control rot causing pathogens of yam tubers in storage. This can compliment or provide better alternative ways of reducing rot in yam tubers than by the use of chemical fungicides which are not environmentally friendly.

Keywords: biological control, fungal rot, postharvest, Trichoderma harzianum, white yam

Procedia PDF Downloads 140
1409 The Effect of Metabolites of Fusarium solani on the Activity of the PR-Proteins (Chitinase, β-1,3-Glucanase and Peroxidases) of Potato Tubers

Authors: A. K. Tursunova, O. V. Chebonenko, A. Zh. Amirkulova, A. O. Abaildayev, O. A. Sapko, Y. M. Dyo, A. Sh. Utarbaeva

Abstract:

Fusarium solani and its variants cause root and stem rot of plants. Dry rot is the most common disease of potato tubers during storage. The causative agents of fusariosis in contact with plants behave as antagonists, growth stimulants or parasites. The diversity of host-parasite relationships is explained by the parasite’s ability to produce a wide spectrum of biologically active compounds including toxins, enzymes, oligosaccharides, antibiotic substances, enniatins and gibberellins. Many of these metabolites contribute to the creation of compatible relations; others behave as elicitors, inducing various protective responses in plants. An important part of the strategy for developing plant resistance against pathogens is the activation of protein synthesis to produce protective ‘pathogenesis-related’ proteins. The family of PR-proteins known to confer the most protective response is chitinases (EC 3.2.1.14, Cht) and β-1,3-glucanases (EC 3.2.1.39, Glu). PR-proteins also include a large multigene family of peroxidases (EC 1.11.1.7, Pod), and increased activity of Pod and expression of the Pod genes leads to the development of resistance to a broad class of pathogens. Despite intensive research on the role of PR-proteins, the question of their participation in the mechanisms of formation of the F.solani–S.tuberosum pathosуstem is not sufficiently studied. Our aim was to investigate the effect of different classes of F. solani metabolites on the activity of chitinase, β-1,3-glucanases and peroxidases in tubers of Solanum tuberosum. Metabolite culture filtrate (CF) and cytoplasmic components were fractionated by extraction of the mycelium with organic solvents, salting out techniques, dialysis, column chromatography and ultrafiltration. Protein, lipid, carbohydrate and polyphenolic fractions of fungal metabolites were derived. Using enzymatic hydrolysis we obtained oligo glycans from fungal cell walls with different molecular weights. The activity of the metabolites was tested using potato tuber discs (d = 16mm, h = 5mm). The activity of PR-proteins of tubers was analyzed in a time course of 2–24 hours. The involvement of the analysed metabolites in the modulation of both early non-specific and late related to pathogenesis reactions was demonstrated. The most effective inducer was isolated from the CF (fraction of total phenolic compounds including naphtazarins). Induction of PR-activity by this fraction was: chitinase - 340-360%, glucanase - 435-450%, soluble forms of peroxidase - 400-560%, related forms of peroxidase - 215-237%. High-inducing activity was observed by the chloroform and acetonitrile extracts of the mycelium (induction of chitinase and glucanase activity was 176-240%, of soluble and bound forms of peroxidase - 190-400%). The fraction of oligo glycans mycelium cell walls of 1.2 kDa induced chitinase and β-1,3-glucanase to 239-320%; soluble forms and related peroxidase to 198-426%. Oligo glycans cell walls of 5-10 kDa had a weak suppressor effect - chitinase (21-25%) and glucanase (25-28%) activity; had no effect on soluble forms of peroxidase, but induced to 250-270% activity related forms. The CF polysaccharides of 8.5 kDa and 3.1 kDa inhibited synchronously the glucanase and chitinase specific response in step (after 24 hours at 42-50%) and the step response induced nonspecific peroxidase activity: soluble forms 4.8 -5.2 times, associated forms 1.4-1.6 times.

Keywords: fusarium solani, PR-proteins, peroxidase, solanum tuberosum

Procedia PDF Downloads 193
1408 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils

Authors: Antonella Hadzich, Santiago Flores

Abstract:

Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.

Keywords: alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating

Procedia PDF Downloads 105
1407 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere

Authors: Moustafa Osman Mohammed

Abstract:

This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.

Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment

Procedia PDF Downloads 303
1406 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 61
1405 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 168
1404 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker

Authors: G. Roshan Deen, J. S. Pedersen

Abstract:

Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.

Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering

Procedia PDF Downloads 412
1403 Unveiling the Impact of Ultra High Vacuum Annealing Levels on Physico-Chemical Properties of Bulk ZnSe Semiconductor

Authors: Kheira Hamaida, Mohamed Salah Halati

Abstract:

In this current paper, our aim work is to link as possible the obtained simulation results and the other experimental ones, just focusing on the electronic and optical properties of ZnSe. The predictive spectra of the total and partial densities of states using the Full Potential Linearized/Augmented Plane Wave method with the newly Tran-Blaha (TB) modified Becke-Johnson (mBJ) exchange-correlation potential (EXC). So the upper valence energy (UVE) levels contain the relative contribution of Se-(4p and 3d) states with considerable contribution from the electrons of Zn-2s orbital. The dielectric function of w-ZnSe, with its two parts, appears with a noticeable anisotropy character. The microscopic origins of the electronic states that are responsible for the observed peaks in the spectrum are determined through the decomposition of the spectrum to the individual contributions of the electronic transitions between the pairs of bands, where Vi is an occupied state in the valence band, and Ci is an unoccupied state in the conduction band. X-PES (X Ray-Photo Electron Spectroscopy) is an important technique used to probe the homogeneity, stoichiometry, and purity state of the title compound. In order to check the electron transitions derived from simulations and the others from Reflected Electron Energy Loss Spectroscopy (REELS) technique which was of great sensitivity, is used to determine the interband electronic transitions. In the optical window (Eg), all the electron energy states created were also determined through the specific gaussian deconvolution of the photoluminescence spectrum (PLS) that probed under a room temperature (RT).

Keywords: spectroscopy, WIEN2K, IIB-VIA semiconductors, dielectric function

Procedia PDF Downloads 54
1402 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes

Authors: S. Divya, M. Jose

Abstract:

Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.

Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process

Procedia PDF Downloads 45
1401 Phytoremediation Aeration System by Using Water Lettuce (Pistia Stratiotes I) Based on Zero Waste to Reduce the Impact of Industrial Liquid Waste in Jember, Indonesia

Authors: Wahyu Eko Diyanto, Amalia Dyah Arumsari, Ulfatu Layinatinnahdiyah Arrosyadi

Abstract:

Tofu industry is one of the local food industry which is can being competitive industry in the ASEAN Economic Community (AEC). However, a lot of tofu entrepreneurs just thinking how to produce good quality product without considering the impact of environmental conditions from the production process. Production of tofu per day requires a number of 15 kg with liquid waste generated is 652.5 liters. That liquid waste is discharged directly into waterways, whereas tofu liquid waste contains organic compounds that quickly unraveled, so it can pollute waterways. In addition, tofu liquid waste is high in Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), nitrogen and phosphorus. This research is aim to create a method of handling liquid waste effectively and efficiently by using water lettuce. The method is done by observation and experiment by using phytoremediation method in the tofu liquid waste using water lettuce and adding aeration to reduce the concentration of contaminants. The results of the research analyzed the waste quality standard parameters based on SNI (National Standardization Agency of Indonesia). The efficiency concentration and parameters average of tofu liquid waste are obtained pH 3,42% (from 4,0 to be 3,3), COD 76,13% (from 3579 ppm to be 854 ppm), BOD 55 % (from 11600 ppm to be 5242 ppm), TSS 93,6% (from 3174 ppm to be 203 ppm), turbidity is 64,8% (from 977 NTU to be 1013 NTU), and temperature 36oC (from 45oC to be 40oC). The efficiency of these parameters indicates a safe value for the effluent to be channeled in waterways. Water lettuce and tofu liquid waste phytoremediation result will be used as biogas as renewable energy.

Keywords: aeration, phytoremediation, water letuce, tofu liquid waste

Procedia PDF Downloads 370
1400 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.

Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review

Procedia PDF Downloads 263
1399 Preparation and Flame-Retardant Properties of Epoxy Resins Containing Organophosphorus Compounds

Authors: Tachita Vlad-Bubulac, Ionela-Daniela Carja, Diana Serbezeanu, Corneliu Hamciuc, Vicente Javier Forrat Perez

Abstract:

The present work describes the preparation of new organophosphorus compounds with high content of phosphorus followed by the incorporation of these compounds into epoxy resin systems in order to investigate the phosphorus effect in terms of thermal stability, flame-retardant and mechanical properties of modified epoxy resins. Thus, two new organophosphorus compounds have been synthesized and fully characterized. 6-Oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl-phenylcarbinol has been prepared by the addition reaction of P–H group of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide to carbonyl group of benzaldehyde. By treating the phenylcarbinol derivative with POCl3 a new phosphorus compound was obtained, having a content of 12.227% P. The organophosphorus compounds have been purified by recrystallization while their chemical structures have been confirmed by melting point measurements, FTIR and HNMR spectroscopies. In the next step various flame-retardant epoxy resins with different content of phosphorus have been prepared starting from a commercial epoxy resin and using dicyandiamide (DICY) as a latent curing agent in the presence of an accelerator. Differential scanning calorimetry (DSC) has been applied to investigate the behavior and kinetics of curing process of thermosetting systems. The results showed that the best curing characteristic and glass transition temperature are obtained at a ratio of epoxy resin: DICY: accelerator equal to 94:5:1. The thermal stability of the phosphorus-containing epoxy resins was investigated by thermogravimetric analysis in nitrogen and air, DSC, SEM and LOI test measurements.

Keywords: epoxy resins, flame retardant properties, phosphorus-containing compounds, thermal stability

Procedia PDF Downloads 295
1398 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 201
1397 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube

Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego

Abstract:

The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).

Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation

Procedia PDF Downloads 299
1396 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 86
1395 Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells

Authors: Mohamed M. Ali, Adel Nofal, Amr Kandil, Mahmoud Agour

Abstract:

High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle.

Keywords: high phosphorus gray iron (HPGI), aluminium reduction cells, anodic voltage drop, microstructure, mechanical and electrical properties

Procedia PDF Downloads 439
1394 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites

Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran

Abstract:

Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.

Keywords: flexural properties, glutarylation, glutaric anhydride, tensile properties

Procedia PDF Downloads 173
1393 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 317
1392 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 137
1391 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 102
1390 Potential of Polyphenols from Tamarix Gallica towards Common Pathological Features of Diabetes and Alzheimer’s Diseases

Authors: Asma Ben Hmidene, Mizuho Hanaki, Kazuma Murakami, Kazuhiro Irie, Hiroko Isoda, Hideyuki Shigemori

Abstract:

Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system, respectively. It is now widely recognized that T2DM and AD share many pathophysiological features including glucose metabolism, increased oxidative stress and amyloid aggregation. Amyloid beta (Aβ) is the components of the amyloid deposits in the AD brain and while the component of the amyloidogenic peptide deposit in the pancreatic islets of Langerhans is identified as human islet amyloid polypeptide (hIAPP). These two proteins are originated from the amyloid precursor protein and have a high sequence similarity. Although the amino acid sequences of amyloidogenic proteins are diverse, they all adopt a similar structure in aggregates called cross-beta-spine. Add at that, extensive studies in the past years have found that like Aβ1-42, IAPP forms early intermediate assemblies as spherical oligomers, implicating that these oligomers possess a common folding pattern or conformation. These similarities can be used in the search for effective pharmacotherapy for DM, since potent therapeutic agents such as antioxidants with a catechol moiety, proved to inhibit Aβ aggregation, may play a key role in the inhibit the aggregation of hIAPP treatment of patients with DM. Tamarix gallica is one of the halophyte species having a powerful antioxidant system. Although it was traditionally used for the treatment of various liver metabolic disorders, there is no report about the use of this plant for the treatment or prevention of T2DM and AD. Therefore, the aim of this work is to investigate their protective effect towards T2DM and AD by isolation and identification of α-glucosidase inhibitors, with antioxidant potential, that play an important role in the glucose metabolism in diabetic patient, as well as, the polymerization of hIAPP and Aβ aggregation inhibitors. Structure-activity relationship study was conducted for both assays. And as for α-glucosidase inhibitors, their mechanism of action and their synergistic potential when applied with a very low concentration of acarbose were also suggesting that they can be used not only as α-glucosidase inhibitors but also be combined with established α-glucosidase inhibitors to reduce their adverse effect. The antioxidant potential of the purified substances was evaluated by DPPH and SOD assays. Th-T assay using 42-mer amyloid β-protein (Aβ42) for AD and hIAPP which is a 37-residue peptide secreted by the pancreatic β –cells for T2DM and Transmission electronic microscopy (TEM) were conducted to evaluate the amyloid aggragation of the actives substances. For α-glucosidase, p-NPG and glucose oxidase assays were performed for determining the inhibition potential and structure-activity relationship study. The Enzyme kinetic protocol was used to study the mechanism of action. From this research, it was concluded that polyphenols playing a role in the glucose metabolism and oxidative stress can also inhibit the amyloid aggregation, and that substances with a catechol and glucuronide moieties inhibiting amyloid-β aggregation, might be used to inhibit the aggregation of hIAPP.

Keywords: α-glucosidase inhibitors, amyloid aggregation inhibition, mechanism of action, polyphenols, structure activity relationship, synergistic potential, tamarix gallica

Procedia PDF Downloads 264
1389 Leveraging Digital Cyber Technology for Self-Care and Improved Management of DMPA-SC Clients

Authors: Oluwaseun Adeleke, Grace Amarachi Omenife, Jennifer Adebambo, Mopelola Raji, Anthony Nwala, Mogbonjubade Adesulure

Abstract:

Introduction: The incorporation of digital technology in healthcare systems is instrumental in transforming the delivery, management, and overall experience of healthcare and holds the potential to scale up access through over 200 million active mobile phones used in Nigeria. Digital tools enable increased access to care, stronger client engagement, progress in research and data-driven insights, and more effective promotion of self-care and do-it-yourself practices. The Delivering Innovation in Self-Care (DISC) project 2021 has played a pivotal role in granting women greater autonomy over their sexual and reproductive health (SRH) through a variety of approaches, including information and training to self-inject contraception (DMPA-SC). To optimize its outcomes, the project also leverages digital technology platforms like social media: Facebook, Instagram, and Meet Tina (Chatbot) via WhatsApp, Customer Relationship Management (CRM) applications Freshworks, and Viamo. Methodology: The project has been successful at optimizing in-person digital cyberspace interaction to sensitize individuals effectively about self-injection and provide linkages to SI services. This platform employs the Freshworks CRM software application, along with specially trained personnel known as Cyber IPC Agents and DHIS calling centers. Integration of Freshworks CRM software with social media allows a direct connection with clients to address emerging issues, schedule follow-ups, send reminders to improve compliance with self-injection schedules, enhance the overall user experience for self-injection (SI) clients, and generate comprehensive reports and analytics on client interactions. Interaction covers a range of topics, including – How to use SI, learning more about SI, side-effects and its management, accessing services, fertility, ovulation, other family planning methods, inquiries related to Sexual Reproductive Health as well as uses an address log to connect them with nearby facilities or online pharmaceuticals. Results: Between the months of March to September, a total of 5,403 engagements were recorded. Among these, 4,685 were satisfactorily resolved. Since the program's inception, digital advertising has created 233,633,075 impressions, reached 12,715,582 persons, and resulted in 3,394,048 clicks. Conclusion: Leveraging digital technology has proven to be an invaluable tool in client management and improving client experience. The use of Cyber technology has enabled the successful development and maintenance of client relationships, which have been effective at providing support, facilitating delivery and compliance with DMPA-SC self-injection services, and ensuring overall client satisfaction. Concurrently, providing qualitative data, including user experience feedback, has enabled the derivation of crucial insights that inform the decision-making process and guide in normalizing self-care behavior.

Keywords: selfcare, DMPA-SC self-injection, digital technology, cyber technology, freshworks CRM software

Procedia PDF Downloads 53
1388 Ergosterol Biosynthesis: Non-Conventional Method for Improving Process

Authors: Madalina Postaru, Alexandra Tucaliuc, Dan Cascaval, Anca Irina Galaction

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol) is the precursor of vitamin D2 (ergocalciferol), known as provitamin D2 as it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). As ergosterol is mainly accumulated in yeast cell membranes, especially in free form in the plasma-membrane, and the chemical synthesis of ergosterol does not represent an efficient method for its production, this study aimed to analyze the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. Our previous studies on ergosterol production by S. cerevisiae in batch and fed-batch fermentation systems indicated that the addition of n-dodecane led to the increase of almost 50% of this sterol concentration, the highest productivity being reached for the fed-batch process. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. In batch fermentation system, the study indicated that the oxygen mass transfer coefficient, kLa, is amplified for about 3 times by increasing the volumetric concentration of n-dodecane from 0 to 15%. Moreover, the increase of dissolved oxygen concentration by adding n-dodecane leads to the diminution for 3.5 times of the produced alcohol amount. In fed-batch fermentation process, the positive influence of hydrocarbon on oxygen transfer rate is amplified mainly at its higher concentration level, as the result of the increased yeasts cells amount. Thus, by varying n-dodecane concentration from 0 to 15% vol., the kLa value increase becomes more important than for the batch fermentation, being of 4 times

Keywords: ergosterol, yeast fermentation, n-dodecane, oxygen-vector

Procedia PDF Downloads 103
1387 Selection of Soil Quality Indicators of Rice Cropping Systems Using Minimum Data Set Influenced by Imbalanced Fertilization

Authors: Theresa K., Shanmugasundaram R., Kennedy J. S.

Abstract:

Nutrient supplements are indispensable for raising crops and to reap determining productivity. The nutrient imbalance between replenishment and crop uptake is attempted through the input of inorganic fertilizers. Excessive dumping of inorganic nutrients in soil cause stagnant and decline in yield. Imbalanced N-P-K ratio in the soil exacerbates and agitates the soil ecosystems. The study evaluated the fertilization practices of conventional (CFs), organic and Integrated Nutrient Management system (INM) on soil quality using key indicators and soil quality indices. Twelve rice farming fields of which, ten fields were having conventional cultivation practices, one field each was organic farming based and INM based cultivated under monocropping sequence in the Thondamuthur block of Coimbatore district were fixed and properties viz., physical, chemical and biological were studied for four cropping seasons to determine soil quality index (SQI). SQI was computed for conventional, organic and INM fields. Comparing conventional farming (CF) with organic and INM, CF was recorded with a lower soil quality index. While in organic and INM fields, the higher SQI value of 0.99 and 0.88 respectively were registered. CF₄ received with a super-optimal dose of N (250%) showed a lesser SQI value (0.573) as well as the yield (3.20 t ha⁻¹) and the CF6 which received 125 % N recorded the highest SQI (0.715) and yield (6.20 t ha⁻¹). Likewise, most of the CFs received higher N beyond the level of 125 % except CF₃ and CF₉, which recorded lower yields. CFs which received super-optimal P in the order of CF₆&CF₇>CF₁&CF₁₀ recorded lesser yields except for CF₆. Super-optimal K application also recorded lesser yield in CF₄, CF₇ and CF₉.

Keywords: rice cropping system, soil quality indicators, imbalanced fertilization, yield

Procedia PDF Downloads 145
1386 High Aspect Ratio Micropillar Array Based Microfluidic Viscometer

Authors: Ahmet Erten, Adil Mustafa, Ayşenur Eser, Özlem Yalçın

Abstract:

We present a new viscometer based on a microfluidic chip with elastic high aspect ratio micropillar arrays. The displacement of pillar tips in flow direction can be used to analyze viscosity of liquid. In our work, Computational Fluid Dynamics (CFD) is used to analyze pillar displacement of various micropillar array configurations in flow direction at different viscosities. Following CFD optimization, micro-CNC based rapid prototyping is used to fabricate molds for microfluidic chips. Microfluidic chips are fabricated out of polydimethylsiloxane (PDMS) using soft lithography methods with molds machined out of aluminum. Tip displacements of micropillar array (300 µm in diameter and 1400 µm in height) in flow direction are recorded using a microscope mounted camera, and the displacements are analyzed using image processing with an algorithm written in MATLAB. Experiments are performed with water-glycerol solutions mixed at 4 different ratios to attain 1 cP, 5 cP, 10 cP and 15 cP viscosities at room temperature. The prepared solutions are injected into the microfluidic chips using a syringe pump at flow rates from 10-100 mL / hr and the displacement versus flow rate is plotted for different viscosities. A displacement of around 1.5 µm was observed for 15 cP solution at 60 mL / hr while only a 1 µm displacement was observed for 10 cP solution. The presented viscometer design optimization is still in progress for better sensitivity and accuracy. Our microfluidic viscometer platform has potential for tailor made microfluidic chips to enable real time observation and control of viscosity changes in biological or chemical reactions.

Keywords: Computational Fluid Dynamics (CFD), high aspect ratio, micropillar array, viscometer

Procedia PDF Downloads 232
1385 Protein Extraction by Enzyme-Assisted Extraction followed by Alkaline Extraction from Red Seaweed Eucheuma denticulatum (Spinosum) Used in Carrageenan Production

Authors: Alireza Naseri, Susan L. Holdt, Charlotte Jacobsen

Abstract:

In 2014, the global amount of carrageenan production was 60,000 ton with a value of US$ 626 million. From this number, it can be estimated that the total dried seaweed consumption for this production was at least 300,000 ton/year. The protein content of these types of seaweed is 5 – 25%. If just half of this total amount of protein could be extracted, 18,000 ton/year of a high-value protein product would be obtained. The overall aim of this study was to develop a technology that will ensure further utilization of the seaweed that is used only as raw materials for carrageenan production as single extraction at present. More specifically, proteins should be extracted from the seaweed either before or after extraction of carrageenan with focus on maintaining the quality of carrageenan as a main product. Different mechanical, chemical and enzymatic technologies were evaluated. The optimized process was implemented in lab scale and based on its results; the new experiments were done a pilot and larger scale. In order to calculate the efficiency of the new upstream multi-extraction process, protein content was tested before and after extraction. After this step, the extraction of carrageenan was done and carrageenan content and the effect of extraction on yield were evaluated. The functionality and quality of carrageenan were measured based on rheological parameters. The results showed that by using the new multi-extraction process (submitted patent); it is possible to extract almost 50% of total protein without any negative impact on the carrageenan quality. Moreover, compared to the routine carrageenan extraction process, the new multi-extraction process could increase the yield of carrageenan and the rheological properties such as gel strength in the final carrageenan had a promising improvement. The extracted protein has initially been screened as a plant protein source in typical food applications. Further work will be carried out in order to improve properties such as color, solubility, and taste.

Keywords: carrageenan, extraction, protein, seaweed

Procedia PDF Downloads 266
1384 Comparison of Acetylcholinesterase Reactivators Cytotoxicity with Their Structure

Authors: Lubica Muckova, Petr Jost, Jaroslav Pejchal, Daniel Jun

Abstract:

The development of acetylcholinesterase reactivators, i.e. antidotes against organophosphorus poisoning, is an important goal of defence research. The aim of this study was to compare cytotoxicity and chemical structure of 5 currently available (pralidoxime, trimedoxime, obidoxime, methoxime, and asoxime) and 4 newly developed compounds (K027, K074, K075, and K203). In oximes, there could be at least four important structural factors affecting their toxicity, including the number of oxime groups in the molecule, the position of oxime group(s) on pyridinium ring, the length of carbon linker, and the substitution by oxygen or insertion of the double bond into the connection chain. The cytotoxicity of tested substances was measured using colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay (MTT assay) in SH-SY5Y cell line. Toxicity was expressed as toxicological index IC₅₀. The tested compounds showed different cytotoxicity ranging from 1.5 to 27 mM. K027 was the least, and methoxime was the most toxic reactivator. The lowest toxicity was found in a monopyridinium reactivator and bispyridinium reactivators with simple 3C carbon linker. Shortening of connection chain length to 1C, incorporation of oxygen moiety into 3C compounds, elongation of carbon linker to 4C and insertion of a double bond into 4C substances increase AChE reactivators' cytotoxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: acetylcholinesterase, cytotoxicity, organophosphorus poisoning, reactivators of acetylcholinesterase

Procedia PDF Downloads 294
1383 Genetic Diversity of Norovirus Strains in Outpatient Children from Rural Communities of Vhembe District, South Africa, 2014-2015

Authors: Jean Pierre Kabue, Emma Meader, Afsatou Ndama Traore, Paul R. Hunter, Natasha Potgieter

Abstract:

Norovirus is now considered the most common cause of outbreaks of nonbacterial gastroenteritis. Limited data are available for Norovirus strains in Africa, especially in rural and peri-urban areas. Despite the excessive burden of diarrhea disease in developing countries, Norovirus infections have been to date mostly reported in developed countries. There is a need to investigate intensively the role of viral agents associated with diarrhea in different settings in Africa continent. To determine the prevalence and genetic diversity of Norovirus strains circulating in the rural communities in the Limpopo Province, South Africa and investigate the genetic relationship between Norovirus strains, a cross-sectional study was performed on human stools collected from rural communities. Between July 2014 and April 2015, outpatient children under 5 years of age from rural communities of Vhembe District, South Africa, were recorded for the study. A total of 303 stool specimens were collected from those with diarrhea (n=253) and without (n=50) diarrhea. NoVs were identified using real-time one-step RT-PCR. Partial Sequence analyses were performed to genotype the strains. Phylogenetic analyses were performed to compare identified NoVs genotypes to the worldwide circulating strains. Norovirus detection rate was 41.1% (104/253) in children with diarrhea. There was no significant difference (OR=1.24; 95% CI 0.66-2.33) in Norovirus detection between symptomatic and asymptomatic children. Comparison of the median CT values for NoV in children with diarrhea and without diarrhea revealed significant statistical difference of estimated GII viral load from both groups, with a much higher viral burden in children with diarrhea. To our knowledge, this is the first study reporting on the differences in estimated viral load of GII and GI NoV positive cases and controls. GII.Pe (n=9) were the predominant genotypes followed by GII.Pe/GII.4 Sydney 2012 (n=8) suspected recombinant and GII.4 Sydney 2012 variants(n=7). Two unassigned GII.4 variants and an unusual RdRp genotype GII.P15 were found. With note, the rare GIIP15 identified in this study has a common ancestor with GIIP15 strain from Japan previously reported as GII/untypeable recombinant strain implicated in a gastroenteritis outbreak. To our knowledge, this is the first report of this unusual genotype in the African continent. Though not confirmed predictive of diarrhea disease in this study, the high detection rate of NoV is an indication of subsequent exposure of children from rural communities to enteric pathogens due to poor sanitation and hygiene practices. The results reveal that the difference between asymptomatic and symptomatic children with NoV may possibly be related to the NoV genogroups involved. The findings emphasize NoV genetic diversity and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An uncommon GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe District/South Africa. NoV surveillance is required to help to inform investigations into NoV evolution, and to support vaccine development programmes in Africa.

Keywords: asymptomatic, common, outpatients, norovirus genetic diversity, sporadic gastroenteritis, South African rural communities, symptomatic

Procedia PDF Downloads 176