Search results for: operational approach
10558 Deasphalting of Crude Oil by Extraction Method
Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov
Abstract:
The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy
Procedia PDF Downloads 24210557 Virtual Learning during the Period of COVID-19 Pandemic at a Saudi University
Authors: Ahmed Mohammed Omer Alghamdi
Abstract:
Since the COVID-19 pandemic started, a rapid, unexpected transition from face-to-face to virtual classroom (VC) teaching has involved several challenges and obstacles. However, there are also opportunities and thoughts that need to be examined and discussed. In addition, the entire world is witnessing that the teaching system and, more particularly, higher education institutes have been interrupted. To maintain the learning and teaching practices as usual, countries were forced to transition from traditional to virtual classes using various technology-based devices. In this regard, the Kingdom of Saudi Arabia (KSA) is no exception. Focusing on how the current situation has forced many higher education institutes to change to virtual classes may possibly provide a clear insight into adopted practices and implications. The main purpose of this study, therefore, was to investigate how both Saudi English as a foreign language (EFL) teachers and students perceived the implementation of virtual classes as a key factor for useful language teaching and learning process during the COVID-19 pandemic period at a Saudi university. The impetus for the research was, therefore, the need to find ways of identifying the deficiencies in this application and to suggest possible solutions that might rectify those deficiencies. This study seeks to answer the following overarching research question: “How do Saudi EFL instructors and students perceive the use of virtual classes during the COVID-19 pandemic period in their language teaching and learning context?” The following sub-questions are also used to guide the design of the study to answer the main research question: (1) To what extent are virtual classes important intra-pandemic from Saudi EFL instructors’ and students’ perspectives? (2) How effective are virtual classes for fostering English language students’ achievement? (3) What are the challenges and obstacles that instructors and students may face during the implementation of virtual teaching? A mixed method approach was employed in this study; the questionnaire data collection represented the quantitative method approach for this study, whereas the transcripts of recorded interviews represented the qualitative method approach. The participants included EFL teachers (N = 4) and male and female EFL students (N = 36). Based on the findings of this study, various aspects from teachers' and students’ perspectives were examined to determine the use of the virtual classroom applications in terms of fulfilling the students’ English language learning needs. The major findings of the study revealed that the virtual classroom applications during the current pandemic situation encountered three major challenges, among which the existence of the following essential aspects, namely lack of technology and an internet connection, having a large number of students in a virtual classroom and lack of students’ and teachers’ interactions during the virtual classroom applications. Finally, the findings indicated that although Saudi EFL students and teachers view the virtual classrooms in a positive light during the pandemic period, they reported that for long and post-pandemic period, they preferred the traditional face-to-face teaching procedure.Keywords: virtual classes, English as a foreign language, COVID-19, Internet, pandemic
Procedia PDF Downloads 8610556 A Systematic Review of Patient-Reported Outcomes and Return to Work after Surgical vs. Non-surgical Midshaft Humerus Fracture
Authors: Jamal Alasiri, Naif Hakeem, Saoud Almaslmani
Abstract:
Background: Patients with humeral shaft fractures have two different treatment options. Surgical therapy has lesser risks of non-union, mal-union, and re-intervention than non-surgical therapy. These positive clinical outcomes of the surgical approach make it a preferable treatment option despite the risks of radial nerve palsy and additional surgery-related risk. We aimed to evaluate patients’ outcomes and return to work after surgical vs. non-surgical management of shaft humeral fracture. Methods: We used databases, including PubMed, Medline, and Cochrane Register of Controlled Trials, from 2010 to January 2022 to search for potential randomised controlled trials (RCTs) and cohort studies comparing the patients’ related outcome measures and return to work between surgical and non-surgical management of humerus fracture. Results: After carefully evaluating 1352 articles, we included three RCTs (232 patients) and one cohort study (39 patients). The surgical intervention used plate/nail fixation, while the non-surgical intervention used a splint or brace procedure to manage shaft humeral fracture. The pooled DASH effects of all three RCTs at six (M.D: -7.5 [-13.20, -1.89], P: 0.009) I2:44%) and 12 months (M.D: -1.32 [-3.82, 1.17], p:0.29, I2: 0%) were higher in patients treated surgically than in non-surgical procedures. The pooled constant Murley score at six (M.D: 7.945[2.77,13.10], P: 0.003) I2: 0%) and 12 months (M.D: 1.78 [-1.52, 5.09], P: 0.29, I2: 0%) were higher in patients who received non-surgical than surgical therapy. However, pooled analysis for patients returning to work for both groups remained inconclusive. Conclusion: Altogether, we found no significant evidence supporting the clinical benefits of surgical over non-surgical therapy. Thus, the non-surgical approach remains the preferred therapeutic choice for managing shaft humeral fractures due to its lesser side effects.Keywords: shaft humeral fracture, surgical treatment, Patient-related outcomes, return to work, DASH
Procedia PDF Downloads 9810555 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 9610554 Developing a Test Specifications for an Internationalization Course: Environment for Health in Thai Context
Authors: Rungrawee Samawathdana, Aim-Utcha Wattanaburanon
Abstract:
Test specifications for open book or notes exams provide the essential information to identify the types of the test items with validity of the evaluations process. This article explains the purpose of test specifications and illustrates how to use it to help construct the approach of open book or notes exams. The complication of the course objectives is challenging for the test designing.Keywords: course curriculum, environment for health, internationalization, test specifications
Procedia PDF Downloads 57610553 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser
Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett
Abstract:
Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser
Procedia PDF Downloads 15610552 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 9710551 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures
Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov
Abstract:
Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.Keywords: multiscale modeling, permeability, texture, micro-tomography images
Procedia PDF Downloads 18310550 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory
Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang
Abstract:
To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume
Procedia PDF Downloads 14010549 Ocean Planner: A Web-Based Decision Aid to Design Measures to Best Mitigate Underwater Noise
Authors: Thomas Folegot, Arnaud Levaufre, Léna Bourven, Nicolas Kermagoret, Alexis Caillard, Roger Gallou
Abstract:
Concern for negative impacts of anthropogenic noise on the ocean’s ecosystems has increased over the recent decades. This concern leads to a similar increased willingness to regulate noise-generating activities, of which shipping is one of the most significant. Dealing with ship noise requires not only knowledge about the noise from individual ships, but also how the ship noise is distributed in time and space within the habitats of concern. Marine mammals, but also fish, sea turtles, larvae and invertebrates are mostly dependent on the sounds they use to hunt, feed, avoid predators, during reproduction to socialize and communicate, or to defend a territory. In the marine environment, sight is only useful up to a few tens of meters, whereas sound can propagate over hundreds or even thousands of kilometers. Directive 2008/56/EC of the European Parliament and of the Council of June 17, 2008 called the Marine Strategy Framework Directive (MSFD) require the Member States of the European Union to take the necessary measures to reduce the impacts of maritime activities to achieve and maintain a good environmental status of the marine environment. The Ocean-Planner is a web-based platform that provides to regulators, managers of protected or sensitive areas, etc. with a decision support tool that enable to anticipate and quantify the effectiveness of management measures in terms of reduction or modification the distribution of underwater noise, in response to Descriptor 11 of the MSFD and to the Marine Spatial Planning Directive. Based on the operational sound modelling tool Quonops Online Service, Ocean-Planner allows the user via an intuitive geographical interface to define management measures at local (Marine Protected Area, Natura 2000 sites, Harbors, etc.) or global (Particularly Sensitive Sea Area) scales, seasonal (regulation over a period of time) or permanent, partial (focused to some maritime activities) or complete (all maritime activities), etc. Speed limit, exclusion area, traffic separation scheme (TSS), and vessel sound level limitation are among the measures supported be the tool. Ocean Planner help to decide on the most effective measure to apply to maintain or restore the biodiversity and the functioning of the ecosystems of the coastal seabed, maintain a good state of conservation of sensitive areas and maintain or restore the populations of marine species.Keywords: underwater noise, marine biodiversity, marine spatial planning, mitigation measures, prediction
Procedia PDF Downloads 12210548 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems
Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme
Abstract:
Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.Keywords: motion capture, cameras, biomechanics, gait analysis
Procedia PDF Downloads 31010547 Arabic Light Word Analyser: Roles with Deep Learning Approach
Authors: Mohammed Abu Shquier
Abstract:
This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN
Procedia PDF Downloads 4210546 Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach
Authors: Eric York, James Tadio, Silas Owusu Antwi
Abstract:
Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched.Keywords: simulation studies, phosphate removal, biochar, adsorption, wastewater treatment
Procedia PDF Downloads 13810545 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method
Authors: Laheeb M. Ibrahim, Ibrahim A. Salih
Abstract:
Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO
Procedia PDF Downloads 53310544 Intelligent Process and Model Applied for E-Learning Systems
Authors: Mafawez Alharbi, Mahdi Jemmali
Abstract:
E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.Keywords: artificial intelligence, architecture, e-learning, software engineering, processing
Procedia PDF Downloads 19110543 Person-Centered Thinking as a Fundamental Approach to Improve Quality of Life
Authors: Christiane H. Kellner, Sarah Reker
Abstract:
The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centred design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like centre in Schönbrunn - a large residential complex and service provider for persons with disabilities in the outskirts of Munich - will be remodelled to open up the community to all people as well as transform social space. This strategy should lead to more equal opportunities and open the way for a much more diverse community. The research project “Index for participation development and quality of life for persons with disabilities” (TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at the Franziskuswerk Schönbrunn supports this transformation process called “Vision 2030”. In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees using person-centred planning). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one sub-project more in-depth, namely “The Person-Centred Think Tank” [Arbeitskreis Personenzentriertes Denken; PZD]. In the context of person-centred thinking (PCT), persons with disabilities are encouraged to (re)gain or retain control of their lives through the development of new choice options and the validation of individual lifestyles. PCT should thus foster and support both participation and quality of life. The project aims to establish PCT as a fundamental approach for both employees and persons with disabilities in the institution through in-house training for the staff and, subsequently, training for users. Hence, for the academic support and supervision team, the questions arising from this venture can be summed up as follows: (1) has PCT already gained a foothold at the Franziskuswerk Schönbrunn? And (2) how does it affect the interaction with persons with disabilities and how does it influence the latter’s everyday life? According to the holistic approach described above, the target groups for this study are both the staff and the users of the institution. Initially, we planned to implement the group discussion method for both target-groups. However, in the course of a pretest with persons with intellectual disabilities, it became clear that this type of interview, with hardly any external structuring, provided only limited feedback. In contrast, when the discussions were moderated, there was more interaction and dialogue between the interlocutors. Therefore, for this target-group, we introduced structured group interviews. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. We analysed and evaluated the group interviews and discussions with the help of qualitative content analysis according to Mayring in order to obtain information about users’ quality of life. We sorted out the statements relating to quality of life obtained during the group interviews into three dimensions: subjective wellbeing, self-determination and participation. Nevertheless, the majority of statements were related to subjective wellbeing and self-determination. Thus, especially the limited feedback on participation clearly demonstrates that the lives of most users do not take place beyond the confines of the institution. A number of statements highlighted the fact that PCT is anchored in the everyday interactions within the groups. However, the implementation and fostering of PCT on a broader level could not be detected and thus remain further aims of the project. The additional interviews we have planned should validate the results obtained until now and open up new perspectives.Keywords: person-centered thinking, research with persons with disabilities, residential complex and service provider, participation, self-determination.
Procedia PDF Downloads 32310542 Virtual Reality as a Tool in Modern Education
Authors: Łukasz Bis
Abstract:
The author is going to discuss virtual reality and its importance for new didactic methods. It has been known for years that experience-based education gives much better results in terms of long-term memory than theoretical study. However, practice is expensive - virtual reality allows the use of an empirical approach to learning, with minimized production costs. The author defines what makes a given VR experience appropriate (adequate) for the didactic and cognitive process. The article is a kind of a list of guidelines and their importance for the VR experience under development.Keywords: virtual reality, education, universal design, guideline
Procedia PDF Downloads 10610541 Urban Ecotourism Development in Borderlands: An Exploratory Study of Xishuangbanna Dai Autonomous Prefecture, China
Authors: Min Liu, Thanapauge Chamaratana
Abstract:
Integrating ecotourism into urban borderlands holds significant potential for promoting sustainable development, enhancing cross-border cooperation, and preserving cultural and natural heritage. This study aims to evaluate the current status and strategic measures for sustainable ecotourism development in the border urban areas of Xishuangbanna, leveraging the unique opportunities and challenges presented by its policy and geographical location. Employing a qualitative research approach, the exploratory study utilizes documentary research, observation, and in-depth interviews with 20 key stakeholders, including local government officials, tourism operators, community members, and tourists. Content analysis is conducted to interpret the collected data. The findings reveal that Xishuangbanna holds significant potential for ecotourism due to its rich biodiversity, cultural heritage, and strategic location along the Belt and Road Initiative route. The integration of ecotourism can drive economic growth, create employment opportunities, and foster a deeper appreciation for conservation efforts. By promoting ecotourism practices, the region can attract environmentally conscious travelers, thereby contributing to global sustainability goals. However, challenges such as inadequate infrastructure, limited community involvement, and environmental concerns are also identified. The study recommends enhancing ecotourism development in urban borderlands through integrated planning, stakeholder collaboration, and sustainable practices. These measures are essential to ensure long-term benefits for both the local community and the environment. Moreover, the study underscores the importance of a holistic approach to ecotourism development, which balances economic, social, and environmental priorities to achieve sustainable outcomes for urban borderlands.Keywords: ecotourism, sustainable tourism, urban, borderland
Procedia PDF Downloads 2410540 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes
Authors: Salwa Karboune, Amanda Waglay
Abstract:
Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides
Procedia PDF Downloads 37910539 Optimization of Manufacturing Process Parameters: An Empirical Study from Taiwan's Tech Companies
Authors: Chao-Ton Su, Li-Fei Chen
Abstract:
The parameter design is crucial to improving the uniformity of a product or process. In the product design stage, parameter design aims to determine the optimal settings for the parameters of each element in the system, thereby minimizing the functional deviations of the product. In the process design stage, parameter design aims to determine the operating settings of the manufacturing processes so that non-uniformity in manufacturing processes can be minimized. The parameter design, trying to minimize the influence of noise on the manufacturing system, plays an important role in the high-tech companies. Taiwan has many well-known high-tech companies, which show key roles in the global economy. Quality remains the most important factor that enables these companies to sustain their competitive advantage. In Taiwan however, many high-tech companies face various quality problems. A common challenge is related to root causes and defect patterns. In the R&D stage, root causes are often unknown, and defect patterns are difficult to classify. Additionally, data collection is not easy. Even when high-volume data can be collected, data interpretation is difficult. To overcome these challenges, high-tech companies in Taiwan use more advanced quality improvement tools. In addition to traditional statistical methods and quality tools, the new trend is the application of powerful tools, such as neural network, fuzzy theory, data mining, industrial engineering, operations research, and innovation skills. In this study, several examples of optimizing the parameter settings for the manufacturing process in Taiwan’s tech companies will be presented to illustrate proposed approach’s effectiveness. Finally, a discussion of using traditional experimental design versus the proposed approach for process optimization will be made.Keywords: quality engineering, parameter design, neural network, genetic algorithm, experimental design
Procedia PDF Downloads 14510538 Innovations for Freight Transport Systems
Authors: M. Lu
Abstract:
The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)
Procedia PDF Downloads 31610537 Assessing the Macroeconomic Effects of Fiscal Policy Changes in Egypt: A Bayesian Structural Vector Autoregression Approach
Authors: Walaa Diab, Baher Atlam, Nadia El Nimer
Abstract:
Egypt faces many obvious economic challenges, and it is so clear that a real economic transformation is needed to address those problems, especially after the recent decisions of floating the Egyptian pound and the gradual subsidy cuts that are trying to meet the needed conditions to get the IMF support of (a £12bn loan) for its economic reform program. Following the post-2008 revival of the interest in the fiscal policy and its vital role in speeding up or slowing down the economic growth. Here comes the value of this paper as it seeks to analyze the macroeconomic effects of fiscal policy in Egypt by applying A Bayesian SVAR Approach. The study uses the Bayesian method because it includes the prior information and no relevant information is omitted and so it is well suited for rational, evidence-based decision-making. Since the study aims to define the effects of fiscal policy shocks in Egypt to help the decision-makers in determining the proper means to correct the structural problems in the Egyptian economy, it has to study the period of 1990s economic reform, but unfortunately; the available data is on an annual frequency. Thus, it uses annual time series to study the period 1991: 2005 And quarterly data over the period 2006–2016. It uses a set of six main variables includes government expenditure and net tax revenues as fiscal policy arms affecting real GDP, unemployment, inflation and the interest rate. The study also tries to assess the 'crowding out' effects by considering the effects of government spending and government revenue shocks on the composition of GDP, namely, on private consumption and private investment. Last but not least the study provides its policy implications regarding the needed role of fiscal policy in Egypt in the upcoming economic reform building on the results it concludes from the previous reform program.Keywords: fiscal policy, government spending, structural vector autoregression, taxation
Procedia PDF Downloads 27910536 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 15810535 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models
Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach
Abstract:
In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model
Procedia PDF Downloads 18510534 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 12710533 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach
Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova
Abstract:
Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition
Procedia PDF Downloads 8210532 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor
Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani
Abstract:
The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport
Procedia PDF Downloads 31210531 Challenges, Chances and Possibilities during the Change Management Process of the National Defence Academy Vienna
Authors: Georg Ebner
Abstract:
The National Defence Academy, an element of the Austrian Ministry of Defence, is undergoing a transition process leading the Academy towards a new target structure that is currently being developed. In so doing, in addition to a subject-oriented approach, also an employee-oriented process was introduced. This process was initiated by the Ministry of Defence and should lead the National Defence Academy into a new constellation. During this process, the National Defence Academy worked in very special adapted World Café sessions. The “change manager” dealed with very different issues. They took the data feedback from the sessions and prepared with the feedback and information from the guidance the next session. So they got various information and a very different picture around the academy. It was very helpful to involve most of the employees of the academy during this process and to take their knowledge and wisdom. The process himself started with very different feelings and ended with great consent. A very interesting part of this process was also that the commander and his deputy worked together during all of this sessions and they answered all questions from the employees in time. The adapted World Café phases were necessary to deal with the information of the staff and to implement these absolutely needful data into this process. In cooperation with the responsible Headquarters, the first items resulting from the World Café phases could already be fed back to the employees and be implemented. The staff-oriented process is currently supported via a point of contact, through which the staff can contribute ideas as well, but also by the active information policy on the part of the Headquarters. The described change process makes innovative innovations possible. So far, in the event of change processes staff members have been entrusted only with the concrete implementation plan and tied into the process when the respective workplaces were to be re-staffed. The procedure described here can be seen as food-for-thought for further change processes. The findings of this process are that a staff oriented process can lead an organisation into a new era of thinking and working. This process has shown, that a lot of innovative ideas can also take place in a ministry. This process can be a background for a lot of change management processes in ministries and governmental and non-governmental organisations.Keywords: both directions approach, change management, knowledge database, transformation process, World Cafe
Procedia PDF Downloads 19210530 Treatment of a Galvanization Wastewater in a Fixed-Bed Column Using L. hyperborean and P. canaliculata Macroalgae as Natural Cation Exchangers
Authors: Tatiana A. Pozdniakova, Maria A. P. Cechinel, Luciana P. Mazur, Rui A. R. Boaventura, Vitor J. P. Vilar.
Abstract:
Two brown macroalgae, Laminaria hyperborea and Pelvetia canaliculata, were employed as natural cation exchangers in a fixed-bed column for Zn(II) removal from a galvanization wastewater. The column (4.8 cm internal diameter) was packed with 30-59 g of previously hydrated algae up to a bed height of 17-27 cm. The wastewater or eluent was percolated using a peristaltic pump at a flow rate of 10 mL/min. The effluent used in each experiment presented similar characteristics: pH of 6.7, 55 mg/L of chemical oxygen demand and about 300, 44, 186 and 244 mg/L of sodium, calcium, chloride and sulphate ions, respectively. The main difference was nitrate concentration: 20 mg/L for the effluent used with L. hyperborean and 341 mg/L for the effluent used with P. canaliculata. The inlet zinc concentration also differed slightly: 11.2 mg/L for L. hyperborean and 8.9 mg/L for P. canaliculata experiments. The breakthrough time was approximately 22.5 hours for both macroalgae, corresponding to a service capacity of 43 bed volumes. This indicates that 30 g of biomass is able to treat 13.5 L of the galvanization wastewater. The uptake capacities at the saturation point were similar to that obtained in batch studies (unpublished data) for both algae. After column exhaustion, desorption with 0.1 M HNO3 was performed. Desorption using 9 and 8 bed volumes of eluent achieved an efficiency of 100 and 91%, respectively for L. hyperborean and P. canaliculata. After elution with nitric acid, the column was regenerated using different strategies: i) convert all the binding sites in the sodium form, by passing a solution of 0.5 M NaCl, until achieve a final pH of 6.0; ii) passing only tap water in order to increase the solution pH inside the column until pH 3.0, and in this case the second sorption cycle was performed using protonated algae. In the first approach, in order to remove the excess of salt inside the column, distilled water was passed through the column, leading to the algae structure destruction and the column collapsed. Using the second approach, the algae remained intact during three consecutive sorption/desorption cycles without loss of performance.Keywords: biosorption, zinc, galvanization wastewater, packed-bed column
Procedia PDF Downloads 31210529 An Integrated Mathematical Approach to Measure the Capacity of MMTS
Authors: Bayan Bevrani, Robert L. Burdett, Prasad K. D. V. Yarlagadda
Abstract:
This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.Keywords: analytical model, capacity analysis, capacity query, multi-modal transportation system (MMTS)
Procedia PDF Downloads 359