Search results for: high temperature material behaviour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28826

Search results for: high temperature material behaviour

24596 Characterization and Degradation of 3D Printed Polycaprolactone-Freeze Dried Bone Matrix Constructs for Use in Critical Sized Bone Defects

Authors: Samantha Meyr, Eman Mirdamadi, Martha Wang, Tao Lowe, Ryan Smith, Quinn Burke

Abstract:

Critical-sized bone defects (CSD) treatment options remain a major clinical orthopedic challenge. They are uniquely contoured diseased or damaged bones and can be defined as those that will not heal spontaneously and require surgical intervention. Autografts are the current gold standard CSD treatment, which are histocompatible and provoke a minimal immunogenic response; however, they can cause donor site morbidity and will not suffice for the size required for replacement. As an alternative to traditional surgical methods, bone tissue engineering will be implemented via 3D printing methods. A freeze-dried bone matrix (FDBM) is a type of graft material available but will only function as desired when in the presence of bone growth factors. Polycaprolactone (PCL) is a known biodegradable material with good biocompatibility that has been proven manageable in 3D printing as a medical device. A 3D-extrusion printing strategy is introduced to print these materials into scaffolds for bone grafting purposes, which could be more accessible and rapid than the current standard. Mechanical, thermal, cytotoxic, and physical properties were investigated throughout a degradation period of 6 months using fibroblasts and dental pulp stem cells. PCL-FDBM scaffolds were successfully printed with high print fidelity in their respective pore sizes and allograft content. Additionally, we have created a method for evaluating PCL using differential scanning calorimetry (DSC) and have evaluated PCL degradation over roughly 6 months.

Keywords: 3D printing, bone tissue engineering, cytotoxicity, degradation, scaffolds

Procedia PDF Downloads 87
24595 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration

Authors: Marimuthu Gurusamy

Abstract:

In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.

Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration

Procedia PDF Downloads 433
24594 The Spectral Power Amplification on the Regular Lattices

Authors: Kotbi Lakhdar, Hachi Mostefa

Abstract:

We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.

Keywords: ising model, phase transitions, critical temperature, critical exponent, spectral power amplification

Procedia PDF Downloads 299
24593 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi

Abstract:

This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization

Procedia PDF Downloads 260
24592 Tectono-Thermal Evolution of Ningwu-Jingle Basin in North China Craton: Constraints from Apatite (U–Th-Sm)/He and Fission Track Thermochronology

Authors: Zhibin Lei, Minghui Yang

Abstract:

Ningwu-Jingle basin is a structural syncline which has undergone a complex tectono-thermal history since Cretaceous. It stretches along the strike of the northern Lvliang Mountains which are the most important mountains in the middle and west of North China Craton. The Mesozoic units make up of the core of Ningwu-Jingle Basin, with pre-Mesozoic units making up of its flanks. The available low-temperature thermochronology implies that Ningwu-Jingle Basin has experienced two stages of uplifting: 94±7Ma to 111±8Ma (Albian to Cenomanian) and 62±4 to 75±5Ma (Danian to Maastrichtian). In order to constrain its tectono-thermal history in the Cenozoic, both apatite (U-Th-Sm)/He and fission track dating analysis are applied on 3 Middle Jurassic and 3 Upper Triassic sandstone samples. The central fission track ages range from 74.4±8.8Ma to 66.0±8.0Ma (Campanian to Maastrichtian) which matches well with previous data. The central He ages range from 20.1±1.2Ma to 49.1±3.0Ma (Ypresian to Burdigalian). Inverse thermal modeling is established based on both apatite fission track data and (U-Th-Sm)/He data. The thermal history obtained reveals that all 6 sandstone samples cross the high-temperature limit of fission track partial annealing zone by the uppermost Cretaceous and that of He partial retention zone by the uppermost Eocene to the early Oligocene. The result indicates that the middle and west of North China Craton is not stable in the Cenozoic.

Keywords: apatite fission track thermochronology, apatite (u–th)/he thermochronology, Ningwu-Jingle basin, North China craton, tectono-thermal history

Procedia PDF Downloads 245
24591 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications

Authors: Zahid Ali Ghazi

Abstract:

Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.

Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon

Procedia PDF Downloads 54
24590 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment

Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley

Abstract:

Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.

Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment

Procedia PDF Downloads 124
24589 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: boron, doping, internal friction, si-ge alloys, thermal treatment

Procedia PDF Downloads 446
24588 Lightweight Concrete Fracture Energy Derived by Inverse Analysis

Authors: Minho Kwon, Seonghyeok Lee, Wooyoung Jung

Abstract:

In recent years, with increase of construction of skyscraper structures, the study of concrete materials to improve their weight and performance has been emerging as a key of research area. Typically, the concrete structures has disadvantage of increasing the weight due to its mass in comparison to the strength of the materials. Therefore, in order to improve such problems, the light-weight aggregate concrete and high strength concrete materials have been studied during the past decades. On the other hand, the study of light-weight aggregate concrete materials has lack of data in comparison to the concrete structure using high strength materials, relatively. Consequently, this study presents the performance characteristics of light-weight aggregate concrete materials due to the material properties and strength. Also, this study conducted the experimental tests with respect to normal and lightweight aggregate materials, in order to indentify the tensile crack failure of the concrete structures. As a result, the Crack Mouth Opening Displacement (CMOD) from the experimental tests was constructed and the fracture energy using inverse problem analysis was developed from the force-CMOD relationship in this study, respectively.

Keywords: lightweight aggregate concrete, crack mouth opening displacement, inverse analysis, fracture energy

Procedia PDF Downloads 346
24587 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources

Authors: Samad Jafarmadar, Amin Habibzadeh

Abstract:

A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.

Keywords: combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids

Procedia PDF Downloads 255
24586 Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation

Authors: Zhang Haitao

Abstract:

The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke.

Keywords: nanoparticle mordenite, carbonylation, dimethyl ether, methyl acetate

Procedia PDF Downloads 124
24585 Dragonflies (Odonata) Reflect Climate Warming Driven Changes in High Mountain Invertebrates Populations

Authors: Nikola Góral, Piotr Mikołajczuk, Paweł Buczyński

Abstract:

Much scientific research in the last 20 years has focused on the influence of global warming on the distribution and phenology of living organisms. Three potential responses to climate change are predicted: individual species may become extinct, adapt to new conditions in their existing range or change their range by migrating to places where climatic conditions are more favourable. It means not only migration to areas in other latitudes, but also different altitudes. In the case of dragonflies (Odonata), monitoring in Western Europe has shown that in response to global warming, dragonflies tend to change their range to a more northern one. The strongest response to global warming is observed in arctic and alpine species, as well as in species capable of migrating over long distances. The aim of the research was to assess whether the fauna of aquatic insects in high-mountain habitats has changed as a result of climate change and, if so, how big and what type these changes are. Dragonflies were chosen as a model organism because of their fast reaction to changes in the environment: they have high migration abilities and short life cycle. The state of the populations of boreal-mountain species and the extent to which lowland species entered high altitudes was assessed. The research was carried out on 20 sites in Western Sudetes, Southern Poland. They were located at an altitude of between 850 and 1250 m. The selected sites were representative of many types of valuable alpine habitats (subalpine raised bog, transitional spring bog, habitats associated with rivers and mountain streams). Several sites of anthropogenic origin were also selected. Thanks to this selection, a wide characterization of the fauna of the Karkonosze was made and it was compared whether the studied processes proceeded differently, depending on whether the habitat is primary or secondary. Both imagines and larvae were examined (by taking hydrobiological samples with a kick-net), and exuviae were also collected. Individual species dragonflies were characterized in terms of their reproductive, territorial and foraging behaviour. During each inspection, the basic physicochemical parameters of the water were measured. The population of the high-mountain dragonfly Somatochlora alpestris turned out to be in a good condition. This species was noted at several sites. Some of those sites were situated relatively low (995 m AMSL), which proves that the thermal conditions at the lower altitudes might be still optimal for this species. The protected by polish law species Somatochlora arctica, Aeshna subarctica and Leucorrhinia albifrons, as well as strongly associated with bogs Leucorrhinia dubia and Aeshna juncea bogs were observed. However, they were more frequent and more numerous in habitats of anthropogenic origin, which may suggest minor changes in the habitat preferences of dragonflies. The subject requires further research and observations over a longer time scale.

Keywords: alpine species, bioindication, global warming, habitat preferences, population dynamics

Procedia PDF Downloads 134
24584 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 142
24583 Mugil cephalus Presents a Feasible Alternative To Lates calcarifer Farming in Brackishwater: Evidence From Grey Mullet Mugil Cephalus Farming in Bangladesh

Authors: Asif Hasan

Abstract:

Among the reported suitable mariculture species in Bangladesh, seabass and mullet are the two most popular candidates due to their high market values. Several field studies conducted on the culture of seabass in Bangladesh, it still remains a challenge to commercially grow this species due to its exclusive carnivorous nature. In contrast, the grey mullet (M. cephalus) is a fast-growing, omnivorous euryhaline fish that has shown excellent growth in many areas including South Asia. Choice of a sustainable aquaculture technique must consider the productivity and yield as well as their environmental suitability. This study was designed to elucidate the ecologically suitable culture technique of M. cephalus in brakishwater ponds by comparing the biotic and abiotic components of pond ecosystem. In addition to growth parameters (yield, ADG, SGR, weight gain, FCR), Physicochemical parameters (Temperature, DO, pH, salinity, TDS, transparency, ammonia, and Chlorophyll-a concentration) and biological community composition (phytoplankton, zooplankton and benthic macroinvertebrates) were investigated from ponds under Semi-intensive, Improve extensive and Traditional culture system. While temperature were similar in the three culture types, ponds under improve-extensive showed better environmental conditions with significantly higher mean DO and transparency, and lower TDS and Chlorophyll-a. The abundance of zooplankton, phytoplankton and benthic macroinvertebrates were apparently higher in semi-intensive ponds. The Analysis of Similarity (ANOSIM) suggested moderate difference in the planktonic community composition. While the fish growth parameters of M. cephalus and total yield did not differ significantly between three systems, M. cephalus yield (kg/decimal) was apparently higher in semi-intensive pond due to high stocking density and intensive feeding. The results suggested that the difference between the three systems were due to more efficient utilization of nutrients in improve extensive ponds which affected fish growth through trophic cascades. This study suggested that different culture system of M. cephalus is an alternative and more beneficial method owing to its ecological and economic benefits in brackishwater ponds.

Keywords: Mugil cephalus, pond ecosystem, mariculture, fisheries management

Procedia PDF Downloads 51
24582 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 98
24581 Physico-Chemical and Phytoplankton Analyses of Kazaure Dam, Jigawa State, Nigeria

Authors: Aminu Musa Muhammad, Muhammad Kabiru Abubakar

Abstract:

Monthly changes in Phytoplankton periodicity, nutrient levels, temperature, pH, suspended solids, dissolved solids, conductivity, dissolved oxygen and biochemical oxygen demand of Kazaure Dam, Jigawa State, Nigeria were studied for a period of six months (July-Dec.-2011). Physico-chemical result showed that temperature and pH ranged between17-25˚C and 5.5-7.5, while dissolved solids and suspended solids ranged between 95-155 mg/L and 0.13-112 mg/L respectively. Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), conductivity, nitrate, phosphate and sulphate ion concentrations were within the ranges of 3.5-3.6 mg/L, 4.8-7.2 mg/L, 8.10-12.30 mg/L, 21-58µΩ/cm, 0.2-8.1 mg/L, 2.4-18.1 mg/L, and 1.22-15.60 mg/L respectively. A total of 4514 Org/L phytoplankton were recorded, of which four classes of algae were identified. These comprised of Chlorophyta (44.1%), Cyanophyta(30.62%), Bacillariophyta(3.2%), Euglenophyta (32.1%). Descriptive statistics of the result showed that phytoplankton count varied with variation of physico-chemical parameters at 5% level during the study period. The abundance and distribution of the algae varied with the variation in the physico-chemical parameters. Pearson correlation showed that temperature and nutrients were significantly correlated with phytoplankton, while DO, sulphate and pH were insignificantly correlated, while there was no significant correlation with COD and phytoplankton.

Keywords: correlation, phytoplankton, physico chemical, kazaure dam

Procedia PDF Downloads 545
24580 A Descriptive Study on Micro Living and Its Importance over Large Houses by Understanding Various Scenarios and Case Studies

Authors: Belal Neazi

Abstract:

'Larger Houses Consume More Resources’ – both in construction and during operation. The most important aspect of smaller homes is that it uses less electricity and fuel for construction and maintenance. Here, an urban interpretation of the contemporary minimal existence movement is explained. In an attempt to restrict urban decay and to encourage inner-city renewal, the Tiny House principles are interpreted as alternative ways of dwelling in urban neighbourhoods. These tiny houses are usually pretty different from each other in interior planning, but almost similar in size. The disadvantage of large homes came up when people were asked to vacate as they were not able to pay the massive amount of mortgages. This made them reconsider their housing situation and discover the ideas of minimalism and the general rising inclination in environmental awareness that serve as the basis for the tiny house movement. One of the largest benefits of inhabiting a tiny house is the decrease in carbon footprint. Also, to increase social behaviour and freedom. It’s better for the environmental concern, financial concerns, and desire for more time and freedom. Examples of the tiny house village which are sustaining homeless population and the use of different reclaimed materials for the construction of these tiny houses are explained in the paper. It is proposed in the paper, that these houses will reflect the diversity while proposing an alternative model for the rehabilitation of decaying row-homes and the renewal of fading communities. The core objective is to design small or micro spaces for the economically backward people of the place and increase their social behaviour and freedom. Also, it’s better for the environmental concern, financial concerns, and desire for more time and freedom.

Keywords: city renewal, environmental concern, micro-living, tiny house

Procedia PDF Downloads 168
24579 Fatal Attractions: Exploiting Olfactory Communication between Invasive Predators for Conservation

Authors: Patrick M. Garvey, Roger P. Pech, Daniel M. Tompkins

Abstract:

Competition is a widespread interaction and natural selection will encourage the development of mechanisms that recognise and respond to dominant competitors, if this information reduces the risk of a confrontation. As olfaction is the primary sense for most mammals, our research tested whether olfactory ‘eavesdropping’ mediates alien species interactions and whether we could exploit our understanding of this behaviour to create ‘super-lures’. We used a combination of pen and field experiments to evaluate the importance of this behaviour. In pen trials, stoats (Mustela erminea) were exposed to the body odour of three dominant predators (cat / ferret / African wild dog) and these scents were found to be attractive. A subsequent field trial tested whether attraction displayed towards predator odour, particularly ferret (Mustela furo) pheromones, could be replicated with invasive predators in the wild. We found that ferret odour significantly improved detection and activity of stoats and hedgehogs (Erinaceus europaeus), while also improving detections of ship rats (Rattus rattus). Our current research aims to identify the key components of ferret odour, using chemical analysis and behavioural experiments, so that we can produce ‘scent from a can’. A lure based on a competitors’ odour would be beneficial in many circumstances including: (i) where individuals display variability in attraction to food lures, (ii) there are plentiful food resources available, (iii) new immigrants arrive into an area, (iv) long-life lures are required. Pest management can therefore benefit by exploiting behavioural responses to odours to achieve conservation goals.

Keywords: predator interactions, invasive species, eavesdropping, semiochemicals

Procedia PDF Downloads 395
24578 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers

Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist

Abstract:

Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.

Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden

Procedia PDF Downloads 101
24577 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone

Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma

Abstract:

Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.

Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes

Procedia PDF Downloads 156
24576 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal

Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das

Abstract:

The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.

Keywords: briquetting reduction, lean grade coal, smelting reduction, TMO

Procedia PDF Downloads 305
24575 Post-Combustion CO₂ Capture: From Membrane Synthesis to Module Intensification

Authors: Imran Khan Swati, Mohammad Younas

Abstract:

This work aims to explore the potential applications of polymeric hydrophobic membranes and green ionic liquids (ILs). Protic and aprotic ILs were synthesized in the lab., characterized, and tested for CO₂/N₂ and CO₂/CH₄ separation using hydrophobic polymeric membranes via supported ionic liquid membrane (SILM). ILs were verified by FTIR spectroscopy. The SILMs were stable at room temperature up to 0.5 MPa. For CO₂, [BSmim][tos] had the greatest coefficient of solubility and permeability, along with all ILs. At 0.5 MPa, IL [BSmim][tos] was found with a selectivity of 56.2 and 47.5 for pure CO₂/N₂ and CO₂/CH₄, respectively. The ILs synthesized for this study are rated as [BSmim][tos]>[BSmpy][tos]>[Bmim][Cl]>[Bpy][Cl] based on their SILM separation performance. Furthermore, high values of selectivity of [BSmim][tos] and [BSmpy][tos] support the use of ILs for CO₂ separation using SILMs. The study was extended to synthesize and test the ammonium-based ILs, [2-HEA][f] and [2-HEA][Hs]. These ILs achieved 50 % less selectivity for CO₂/N₂ as compared to [BSmim][tos] and [BSmpy][tos]. Nevertheless, the permeability of CO₂ achieved with [2-HEA][f] and [2-HEA][Hs] is more than 20 times higher than the [BSmim][tos] and [BSmpy][tos]. Later, the CO₂/N₂ permeability and selectivity study was extended using a flat sheet membrane contactor with recirculated IL. The contact angle effects, liquid entry pressure (LEP), initial CO₂ concentration, and type of solvents and membrane material on the CO₂ capture efficiency and membrane wetting in the post-combustion capture (PCC) process have been experimentally investigated and evaluated. Polytetrafluoroethylene (PTFE) has shown the most hydrophobic property with 6-170 loss in the contact angle. Furthermore, [Omim][BF4] and [Bmim][BF6] have exhibited only 5-8 % loss in LEP using PTFE membrane support. The CO₂ capture efficiency has been achieved as 80.8-99.8 % in different combinations of ILs and membrane support, keeping all other variables constant. While increasing CO₂ concentration from 15 to 45 % vol., an increase of nearly three folds in the CO₂ mass transfer flux was observed. The combination of [Omim][BF4] and PTFE membrane witnessed good long-term stability with only a 20 % loss in CO₂ capture efficiency in 480 min of continuous operation. A 3- D simulation model for non-dispersive solvent absorption in membrane contactors provides insight into the optimum design of a separation system for a specific application minimizing the overall cost and making the process environment-friendly.

Keywords: Post-combustion CO2 capture, membrane synthesis, process development, permeability and selectivity, ionic liquids

Procedia PDF Downloads 60
24574 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 405
24573 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.

Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost

Procedia PDF Downloads 75
24572 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment

Authors: Vera Karla S. Caingles, Glen A. Lorenzo

Abstract:

Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.

Keywords: collapsibility, correlation, expansiveness, landslide, plasticity

Procedia PDF Downloads 147
24571 The Effect of Meteorological Factors on the Trap Catches of Culicoides Species

Authors: Ahmed M. Rashed

Abstract:

Culicoides midges are known to be vectors of disease to both man and animals. For providing information necessary for control methods to be applied to the best advantage, a New jersey light-trap was used. Twenty species were identified during this study and eight species were recorded from Chantilly for the first time, these include C.grisescens, C.nubeculosus, C.cubitalis, C.achrayi, C.circumscriptus, C.stigma, C.reconditus, and C.parroti. The environmental factors, wind speed and temperature were found to have a marked effect on the activity of Culicoides midges. The temperature was found to be positively correlated and the wind speed negatively correlated with the light-trap catch. However, humidioty could not be shown to have any effect on the catch.

Keywords: culicoides, meteorological factors, wind speed, disease

Procedia PDF Downloads 447
24570 Design and Development of Solar Water Cooler Using Principle of Evaporation

Authors: Vipul Shiralkar, Rohit Khadilkar, Shekhar Kulkarni, Ismail Mullani, Omkar Malvankar

Abstract:

The use of water cooler has increased and become an important appliance in the world of global warming. Most of the coolers are electrically operated. In this study an experimental setup of evaporative water cooler using solar energy is designed and developed. It works on the principle of heat transfer using evaporation of water. Water is made to flow through copper tubes arranged in a specific array manner. Cotton plug is wrapped on copper tubes and rubber pipes are arranged in the same way as copper tubes above it. Water percolated from rubber pipes is absorbed by cotton plug. The setup has 40L water carrying capacity with forced cooling arrangement and variable speed fan which uses solar energy stored in 20Ah capacity battery. Fan speed greatly affects the temperature drop. Tests were performed at different fan speed. Maximum temperature drop achieved was 90C at 1440 rpm of fan speed. This temperature drop is very attractive. This water cooler uses solar energy hence it is cost efficient and it is affordable to rural community as well. The cooler is free from any harmful emissions like other refrigerants and hence environmental friendly. Very less maintenance is required as compared to the conventional electrical water cooler.

Keywords: evaporation, cooler, energy, copper, solar, cost

Procedia PDF Downloads 303
24569 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms

Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera

Abstract:

This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.

Keywords: automation, hydroponics, internet of things, monitoring system, urban farming

Procedia PDF Downloads 151
24568 Improvement in Quality-Factor Superconducting Co-Planer Waveguide Resonators by Passivation Air-Interfaces Using Self-Assembled Monolayers

Authors: Saleem Rao, Mohammed Al-Ghadeer, Archan Banerjee, Hossein Fariborzi

Abstract:

Materials imperfection, particularly two-level-system (TLS) defects in planer superconducting quantum circuits, contributes significantly to decoherence, ultimately limiting the performance of quantum computation and sensing. Oxides at air interfaces are among the host of TLS, and different material has been used to reduce TLS losses. Passivation with an inorganic layer is not an option to reduce these interface oxides; however, they can be etched away, but their regrowth remains a problem. Here, we report the chemisorption of molecular self-assembled monolayers (SAMs) at air interfaces of superconducting co-planer waveguide (CPW) resonators that suppress the regrowth of oxides and also modify the dielectric constant of the interface. With SAMs, we observed sustained order of magnitude improvement in quality factor -better than oxide etched interfaces. Quality factor measurements at millikelvin temperature and at single photon, XPS data, and TEM images of SAM passivated air interface sustenance our claim. Compatibility of SAM with micro-/nano-fabrication processes opens new ways to improve the coherence time in cQED.

Keywords: superconducting circuits, quality-factor, self-assembled monolayer, coherence

Procedia PDF Downloads 63
24567 Digital Athena – Contemporary Commentaries and Greek Mythology Explored through 3D Printing

Authors: Rose Lastovicka, Bernard Guy, Diana Burton

Abstract:

Greek myth and art acted as tools to think with, and a lens through which to explore complex topics as a form of social media. In particular, coins were a form of propaganda to communicate the wealth and power of the city-states they originated from as they circulated from person to person. From this, how can the application of 3D printing technologies explore the infusion of ancient forms with contemporary commentaries to promote discussion? The digital reconstruction of artifacts is a topic that has been researched by various groups all over the globe. Yet, the exploration of Greek myth through artifacts infused with contemporary issues is currently unexplored in this medium. Using the Stratasys J750 3D printer - a multi-material, full-colour 3D printer - a series of coins inspired by ancient Greek currency and myth was created to present commentaries on the adversities surrounding individuals in the LGBT+ community. Using the J750 as the medium for expression allows for complete control and precision of the models to create complex high-resolution iconography. The coins are printed with a hard, translucent material with coloured 3D visuals embedded into the coin to then be viewed in close contact by the audience. These coins as commentaries present an avenue for wider understanding by drawing perspectives not only from sources concerned with the contemporary LGBT+ community but also from sources exploring ancient homosexuality and the perception and regulation of it in antiquity. By displaying what are usually points of contention between anti- and pro-LGBT+ parties, this visual medium opens up a discussion to both parties, suggesting heritage can play a vital interpretative role in the contemporary world.

Keywords: 3D printing, design, Greek mythology, LGBT+ community

Procedia PDF Downloads 106