Search results for: material purchasing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6950

Search results for: material purchasing

2750 128-Multidetector CT for Assessment of Optimal Depth of Electrode Array Insertion in Cochlear Implant Operations

Authors: Amina Sultan, Mohamed Ghonim, Eman Oweida, Aya Abdelaziz

Abstract:

Objective: To assess the diagnostic reliability of multi-detector CT in pre and post-operative evaluation of cochlear implant candidates. Material and Methods: The study includes 40 patients (18 males and 22 females); mean age 5.6 years. They were classified into two groups: Group A (20 patients): cochlear implant device was Nucleus-22 and Group B (20 patients): the device was MED-EL. Cochlear length (CL) and cochlear height (CH) were measured pre-operatively by 128-multidetector CT. Electrode length (EL) and insertion depth angle (α) were measured post-operatively by MDCT. Results: For Group A mean CL was 9.1 mm ± 0.4 SD; mean CH was 4.1 ± 0.3 SD; mean EL was 18 ± 2.7 SD; mean α angle was 299.05 ± 37 SD. Significant statistical correlation (P < 0.05) was found between preoperative CL and post-operative EL (r²=0.6); as well as EL and α angle (r²=0.7). Group B's mean CL was 9.1 mm ± 0.3 SD; mean CH was 4.1 ± 0.4 SD; mean EL was 27 ± 2.1 SD; mean α angle was 287.6 ± 41.7 SD. Significant statistical correlation was found between CL and EL (r²= 0.6) and α angle (r²=0.5). Also, a strong correlation was found between EL and α angle (r²=0.8). Significant statistical difference was detected between the two devices as regards to the electrode length. Conclusion: Multidetector CT is a reliable tool for preoperative planning and post-operative evaluation of the outcomes of cochlear implant operations. Cochlear length is a valuable prognostic parameter for prediction of the depth of electrode array insertion which can influence criteria of device selection.

Keywords: angle of insertion (α angle), cochlear implant (CI), cochlear length (CL), Multidetector Computed Tomography (MDCT)

Procedia PDF Downloads 197
2749 Use of Alternative Water Sources Based on a Rainwater in the Multi-Dwelling Urban Building 2030

Authors: Monika Lipska

Abstract:

Drinking water is water with a very high quality, and as such represents only 2.5% of the total quantity of all water in the world. For many years we have observed continuous increase in its consumption as a result of many factors such as: Growing world population (7 billion in 2011r.), increase of human lives comfort and – above all – the economic growth. Due to the rocketing consumption and growing costs of production of water with such high-quality parameters, we experience accelerating interest in alternative sources of obtaining potable water. One of the ways of saving this valuable material is using rainwater in the Urban Building. With an exponentially growing demand, the acquisition of additional sources of water is necessary to maintain the proper balance of all ecosystems. The first part of the paper describes what rainwater is and what are its potential sources and means of use, while the main part of the article focuses on the description of the methods of obtaining water from rain on the example of new urban building in Poland. It describes the method and installations of rainwater in the new urban building (“MBJ2030”). The paper addresses also the issue of monitoring of the whole recycling systems as well as the particular quality indicators important because of identification of the potential risks to human health. The third part describes the legal arrangements concerning the recycling of rainwater existing in different European Union countries with particular reference to Poland on example the new urban building in Warsaw.

Keywords: rainwater, potable water, non-potable water, Poland

Procedia PDF Downloads 416
2748 The Effect of Nutrition Education on Glycemic and Lipidemic Control in Iranian Patients with Type 2 Diabetes

Authors: Samira Rabiei, Faezeh Askari, Reza Rastmanesh

Abstract:

Objective: To evaluate the effects of nutrition education and adherence to a healthy diet on glycemic and lipidemic control in patients with T2DM. Material and Methods: A randomized controlled trial was conducted on 494 patients with T2DM, aged 14-87 years from both sexes who were selected by convenience sampling from referees to Aliebneabitaleb hospital in Ghom. The participants were divided into two 247 person groups by stratified randomization. Both groups received a diet adjusted based on ideal body weight, and the intervention group was additionally educated about healthy food choices regarding diabetes. Information on medications, psychological factors, diet and physical activity was obtained from questionnaires. Blood samples were collected to measure FBS, 2 hPG, HbA1c, cholesterol, and triglyceride. After 2 months, weight and biochemical parameters were measured again. Independent T-test, Mann-Whitney, Chi-square, and Wilcoxon were used as appropriate. Logistic regression was used to determine the odds ratio of abnormal glycemic and lipidemic control according to the intervention. Results: The mean weight, FBS, 2 hPG, cholesterol and triglyceride after intervention were significantly lower than before that (p < 0.05). Discussion: Nutrition education plus a weigh reducer diet is more effective on glycemic and lipidemic control than a weight reducer diet, alone.

Keywords: type 2 diabetes mellitus, nutrition education, glycemic control, lipid profile

Procedia PDF Downloads 211
2747 Potential Application of Modified Diglycolamide Resin for Rare Earth Element Extraction

Authors: Junnile Romero, Ilhwan Park, Vannie Joy Resabal, Carlito Tabelin, Richard Alorro, Leaniel Silva, Joshua Zoleta, Takunda Mandu, Kosei Aikawa, Mayumi Ito, Naoki Hiroyoshi

Abstract:

Rare earth elements (REE) play a vital role in technological advancement due to their unique physical and chemical properties essential for various renewable energy applications. However, this increasing demand represents a challenging task for sustainability that corresponds to various research interests relating to the development of various extraction techniques, particularly on the extractant being used. In this study, TK221 (a modified polymer resin containing diglycolamide, carbamoyl methyl phosphine oxide (CMPO), and diglycolamide (DGA-N)) has been investigated as a conjugate extractant. FTIR and SEM analysis results confirmed the presence of CMPO and DGA-N being coated onto the PS-DVB support of TK221. Moreover, the kinetic rate law and adsorption isotherm batch test was investigated to understand the corresponding adsorption mechanism. The results show that REEs’ (Nd, Y, Ce, and Er) obtained pseudo-second-order kinetics and Langmuir isotherm, suggesting that the adsorption mechanism undergoes a single monolayer adsorption site via a chemisorption process. The Qmax values of Nd, Ce, Er, Y, and Fe were 45.249 mg/g, 43.103 mg/g, 35.088 mg/g, 15.552 mg/g, and 12.315 mg/g, respectively. This research further suggests that TK221 polymer resin can be used as an alternative absorbent material for an effective REE extraction.

Keywords: rare earth element, diglycolamide, characterization, extraction resin

Procedia PDF Downloads 121
2746 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance

Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun

Abstract:

Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.

Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing

Procedia PDF Downloads 51
2745 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side

Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue

Abstract:

The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.

Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE

Procedia PDF Downloads 279
2744 Influence of Pulverized Granite on the Mechanical and Durability Properties of Concrete

Authors: Kwabena A. Boakye, Eugene Atiemo, Trinity A. Tagbor, Delali Adjei

Abstract:

The use of mineral admixtures such as metakaolin, GGBS, fly ash, etc., in concrete is a common practice in the world. However, the only admixture available for use in the Ghanaian construction industry is calcined clay pozzolan. This research, therefore, studies the alternate use of granite dust, a by-product from stone quarrying, as a mineral admixture in concrete. Granite dust, which is usually damped as waste or as an erosion control material, was collected and pulverized to about 75µm. Some physical, chemical, and mineralogical tests were conducted on the granite dust. 5%-25% ordinary Portland cement of Class 42.5N was replaced with granite dust which was used as the main binder in the preparation of 150mm×150mm×150mm concrete cubes according to methods prescribed by BS EN 12390-2:2000. Properties such as workability, compressive strength, flexural strength, water absorption, and durability were determined. Compressive and flexural strength results indicate that granite dust could be used to replace ordinary Portland cement up to an optimum of 15% to achieve C25. Water permeability increased as the granite dust admixture content increased from 5% - 25%. Durability studies after 90 days proved that even though strength decreased as granite dust content increased, the concrete containing granite dust had better resistance to sulphate attack comparable to the reference cement. Pulverized granite can be used to partially replace ordinary Portland cement in concrete.

Keywords: admixture, granite dust, permeability, pozzolans

Procedia PDF Downloads 164
2743 Nutrition of Preschool Children in the Aspect of Nutritional Status

Authors: Klaudia Tomala, Elzbieta Grochowska-Niedworok, Katarzyna Brukalo, Marek Kardas, Beata Calyniuk, Renata Polaniak

Abstract:

Background. Nutrition plays an important role in the psychophysical growth of children and has effects on their health. Providing children with the appropriate supply of macro- and micro-nutrients requires dietary diversity across every food group. Meals in kindergartens should provide 70-75% of their daily food requirement. Aim. The aim of this study was to determine the vitamin content in the food rations of children attending kindergarten in the wider aspect of nutritional status. Material and Methods. Kindergarten menus from the spring and autumn seasons of 2015 were analyzed. In these meals, fat content and levels of water-soluble vitamins were estimated. The vitamin content was evaluated using the diet calculator “Aliant”. Statistical analysis was done in MS Office Excel 2007. Results. Vitamin content in the analyzed menus in many cases is too high with reference to dietary intake, with only vitamin D intake being insufficient. Vitamin E intake was closest to the dietary reference intake. Conclusion. The results show that vitamin intake is usually too high, and menus should, therefore, be modified. Also, nutrition education among kindergarten staff is needed. The identified errors in the composition of meals will affect the nutritional status of children and their proper composition in the body.

Keywords: children, nutrition status, vitamins, preschool

Procedia PDF Downloads 165
2742 Characterization and Analysis of Airless Tire in Mountain Cycle

Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy

Abstract:

Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.

Keywords: airless tire, diamond structure, honeycomb structure, deformation

Procedia PDF Downloads 86
2741 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS

Authors: Bashar Al-Sabti, Jehad Harbali

Abstract:

Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.

Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS

Procedia PDF Downloads 98
2740 Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate

Authors: Fatima Zohra Rahou, A.Guen Bouazza, B. Bouazza

Abstract:

SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased.

Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, SOI-TRI Gate FinFET, high-K dielectric, Silvaco software

Procedia PDF Downloads 353
2739 Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source

Authors: Makoto Hasegawa, Seika Tokumitsu

Abstract:

Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources.

Keywords: blue sky demonstration, sunset color demonstration, white LED torch, physics education

Procedia PDF Downloads 288
2738 Seismic Performance of Various Grades of Steel Columns through Finite Element Analysis

Authors: Asal Pournaghshband, Roham Maher

Abstract:

This study presents a numerical analysis of the cyclic behavior of H-shaped steel columns, focusing on different steel grades, including austenitic, ferritic, duplex stainless steel, and carbon steel. Finite Element (FE) models were developed and validated against experimental data, demonstrating a predictive accuracy of up to 6.5%. The study examined key parameters such as energy dissipation and failure modes. Results indicate that duplex stainless steel offers the highest strength, with superior energy dissipation but a tendency for brittle failure at maximum strains of 0.149. Austenitic stainless steel demonstrated balanced performance with excellent ductility and energy dissipation, showing a maximum strain of 0.122, making it highly suitable for seismic applications. Ferritic stainless steel, while stronger than carbon steel, exhibited reduced ductility and energy absorption. Carbon steel displayed the lowest performance in terms of energy dissipation and ductility, with significant strain concentrations leading to earlier failure. These findings provide critical insights into optimizing material selection for earthquake-resistant structures, balancing strength, ductility, and energy dissipation under seismic conditions.

Keywords: energy dissipation, finite element analysis, H-shaped columns, seismic performance, stainless steel grades

Procedia PDF Downloads 33
2737 Analysis and Evaluation of the Water Catch Basins of the Erosive-Mudflow Rivers of Georgia on the Example of the River Vere

Authors: Natia Gavardashvili

Abstract:

On June 13-14 of 2015, a landslide in village Akhaldaba was formed as a result of the intense rains in the water catch basin of the river Vere. As a result of the landslide movement, freshets and mudflows originated, and unfortunately, there were victims: zoo animals and birds were drawn in the flood and 12 people died due to the flooded motor road. The goal of the study is to give the analysis of the results of the field and scientific research held in 2015-2017 and to generalize them to the water catch basins of the erosive-mudflow rivers of other mountain landscapes of Georgia. By considering the field and scientific works, the main geographic, geological, climatic, hydrological and hydraulic properties of the erosive-mudflow tributaries of the water catch basin of the river Vere were evaluated and the probabilities of mudflow formation by considering relevant risk-factors were identified. The typology of the water catch basins of erosive-mudflow rivers of Georgia was identified on the example of the river Vere based on the field and scientific study, and their genesis, frequency of mudflow formation and volume of the drift material was identified. By using the empirical and theoretical dependencies, the amount of solid admixtures in the mudflow formed in the gorge of the river Jokhona, the right tributary of the river Vere was identified by considering the shape of the stones.

Keywords: water catchment basin, erosion, mudflow, typology

Procedia PDF Downloads 277
2736 Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄).

Keywords: heterogeneous catalysis, steam reforming, Methane, Nickel, Cerium, synthesis gas, hydrogen

Procedia PDF Downloads 168
2735 The Effect of Gamma rays on Physicochemical Properties of Carboxymethyl Starch

Authors: N. Rajeswara Rao, T. Venkatappa Rao, K. Sowri Babu, N. Srinivas Rao, P. S. V. Shanmukhi

Abstract:

Carboxymethyl Starch (CMS) is a biopolymer derived from starch by the substitution method. CMS is proclaimed to have improved physicochemical properties than native starch. The present work deals with the effect of gamma radiation on the physicochemical properties of CMS. The samples were exposed to gamma irradiation of doses 30, 60 and 90 kGy. The resultant properties were studied with electron spin resonance (ESR), fourier transform infrared spectrometer (FTIR), differential scanning calorimeter (DSC), X-ray diffractometer (XRD) and scanning electron microscopy. Irradiation of CMS by gamma rays initiates cleavage of glucosidic bonds producing different types of radicals. Some of these radicals convert to peroxy radicals by abstracting oxygen. The ESR spectrum of CMS is anisotropic and is thought to be due to the superposition of various component spectra. In order to analyze the ESR spectrum, computer simulations were also employed. ESR spectra are also recorded under different conditions like post-irradiation times, variable temperatures and saturation behavior in order to evaluate the stability of free radicals produced on irradiation. Thermal studies from DSC depict that for CMS the gelatization process was absconded at higher doses. Relative crystallinity was reduced significantly after irradiation from XRD Studies. FTIR studies also confirm the same aspect. From ESR studies, it was concluded that irradiated CMS could be a potential reference material in ESR dosimetry.

Keywords: gamma rays, free radicals, ESR simulations, gelatization

Procedia PDF Downloads 109
2734 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 469
2733 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 443
2732 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 95
2731 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources

Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche

Abstract:

The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.

Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil

Procedia PDF Downloads 166
2730 Measurement of Natural Radioactivity and Health Hazard Index Evaluation in Major Soils of Tin Mining Areas of Perak

Authors: Habila Nuhu

Abstract:

Natural radionuclides in the environment can significantly contribute to human exposure to ionizing radiation. The knowledge of their levels in an environment can help the radiological protection agencies in policymaking. Measurement of natural radioactivity in major soils in the tin mining state of Perak Malaysia has been conducted using an HPGe detector. Seventy (70) soil samples were collected at widely distributed locations in the state. Six major soil types were sampled, and thirteen districts around the state were covered. The following were the results of the 226Ra (238U), 228Ra (232Th), and 40K activity in the soil samples: 226Ra (238U) has a mean activity concentration of 191.83 Bq kg⁻¹, more than five times the UNSCEAR reference limits of 35 Bq kg⁻¹. The mean activity concentration of 228Ra (232Th) with a value of 232.41 Bq kg⁻¹ is over seven times the UNSCEAR reference values of 30 Bq kg⁻¹. The average concentration of 40K activity was 275.24 Bq kg⁻¹, which was less than the UNSCEAR reference limit of 400 Bq Kg⁻¹. The range of external hazards index (Hₑₓ) values was from 1.03 to 2.05, while the internal hazards index (Hin) was from 1.48 to 3.08. The Hex and Hin should be less than one for minimal external and internal radiation threats as well as secure use of soil material for building construction. The Hₑₓ and Hin results generally indicate that while using the soil types and their derivatives as building materials in the study area, care must be taken.

Keywords: activity concentration, hazard index, soil samples, tin mining

Procedia PDF Downloads 116
2729 Greed and Grievance Revisisted: The Case of ISIL

Authors: Amjed Rasheed

Abstract:

Rebellions are driven by several incentives. They do not often occur because of historical grievances or political exclusion. They can be driven by the desire to control over natural resources, or by both. In the case of the Islamic State (ISIL), greed and grievance are both drive this radical group to operate in Iraq and Syria. This article aims to show that grievance was the trigger to the emergence of ISIL. It also aims to demonstrate that ISIL is using oil as a tool, to implements its political ends, than a purpose per se. In other words, the emergence of ISIL is based on socio-political conditions, which are domestically driven, and oil is not ISIL’s aim but a source of revenue to finance its activities. This paper applies conflict analysis methodology to analyse the conflict in Iraq and Syria, with a specific highlight to ISIL. By doing so, it gives ahistorical background on emergence of ISIL. It also provides an insightful explanation on the main dynamics and the tactics this organisation applies. It also delivers a sufficient explanation on how it recruits its members, both local and international. It concludes that tackling ISIL needs a more sophisticated approach than the one Obama administration has adopted. It is more a political issue to be tackled by political means, than a military one to be tackled by military means. The current war is an Intra-Sunni war, and therefore, Sunni states have to be on board to crackdown ISIL. Besides, the article finishes with the argument that democratisation is not necessarily the key answer to bring stability to the region, but a sort of governance that provides security and material needs to individuals.

Keywords: ISIL, Iraq, domestic politics, Islamic radicalisation

Procedia PDF Downloads 368
2728 Efficacy of Umbilical Cord Lining Stem Cells For Wound Healing in Diabetic Murine Model

Authors: Fui Ping Lim, Wen Choong Chua, Toan Thang Phan

Abstract:

Aim: This study investigates the roles of Cord Lining Stem Cells (CLSCs) as potential therapeutic agents for diabetic wounds. Method: 20 genetically diabetic db/db mice were randomly assigned to two arms; (i) control group received placebo treatment (sham media or cells delivery material), and (ii) active comparator received CLSCs. Two full-thickness wounds, each sized 10mm X 10mm were created, one on each side of the midline on the back of the mice. Digital pictures were taken on day 1, 3, 7, 10, 14, 17, 21, 24, 28. Wound areas were analyzed with ImageJ TM software and calculated as percentage of the original wound. Time to closure was defined as the day the wound bed was completely epithelized and filled with new tissues. Results: The CLSCs-treated wounds, showed a significant increase in the percentage of wound closure and achieved 100% closure of the wound sooner than the control group by an average of 3.7 days. The mice treated with CLSCs have a shorter wound closure time (mean closure day: 19.8 days) as compared to the control group (mean closure day: 23.5 days). Conclusion: Our preliminary findings inferred that CLSCs treated wound achieved higher percentage of wound closure within a shorter duration of time.

Keywords: cord lining stem cell, diabetic wound, stem cell, wound

Procedia PDF Downloads 289
2727 Cytotoxicity of Nano β–Tricalcium Phosphate (β-TCP) on Human Osteoblast (hFOB1.19)

Authors: Jer Ping Ooi, Shah Rizal Bin Kasim, Nor Aini Saidin

Abstract:

The objective of this study was to synthesize nano-sized β-tricalcium phosphate (β-TCP) powder and assess its cytotoxic effects on human osteoblast (hFOB1.19) by using four cytotoxicity assays, namely, lactose dehydrogenase (LDHe), tetrazolium hydroxide (XTT), neutral red (NR), and sulforhodamine B (SRB) assays. β-tricalcium phosphate (β-TCP) is a calcium phosphate compound commonly used as an implant material. To date, bulk-sized β-TCP is reported to be readily tolerated by the osteogenic cells and body based on in vitro, in vivo experiments and clinical studies. However, to what extent of nano-sized β-TCP will react in models as compared to bulk β-TCP is yet to be investigated. Thus, in this project, the cells were treated with nano β-TCP powder within a range of concentrations from 0 to 1000 μg/mL for 24, 48, and 72 h. The cytotoxicity tests showed that loss of cell viability ( > 50%) was high for hFOB1.19 cells in all assays. Cell cycle and apoptosis analysis of hFOB1.19 cells revealed that 50 μg/mL of the compound led to 30.5% of cells being apoptotic after 72 h of incubation, and the percentage was increased to 58.6% when the concentration was increased to 200 μg/mL. When the incubation time was increased from 24 to 72 h, the percentage of apoptotic cells increased from 17.3% to 58.6% when the hFOB1.19 were exposed with 200 μg/mL of nano β-TCP powder. Thus, both concentration and exposure duration affected the cytotoxicity effects of the nano β-TCP powder on hFOB1.19. We hypothesize that these cytotoxic effects on hFOB1.19 are related to the nano-scale size of the β-TCP.

Keywords: β-tricalcium phosphate, hFOB1.19, adipose-derived mesenchymal stem cells, cytotoxicity

Procedia PDF Downloads 322
2726 Modeling Comfort by Thermal Inertia in Eco-Construction for Low-Income People in an Aqueous Environment in the Face of Sustainable Development in Sub-Saharan Africa; Case of the City of Kinshasa, DR Congo

Authors: Mbambu K. Shaloom, Biba Kalengo, Pierre Echard, Olivier Gilson, Tshiswaka Ngalula, Léonard Kabeya Mukeba Yakasham

Abstract:

In this 21st century, while design and eco-construction continue to be governed by considerations of functionality, safety, comfort and initial investment cost. Today, the principles of sustainable development lead us to think over longer time frames, to take into account new issues and the operating costs of green energy. DR Congo (sub-Saharan Africa) still suffers from the unusability of certain bio-sourced materials (such as bamboo, branches, etc.) and the lack of energy, i.e. 9% of the population has access to electricity and 21% of access to water. Ecoconstruction involves the energy performance of buildings which carry out a dynamic thermal simulation, which targets the different assumptions and conventional parameters (weather, occupancy, materials, thermal comfort, green energies, etc.). The objective of this article is to remedy the thermal, economic and technical artisanal problems in an aqueous environment in the city of Kinshasa. In order to establish a behavioral model to mitigate environmental impacts on architectural modifications and low-cost eco-construction through the approach of innovation and design thinking.

Keywords: thermal comfort, bio-sourced material, eco-architecture, eco-construction, squatting, design thinking

Procedia PDF Downloads 91
2725 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed

Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar

Abstract:

The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.

Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement

Procedia PDF Downloads 305
2724 Lean Construction Techniques in Construction Projects of Pakistan

Authors: Aftab Hameed Memon, Shadab Noor, Muhammad Akram Akhund

Abstract:

Lean construction is a philosophy adopted in the construction industry to increase the value of a project by reducing waste and improving construction productivity. Lean emphasizes on maximizing the value of a project with less expenditure. Globally, lean philosophy has received wider popularity in construction sector. Lean construction has supported the practitioners with several tools and techniques to implement at various stages of a construction project. Following the global trends, this study has investigated the lean practice in Pakistan. The level of implementation of different lean tools and techniques altogether with potential benefits experienced by its implementation in construction projects of Pakistan is analyzed. To achieve the targets, the opinion was sought by the practitioners involved in handling construction projects representing four stakeholders that are a client, consultant, contractors and material suppliers through a structured questionnaire. A total of 34 completed questionnaires were collected and then statistically analyzed. The findings of the analysis have highlighted that pull approach, work standardization, just in time, increase visualization tools, integrated project delivery method and fail-safe for quality are common lean techniques implemented in the local construction industry. While reduction in waste, client’s satisfaction, improved communication, visual control and proper task management are major benefits of the lean construction application.

Keywords: lean construction, lean tools and techniques, lean benefits, waste reduction, Pakistan

Procedia PDF Downloads 290
2723 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 316
2722 The Sensitization Profile of Children Allergic to IgE-mediated Cow's Milk Proteins

Authors: Gadiri Sabiha

Abstract:

Introduction : IgE-dependent cow's milk protein allergy (APLV) is one of the most common allergies in children and is one of the three most common allergies observed in children under 6 years of age. Its natural evolution is most often towards healing. The objective is to determine the sensitization profile of patients allergic to cow's milk (VL). Material and method :A retrospective study carried out on a pediatric population (age < 12 years) over a period of four years (2018-2021) in the context of a suspected food allergy to cow's milk proteins carried out on 121 children aged between 8 months -12 years The search for specific IgE was carried out by immunodot (EUROLINE Pediatric; EUROIMMUN) test which allows a semi-quantitative determination of specific IgE. Results 36 patients (29.7%) had a cow's milk protein allergy (ALPV) with a slight female predominance (58.33% girls vs 41.66% boys) The main clinical signs were: acute diarrhoea; vomiting; Intense abdominal pain, and cutaneous signs (pruritus/urticaria) with respective frequencies of 72%; 58%; 44% and 19%. The 3 major and specific VL allergens identified were beta-lactoglobulin 59% caseins 51% and alpha-lactalbumin 29.7%, The profile of sensitization to LV varies according to age, in infants before 1 year of anti-casein, IgE are predominant 83.3%, followed by beta-lactoglobulin 66.66% and alpha-lactolbumin 50% Conclusion CMPA is a frequent pathology which ranks among the three most common food allergies in children. This is the first to appear, most often starting in infants under 6 months old.

Keywords: specific Ige, food allergy, cow 's milk, child

Procedia PDF Downloads 77
2721 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials

Authors: Faruk Elaldi

Abstract:

There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.

Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced

Procedia PDF Downloads 189