Search results for: single carbon bioconversions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7282

Search results for: single carbon bioconversions

3112 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets

Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi

Abstract:

TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.

Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter

Procedia PDF Downloads 500
3111 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran

Abstract:

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

Keywords: electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity

Procedia PDF Downloads 137
3110 Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines

Authors: Dernie Taganna Olguera

Abstract:

Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines.

Keywords: soil degradation, soil erosion, marginal uplands, Samar island, Philippines

Procedia PDF Downloads 398
3109 Mirror-Like Effect Based on Correlations among Atoms

Authors: Qurrat-ul-Ain Gulfam, Zbigniew Ficek

Abstract:

The novel idea to use single atoms as highly reflecting mirrors has recently gained much attention. Usually, to observe the reflective nature of an atom, it is required to couple the atom to an external medium such that a directional spontaneous emission could be realized. We propose an alternative way to achieve the directional emission by considering a system of correlated atoms in free space. It is well known that mutually interacting atoms have a strong tendency to emit the radiation along particular discrete directions. That relieves one from the stingy condition of associating the atomic system to another media and facilitates the experimental implementation to a large degree. Moreover, realistic 3-dimensional collective emission can be taken into account in the dynamics. Two interesting spatial setups have been considered; one where a probe atom is confined in a linear cavity formed by two atomic mirrors and, the other where a probe atom faces a chain of correlated atoms. We observe an evidence of the mirror-like effect in a simple system of a chain of three atoms. The angular distribution of the radiation intensity observed in the far field is greatly affected by the atomic interactions. Hence, suitable directions for enhanced reflectivity can be determined.

Keywords: atom-mirror effect, correlated system, dipole-dipole interactions, intensity

Procedia PDF Downloads 540
3108 Theory of Constraints: Approach for Performance Enhancement and Boosting Overhaul Activities

Authors: Sunil Dutta

Abstract:

Synchronization is defined as ‘the sequencing and re-sequencing of all relative and absolute activities in time and space and continuous alignment of those actions with purposeful objective in a complex and dynamic atmosphere. In a complex and dynamic production / maintenance setup, no single group can work in isolation for long. In addition, many activities in projects take place simultaneously at the same time. Work of every section / group is interwoven with work of others. The various activities / interactions which take place in production / overhaul workshops are interlinked because of physical requirements (information, material, workforces, equipment, and space) and dependencies. The activity sequencing is determined by physical dependencies of various department / sections / units (e.g., inventory availability must be ensured before stripping and disassembling of equipment), whereas resource dependencies do not. Theory of constraint facilitates identification, analyses and exploitation of the constraint in methodical manner. These constraints (equipment, manpower, policies etc.) prevent the department / sections / units from getting optimum exploitation of available resources. The significance of theory of constraints for achieving synchronization at overhaul workshop is illustrated in this paper.

Keywords: synchronization, overhaul, throughput, obsolescence, uncertainty

Procedia PDF Downloads 334
3107 Design of a Multidisciplinary Project-Oriented Capstone Course for Mechanical Engineering Education

Authors: Chi-Cheng Cheng, Che-Hsin Lin, Yu-Jen Wang, Chua-Chin Wang

Abstract:

The project-oriented capstone course has become a required element for most engineering educational units. It is not only because the capstone course is an important criterion for international accreditation of engineering degree programs under Washington Accord, but also the capstone course provides an opportunity for students to apply what they have learned in their school years to actual engineering problems. Nevertheless, most project-oriented capstone courses are conducted with one single project for all students or teams. In other words, students work to reach the same or similar goals by coming up with different layouts and approaches. It appears not suitable for a multidisciplinary engineering department. Therefore, a one-year multidisciplinary project-oriented capstone course was designed for the junior year of the undergraduate program. About one-half of faculty members in the department needs to be involved in generating as many projects as possible to meet different students' interests and specialties. Project achievement has to be displayed and demonstrated in the annual exposition and competition at the end of this course. Significant success in attracting attention and hardworking of students on projects was witnessed for the past two pilot years. Analysis of course evaluation demonstrates positive impact on all perspectives despite of slightly negative influence due to poor communication and collaboration between students and their project supervisors.

Keywords: Capstone course, CDIO, engineering education, project-oriented learning

Procedia PDF Downloads 434
3106 Organization Structure of Towns and Villages System in County Area Based on Fractal Theory and Gravity Model: A Case Study of Suning, Hebei Province, China

Authors: Liuhui Zhu, Peng Zeng

Abstract:

With the rapid development in China, the urbanization has entered the transformation and promotion stage, and its direction of development has shifted to overall regional synergy. China has a large number of towns and villages, with comparative small scale and scattered distribution, which always support and provide resources to cities leading to urban-rural opposition, so it is difficult to achieve common development in a single town or village. In this context, the regional development should focus more on towns and villages to form a synergetic system, joining the regional association with cities. Thus, the paper raises the question about how to effectively organize towns and villages system to regulate the resource allocation and improve the comprehensive value of the regional area. To answer the question, it is necessary to find a suitable research unit and analysis of its present situation of towns and villages system for optimal development. By combing relevant researches and theoretical models, the county is the most basic administrative unit in China, which can directly guide and regulate the development of towns and villages, so the paper takes county as the research unit. Following the theoretical concept of ‘three structures and one network’, the paper concludes the research framework to analyse the present situation of towns and villages system, including scale structure, functional structure, spatial structure, and organization network. The analytical methods refer to the fractal theory and gravity model, using statistics and spatial data. The scale structure analyzes rank-size dimensions and uses the principal component method to calculate the comprehensive scale of towns and villages. The functional structure analyzes the functional types and industrial development of towns and villages. The spatial structure analyzes the aggregation dimension, network dimension, and correlation dimension of spatial elements to represent the overall spatial relationships. In terms of organization network, from the perspective of entity and ono-entity, the paper analyzes the transportation network and gravitational network. Based on the present situation analysis, the optimization strategies are proposed in order to achieve a synergetic relationship between towns and villages in the county area. The paper uses Suning county in the Beijing-Tianjin-Hebei region as a case study to apply the research framework and methods and then proposes the optimization orientations. The analysis results indicate that: (1) The Suning county is lack of medium-scale towns to transfer effect from towns to villages. (2) The distribution of gravitational centers is uneven, and the effect of gravity is limited only for nearby towns and villages. The gravitational network is not complete, leading to economic activities scattered and isolated. (3) The overall development of towns and villages system is immature, staying at ‘single heart and multi-core’ stage, and some specific optimization strategies are proposed. This study provides a regional view for the development of towns and villages and concludes the research framework and methods of towns and villages system for forming an effective synergetic relationship between them, contributing to organize resources and stimulate endogenous motivation, and form counter magnets to join the urban-rural integration.

Keywords: towns and villages system, organization structure, county area, fractal theory, gravity model

Procedia PDF Downloads 123
3105 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)

Authors: Jiya Mohammed, Ibrahim Ismail Giwa

Abstract:

Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.

Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow

Procedia PDF Downloads 458
3104 Period Poverty: An Analysis of Sustainable Solutions to a Global Problem

Authors: Antonella Regueiro Fernandez

Abstract:

This paper examines the issue of period poverty and the innovative approaches – or lack thereof – that national systems are using to tackle the issue. Through a systems-thinking and economical approach, the paper analyzes the intricate relationship between proper systemic change and sustainable innovations for this global problem. The first part of the research introduces period poverty and the lack of sustainable options currently in place to resolve the issue. The second part delves into a comparison of existing technologies – single-use and reusable period products -- and their benefits and deficiencies. It also provides a comparison of two countries and their existing solutions landscape (Scotland and the United States), arguing that while Scotland has provided an innovative national solution to the problem, it still lacks a proper assessment of the issue of sustainability, while the United States continues to lag in offering any holistic solution at all. The last part provides a conclusion to the research and affirms the importance of holistic policymaking approaches to issues of period poverty, which have the potential to truly benefit half of the world’s population while also encouraging environmental preservation.

Keywords: gender equity, sustainability, period poverty, SDGs, sustainable development

Procedia PDF Downloads 98
3103 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 178
3102 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 202
3101 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 74
3100 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector

Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu

Abstract:

In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.

Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis

Procedia PDF Downloads 192
3099 Assessing the Impacts of Long-Range Forest Fire Emission Transport on Air Quality in Toronto, Ontario, Using MODIS Fire Data and HYSPLIT Trajectories

Authors: Bartosz Osiecki, Jane Liu

Abstract:

Pollutants emitted from forest fires such as PM₂.₅ and carbon monoxide (CO) have been found to impact the air quality of distant regions through long-range transport. PM₂.₅ is of particular concern due to its transport capacity and implications for human respiratory and cardiovascular health. As such, significant increases in PM₂.₅ concentrations have been exhibited in urban areas downwind of fire sources. This study seeks to expand on this literature by evaluating the impacts of long-range forest fire emission transport on air quality in Toronto, Ontario, as a means of evaluating the vulnerability of this major urban center to distant fire events. In order to draw correlations between the fire event and air pollution episode in Toronto, MODIS fire count data and HYPLSIT trajectories are used to assess the date, location, and severity of the fire and track the trajectory of emissions (respectively). Forward and back-trajectories are run, terminating at the West Toronto air monitoring station. PM₂.₅ and CO concentrations in Toronto during September 2017 are found to be significantly elevated, which is likely attributable to the fire activity. Other sites in Ontario including Toronto (East, North, Downtown), Mississauga, Brampton, and Hamilton (Downtown) exhibit similar peaks in PM₂.₅ concentrations. This work sheds light on the non-local, natural factors influencing air quality in urban areas. This is especially important in the context of climate change which is expected to exacerbate intense forest fire events in the future.

Keywords: air quality, forest fires, PM₂.₅, Toronto

Procedia PDF Downloads 117
3098 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam

Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin

Abstract:

Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.

Keywords: isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves

Procedia PDF Downloads 414
3097 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median

Procedia PDF Downloads 181
3096 Website Appeal’s Impact on Brand Outcomes: The Mediated Effect of Emotional Attractiveness in the Relationship between Consistent Image and Brand Value

Authors: Salvador Treviño-Martinez, Christian Reich-Lopez

Abstract:

This paper investigates the relationship between website appeal and brand value outcomes (brand attraction, brand loyalty, brand relationship, and brand experience), considering the mediating effect of emotional attractiveness. Data were collected from 221 customers of a quick-service restaurant in Culiacan, Mexico, using an online survey distributed via WhatsApp, following the clients' navigation of the restaurant's website. The study employed PLS-SEM to test the proposed hypotheses and performed 5,000 bootstrapping subsamples to obtain results. The findings indicate that consistent image, a key component of website appeal, has a statistically significant direct and mediated effect (through emotional attractiveness) on the aforementioned brand outcomes. The study's limitations include the convenience sampling method and the single company client database used for the sample composition. This research contributes to the branding and website quality literature by testing nine hypotheses using the Stimuli-Organism-Response theoretical approach in an underexplored context: quick-service restaurants in Latin America.

Keywords: website appeal, branding, emotional attractiveness, consistent image, website quality

Procedia PDF Downloads 77
3095 Geopolymer Concrete: A Review of Properties, Applications and Limitations

Authors: Abbas Ahmed Albu Shaqraa

Abstract:

The concept of a safe environment and low greenhouse gas emissions is a common concern especially in the construction industry. The produced carbon dioxide (CO2) emissions are nearly a ton in producing only one ton of Portland cement, which is the primary ingredient of concrete. Current studies had investigated the utilization of several waste materials in producing a cement free concrete. The geopolymer concrete is a green material that results from the reaction of aluminosilicate material with an alkaline liquid. A summary of several recent researches in geopolymer concrete will be presented in this manuscript. In addition, the offered presented review considers the use of several waste materials including fly ash, granulated blast furnace slag, cement kiln dust, kaolin, metakaolin, and limestone powder as binding materials in making geopolymer concrete. Moreover, the mechanical, chemical and thermal properties of geopolymer concrete will be reviewed. In addition, the geopolymer concrete applications and limitations will be discussed as well. The results showed a high early compressive strength gain in geopolymer concrete when dry- heating or steam curing was performed. Also, it was stated that the outstanding acidic resistance of the geopolymer concrete made it possible to be used where the ordinary Portland cement concrete was doubtable. Thus, the commercial geopolymer concrete pipes were favored for sewer system in case of high acidic conditions. Furthermore, it was reported that the geopolymer concrete could stand up to 1200 °C in fire without losing its strength integrity whereas the Portland cement concrete was losing its function upon heating to some 100s °C only. However, the geopolymer concrete still considered as an emerging field and occupied mainly by the precast industries.

Keywords: geopolymer concrete, Portland cement concrete, alkaline liquid, compressive strength

Procedia PDF Downloads 202
3094 Nanoparticle Emission Characteristics during Methane Pyrolysis in a Laminar Premixed Flame

Authors: Mohammad Javad Afroughi, Farjad Falahati, Larry W. Kostiuk, Jason S. Olfert

Abstract:

This study investigates the physical characteristics of nanoparticles generated during pyrolysis of methane in hot products of a premixed propane-air flame. An inverted burner is designed to provide a laminar premixed propane-air flame (35 SLPM) then introduce methane co-flow to be pyrolyzed within a closed cylindrical chamber (20 cm in diameter and 68 cm in length). The formed products are discharged through an exhaust with a sampling branch to measure emission characteristics. Carbon particles are sampled with a preheated nitrogen dilution system, and the size distribution of particles formed by pyrolysis is measured by a scanning mobility particle sizer (SMPS). Dilution ratio is calculated using simultaneously measured CO2 concentrations in the exhaust products and diluted samples. Results show that particle size distribution (PSD) is strongly affected by dilution ratio and preheating temperature. PSD becomes unstable at high dilution ratios (typically above 700 times) and/or low preheating temperatures (below 40° C). At a suitable dilution ratio of 55 and preheating temperature up to 70° C, the median diameter of PSD increases from 20 to 220 nm following the introduction of 0.5 SLPM of methane to the propane-air premixed flame. Furthermore, with pyrolysis of methane, total particle number concentration and estimated total mass concentration of particles in the size range of 14 to 700 nm, increase from 1.12 to 3.90 *107 cm-3 and from 0.11 to 154 µg L-1, respectively.

Keywords: laminar premixed flame, methane pyrolysis, nanoparticle physical characteristics, particle mass concentration, particle number concentration, particle size distribution (PSD)

Procedia PDF Downloads 217
3093 Hybridized Approach for Distance Estimation Using K-Means Clustering

Authors: Ritu Vashistha, Jitender Kumar

Abstract:

Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.

Keywords: ant colony optimization, data clustering, centroids, data mining, k-means

Procedia PDF Downloads 115
3092 Broad Protection against Avian Influenza Virus by Using a Modified Vaccinia Ankara Virus Expressing a Mosaic Hemagglutinin

Authors: Attapon Kamlangdee, Brock Kingstad-Bakke, Tavis K. Anderson, Tony L. Goldberg, Jorge E. Osorio

Abstract:

A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection post vaccination. Both neutralizing antibodies and antigen-specific CD4+and CD8+ T cells were still detected at 5 months post vaccination, suggesting that MVA-H5M provides long-lasting immunity.

Keywords: modified vaccinia Ankara, MVA, H5N1, hemagglutinin, influenza vaccine

Procedia PDF Downloads 267
3091 Pozzolanic Properties of Synthetic Zeolites as Materials Used for the Production of Building Materials

Authors: Joanna Styczen, Wojciech Franus

Abstract:

Currently, cement production reaches 3-6 Gt per year. The production of one ton of cement is associated with the emission of 0.5 to 1 ton of carbon dioxide into the atmosphere, which means that this process is responsible for 5% of global CO2 emissions. Simply improving the cement manufacturing process is not enough. An effective solution is the use of pozzolanic materials, which can partly replace clinker and thus reduce energy consumption, and emission of pollutants and give mortars the desired characteristics, shaping their microstructure. Pozzolanic additives modify the phase composition of cement, reducing the amount of portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. Zeolites are a pozzolanic additive that is not commonly used. Three types of zeolites were synthesized in work: Na-A, sodalite and ZSM-5 (these zeolites come from three different structural groups). Zeolites were obtained by hydrothermal synthesis of fly ash in an aqueous NaOH solution. Then, the pozzolanicity of the obtained materials was assessed. The pozzolanic activity of the zeolites synthesized for testing was tested by chemical methods in accordance with the ASTM C 379-65 standard. The method consisted in determining the percentage content of active ingredients (soluble silicon oxide and aluminum).in alkaline solutions, i.e. those that are potentially reactive towards calcium hydroxide. The highest amount of active silica was found in zeolite ZSM-5 - 88.15%. The amount of active Al2O3 was small - 1%. The smallest pozzolanic activity was found in the Na-A zeolite (active SiO2 - 4.4%, and active Al2O3 - 2.52). The tests carried out using the XRD, SEM, XRF and textural tests showed that the obtained zeolites are characterized by high porosity, which makes them a valuable addition to mortars.

Keywords: pozzolanic properties, hydration, zeolite, alite

Procedia PDF Downloads 65
3090 Optimization of SWL Algorithms Using Alternative Adder Module in FPGA

Authors: Tayab D. Memon, Shahji Farooque, Marvi Deshi, Imtiaz Hussain Kalwar, B. S. Chowdhry

Abstract:

Recently single-bit ternary FIR-like filter (SBTFF) hardware synthesize in FPGA is reported and compared with multi-bit FIR filter on similar spectral characteristics. Results shows that SBTFF dominates upon multi-bit filter overall. In this paper, an optimized adder module for ternary quantized sigma-delta modulated signal is presented. The adder is simulated using ModelSim for functional verification the area-performance of the proposed adder were obtained through synthesis in Xilinx and compared to conventional adder trees. The synthesis results show that the proposed adder tree achieves higher clock rates and lower chip area at higher inputs to the adder block; whereas conventional adder tree achieves better performance and lower chip area at lower number of inputs to the same adder block. These results enhance the usefulness of existing short word length DSP algorithms for fast and efficient mobile communication.

Keywords: short word length (SWL), DSP algorithms, FPGA, SBTFF, VHDL

Procedia PDF Downloads 328
3089 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift

Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard

Abstract:

Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.

Keywords: floor lift, human robot interaction, admittance controller, variable admittance

Procedia PDF Downloads 79
3088 Impact of Increased Radiology Staffing on After-Hours Radiology Reporting Efficiency and Quality

Authors: Peregrine James Dalziel, Philip Vu Tran

Abstract:

Objective / Introduction: Demand for radiology services from Emergency Departments (ED) continues to increase with greater demands placed on radiology staff providing reports for the management of complex cases. Queuing theory indicates that wide variability of process time with the random nature of request arrival increases the probability of significant queues. This can lead to delays in the time-to-availability of radiology reports (TTA-RR) and potentially impaired ED patient flow. In addition, greater “cognitive workload” of greater volume may lead to reduced productivity and increased errors. We sought to quantify the potential ED flow improvements obtainable from increased radiology providers serving 3 public hospitals in Melbourne Australia. We sought to assess the potential productivity gains, quality improvement and the cost-effectiveness of increased labor inputs. Methods & Materials: The Western Health Medical Imaging Department moved from single resident coverage on weekend days 8:30 am-10:30 pm to a limited period of 2 resident coverage 1 pm-6 pm on both weekend days. The TTA-RR for weekend CT scans was calculated from the PACs database for the 8 month period symmetrically around the date of staffing change. A multivariate linear regression model was developed to isolate the improvement in TTA-RR, between the two 4-months periods. Daily and hourly scan volume at the time of each CT scan was calculated to assess the impact of varying department workload. To assess any improvement in report quality/errors a random sample of 200 studies was assessed to compare the average number of clinically significant over-read addendums to reports between the 2 periods. Cost-effectiveness was assessed by comparing the marginal cost of additional staffing against a conservative estimate of the economic benefit of improved ED patient throughput using the Australian national insurance rebate for private ED attendance as a revenue proxy. Results: The primary resident on call and the type of scan accounted for most of the explained variability in time to report availability (R2=0.29). Increasing daily volume and hourly volume was associated with increased TTA-RR (1.5m (p<0.01) and 4.8m (p<0.01) respectively per additional scan ordered within each time frame. Reports were available 25.9 minutes sooner on average in the 4 months post-implementation of double coverage (p<0.01) with additional 23.6 minutes improvement when 2 residents were on-site concomitantly (p<0.01). The aggregate average improvement in TTA-RR was 24.8 hours per weekend day This represents the increased decision-making time available to ED physicians and potential improvement in ED bed utilisation. 5% of reports from the intervention period contained clinically significant addendums vs 7% in the single resident period but this was not statistically significant (p=0.7). The marginal cost was less than the anticipated economic benefit based assuming a 50% capture of improved TTA-RR inpatient disposition and using the lowest available national insurance rebate as a proxy for economic benefit. Conclusion: TTA-RR improved significantly during the period of increased staff availability, both during the specific period of increased staffing and throughout the day. Increased labor utilisation is cost-effective compared with the potential improved productivity for ED cases requiring CT imaging.

Keywords: workflow, quality, administration, CT, staffing

Procedia PDF Downloads 97
3087 3D Interferometric Imaging Using Compressive Hardware Technique

Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil

Abstract:

In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.

Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging

Procedia PDF Downloads 144
3086 Comparative Study of Impact Strength and Fracture Morphological of Nano-CaCO3 and Nanoclay Reinforced HDPE Nanocomposites

Authors: Harun Sepet, Necmettin Tarakcioglu

Abstract:

The present study investigated the impact strength and fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites by using Charpy impact test. The nano-CaCO3 and nanoclay reinforced HDPE granules were prepared by the melt blending method using a compounder system, which consists of industrial banbury mixer, single screw extruder and granule cutting in industrial-scale. The nano-CaCO3 and nanoclay reinforced HDPE granules were molded using an injection-molding machine as plates, and then impact samples were cut by using punching die from the nanocomposite plates. As a result of impact experiments, nano-CaCO3 and nanoclay reinforced HDPE nanocomposites were determined to have lower impact energy level than neat HDPE. Also, the impact strength of HDPE further decreased by addition nanoclay compared to nano-CaCO3. The occurred fracture areas with the impact were detected by SEM examination. It is understood that fracture surface morphology changes when nano-CaCO3 and nanoclay ratio increases. The fracture surface changes were examined to determine the fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites.

Keywords: charpy, HDPE, industrial scale nano-CaCO3, nanoclay, nanocomposite

Procedia PDF Downloads 393
3085 Corrosion Mitigation in Gas Facilities Piping Through the Use of FBE Coated Pipes and Corrosion Resistant Alloy Girth Welds

Authors: Fadi Chammas, Saad Alkhaldi, Tariq Alghamdi, Stefano Alexandirs

Abstract:

The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately (1700) breakout flanges, and prevent the potential hydrocarbon leaks.

Keywords: pipelines, corrosion, cost-saving, project completion

Procedia PDF Downloads 105
3084 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration

Authors: Zohreh Fallah, Edward P. L. Roberts

Abstract:

One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.

Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water

Procedia PDF Downloads 570
3083 Effect of Storey Number on Vierendeel Action in Progressive Collapse of RC Frames

Authors: Qian Huiya, Feng Lin

Abstract:

The progressive collapse of reinforced concrete (RC) structures will cause huge casualties and property losses. Therefore, it is necessary to evaluate the ability of structures against progressive collapse accurately. This paper numerically investigated the effect of storey number on the mechanism and quantitative contribution of the Vierendeel action (VA) in progressive collapse under corner column removal scenario. First, finite element (FE) models of multi-storey RC frame structures were developed using LS-DYNA. Then, the accuracy of the modeling technique was validated by test results conducted by the authors. Last, the validated FE models were applied to investigated the structural behavior of the RC frames with different storey numbers from one to six storeys. Results found the multi-storey substructure formed additional plastic hinges at the beam ends near the corner column in the second to top storeys, and at the lower end of the corner column in the first storey. The average ultimate resistance of each storey of the multi-storey substructures were increased by 14.0% to 18.5% compared with that of the single-storey substructure experiencing no VA. The contribution of VA to the ultimate resistance was decreased with the increase of the storey number.

Keywords: progressive collapse, reinforced concrete structure, storey number, Vierendeel action

Procedia PDF Downloads 46