Search results for: interstitial fluid pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5646

Search results for: interstitial fluid pressure

1476 The Meaningful Pixel and Texture: Exploring Digital Vision and Art Practice Based on Chinese Cosmotechnics

Authors: Xingdu Wang, Charlie Gere, Emma Rose, Yuxuan Zhao

Abstract:

The study introduces a fresh perspective on the digital realm through an examination of the Chinese concept of Xiang, elucidating how it can build an understanding of pixels and textures on screens as digital trigrams. This concept attempts to offer an outlook on the intersection of digital technology and the natural world, thereby contributing to discussions about the harmonious relationship between humans and technology. The study looks for the ancient Chinese theory of Xiang as a key to establishing the theories and practices to respond to the problem of Contemporary Chinese technics. Xiang is a Chinese method of understanding the essentials of things through appearances, which differs from the method of science in the Westen. Xiang, the basement of Chinese visual art, is rooted in ancient Chinese philosophy and connected to the eight trigrams. The discussion of Xiang connects art, philosophy, and technology. This paper connects the meaning of Xiang with the 'truth appearing' philosophically through the analysis of the concepts of phenomenon and noumenon and the unique Chinese way of observing. Hereafter, the historical interconnection between ancient painting and writing in China emphasizes their relationship between technical craftsmanship and artistic expression. In digital, the paper blurs the traditional boundaries between images and text on digital screens in theory. Lastly, this study identified an ensemble concept relating to pixels and textures in computer vision, drawing inspiration from AI image recognition in Chinese paintings. In art practice, by presenting a fluid visual experience in the form of pixels, which mimics the flow of lines in traditional calligraphy and painting, it is hoped that the viewer will be brought back to the process of the truth appearing as defined by the 'Xiang’.

Keywords: Chinese cosmotechnics, computer vision, contemporary Neo-Confucianism, texture and pixel, Xiang

Procedia PDF Downloads 51
1475 Strength of Soft Clay Reinforced with Polypropylene Column

Authors: Muzamir Hasan, Anas Bazirgan

Abstract:

Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials.

Keywords: polypropylene, UCT, UU test, Kaolin S300, ground improvement

Procedia PDF Downloads 325
1474 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 80
1473 Serum MicroRNA and Inflammatory Mediators: Diagnostic Biomarkers for Endometritis in Arabian Mares

Authors: Sally Ibrahim, Mohamed Hedia, Mohamed Taqi, Mohamed Derbala, Karima Mahmoud, Youssef Ahmed, Sayed Ismail, Mohamed El-Belely

Abstract:

The identification and quantification of serum microRNA (miRNA) from mares with endometritis might serve as useful and implementable clinical biomarkers for the early diagnosis of endometiritis. Aims of the current study were (I) to study the expression pattern of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205, and (II) to determine the levels of interleukin 6 (IL-6), prostaglandins (PGF₂α and PGE₂), in the serum of Arabian mares with healthy and abnormal uterine status (endometritis). This study was conducted on 80 Arabian mares (4-14 years old). Mares were divided into 48 sub-fertile mares suspected of endometritis and 32 fertile at stud farms. The criteria for mares to be enrolled in the endometritis group were that they had been bred three or more times unsuccessfully in the breeding season or had a history of more than one year of reproductive failure. In addition, two or more of the following criteria on a checklist were present: abnormal clinical findings, transrectal ultrasonographic uterine examination showed abnormal fluid in the uterus (echogenic or ≥2 cm in diameter), positive endometrial cytology; and bacterial and/or fungal growth. Serum samples were collected for measuring IL-6, PGF₂α, and PGE₂ concentrations, as well as serum miRNA isolation and quantitative real-time PCR. Serum concentrations of IL-6, PGE₂, and PGF₂α were higher (P ≤ 0.001) in mares with endometritis compared to the control healthy ones. The expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 increased (P≤0.001) in mares with endometritis compared to the control ones. To the best of our knowledge, this is the first study that revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE₂, and PGF₂α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares. Moreover, estimation of the serum concentrations of serum miRNA, IL-6, PGE₂, and PGF₂α is a promising recommended tool during the breeding soundness examination in mares.

Keywords: Arabian Mares, endometritis, inflammatory mediators, serum miRNA

Procedia PDF Downloads 174
1472 Merits and Demerits of Participation of Fellow Examinee as Subjects in Observed Structured Practical Examination in Physiology

Authors: Mohammad U. A. Khan, Md. D. Hossain

Abstract:

Background: Department of Physiology finds difficulty in managing ‘subjects’ in practical procedure. To avoid this difficulty fellow examinees of other group may be used as subjects. Objective: To find out the merits and demerits of using fellow examinees as subjects in the practical procedure. Method: This cross-sectional descriptive study was conducted in the Department of Physiology, Noakhali Medical College, Bangladesh during May-June’14. Forty-two 1st year undergraduate medical students from a selected public medical college of Bangladesh were enrolled for the study purposively. Consent of students and authority was taken. Eighteen of them were selected as subjects and designated as subject-examinees. Other fellow examinees (non-subject) examined their blood pressure and pulse as part of ‘observed structured practical examination’ (OSPE). The opinion of all examinees regarding the merits and demerits of using fellow examinee as subjects in the practical procedure was recorded. Result: Examinees stated that they could perform their practical procedure without nervousness (24/42, 57.14%), accurately and comfortably (14/42, 33.33%) and subjects were made available without wasting time (2/42, 4.76%). Nineteen students (45.24%) found no disadvantage and 2 (4.76%) felt embracing when the subject was of opposite sex. The subject-examinees narrated that they could learn from the errors done by their fellow examinee (11/18, 61.1%). 75% non-subject examinees expressed their willingness to be subject so that they can learn from their fellows’ error. Conclusion: Using fellow examinees as subjects is beneficial for both the non-subject and subject examinees. Funding sources: Navana, Beximco, Unihealth, Square & Acme Pharma, Bangladesh Ltd.

Keywords: physiology, teaching, practical, OSPE

Procedia PDF Downloads 143
1471 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 371
1470 Effect of Brewing on the Bioactive Compounds of Coffee

Authors: Ceyda Dadali, Yeşim Elmaci

Abstract:

Coffee was introduced as an economic crop during the fifteenth century; nowadays it is the most important food commodity ranking second after crude oil. Desirable sensory properties make coffee one of the most often consumed and most popular beverages in the world. The coffee preparation method has a significant effect on flavor and composition of coffee brews. Three different extraction methodologies namely decoction, infusion and pressure methods have been used for coffee brew preparation. Each of these methods is related to specific granulation (coffee grind) of coffee powder, water-coffee ratio temperature and brewing time. Coffee is a mixture of 1500 chemical compounds. Chemical composition of coffee highly depends on brewing methods, coffee bean species and roasting time-temperature. Coffee contains a wide number of very important bioactive compounds, such as diterpenes: cafestol and kahweol, alkaloids: caffeine, theobromine and trigonelline, melanoidins, phenolic compounds. The phenolic compounds of coffee include chlorogenic acids (quinyl esters of hidroxycinnamic acids), caffeic, ferulic, p-coumaric acid. In coffee caffeoylquinic acids, feruloylquinic acids and di-caffeoylquinic acids are three main groups of chlorogenic acids constitues 6% -10% of dry weight of coffee. The bioavailability of chlorogenic acids in coffee depends on the absorption and metabolization to biomarkers in individuals. Also, the interaction of coffee polyphenols with other compounds such as dietary proteins affects the biomarkers. Since bioactive composition of coffee depends on brewing methods effect of coffee brewing method on bioactive compounds of coffee will be discussed in this study.

Keywords: bioactive compounds of coffee, biomarkers, coffee brew, effect of brewing

Procedia PDF Downloads 190
1469 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 474
1468 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, Biomedical application, Mechanical properties, Powder Metallurgy, Zinc

Procedia PDF Downloads 136
1467 Retrospective Insight on the Changing Status of the Romanian Language Spoken in the Republic of Moldova

Authors: Gina Aurora Necula

Abstract:

From its transformation into a taboo and its hiding under the so-called “Moldovan language” or under the euphemistic expression “state language” to its regained status recognition as an official language, the Romanian language spoken in the Republic of Moldova has undergone impressive reforms in the last 60 years. Meant to erase the awareness of citizens’ ethnic identity and turn a majority language into a minority one, all the laws and regulations issued on the field succeeded into setting numerous barriers for speakers of Romanian. Either manifested as social constraints or materialized into assumed rejection of mother tongue usage, all these laws have demonstrated their usefulness and major impact on the Romanian-speaking population. This article is the result of our research carried out over 10 years with the support of students, and Moldovan citizens, from the master's degree program "Romanian language - identity and cultural awareness." We present here a retrospective insight of the reforms, laws, and regulations that contributed to the shifted status of the Romanian language from the official language, seen as the language of common use both in the public and private spheres, in the minority language that surrendered its privileged place to the Russian language, firstly in the public sphere, and then, slowly but surely, in the private sphere. Our main goal here is to identify and make speakers understand what the barriers to learning Romanian language are nowadays when the social pressure on using Russian no longer exists.

Keywords: linguistic barriers, lingua franca, private sphere, public sphere, reformation

Procedia PDF Downloads 107
1466 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices

Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung

Abstract:

Snoring, the lay term for obstructive breathing during sleep, is one of the most prevalent of obnoxious human habits. Loud snoring usually makes others feel noisy and uncomfortable. Snoring also influences the sleep quality of snorers’ bed partners, because of the noise they do not get to sleep easily. Snoring causes the reduce of sleep quality leading to several medical problems, such as excessive daytime sleepiness, high blood pressure, increased risk for cardiovascular disease and cerebral vascular accident, and etc. There are many non-prescription devices offered for sale on the market, but very limited data are available to support a beneficial effect of these devices on snoring and use in treating obstructive sleep apnea (OSA). Mandibular advancement devices (MADs), also termed as the Mandibular reposition devices (MRDs) are removable devices which are worn at night during sleep. Most devices require dental impression, bite registration, and fabrication by a dental laboratory. Those devices are fixed to upper and lower teeth and are adjusted to advance the mandible. The amount of protrusion is adjusted to meet the therapeutic requirements, comfort, and tolerance. Many devices have a fixed degree of advancement. Some are adjustable in a limited degree. This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.

Keywords: finite element analysis, mandibular advancement devices, mechanical stress, snoring

Procedia PDF Downloads 354
1465 Sustainable Milling Process for Tensile Specimens

Authors: Shilpa Kumari, Ramakumar Jayachandran

Abstract:

Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.

Keywords: dry milling, tensile testing, wet milling, 6xxx alloy

Procedia PDF Downloads 193
1464 Synthesis of Plant-Mediated Silver Nanoparticles Using Erythrina indica Extract and Evaluation of Their Anti-Microbial Activities

Authors: Chandra Sekhar Singh, P. Chakrapani, B. Arun Jyothi, A. Roja Rani

Abstract:

The green synthesis of metallic nanoparticles (NPs) involves biocompatible ingredients under physiological conditions of temperature and pressure. Moreover, the biologically active molecules involved in the green synthesis of NPs act as functionalizing ligands, making these NPs more suitable for biomedical applications. Among the most important bioreductants are plant extracts, which are relatively easy to handle, readily available, low cost, and have been well explored for the green synthesis of other nanomaterials. Various types of metallic NPs have already been synthesized using plant extracts. They have wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In our study, we were described a cost effective and environment friendly technique for green synthesis of silver nanoparticles from 1mM AgNO3 solution through the aqueous extract of Erythrina indica as reducing as well as capping agent. Nanoparticles were characterized using UV–Vis absorption spectroscopy, FTIR, XRD, X-ray diffraction, SEM and TEM analysis showed the average particle size of 30 nm as well as revealed their spherical structure. Further these biologically synthesized nanoparticles were found to be highly toxic against different human pathogens viz. two Gram positive namely Klebsiella pneumonia and Bacillus subtilis bacteria and two were Gram negative bacteria namely Staphylococcus aureus and Escherichia coli (E. coli). This is for the first time reporting that Erythrina indica plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, antibacterial activity, FTIR, TEM, SEM

Procedia PDF Downloads 492
1463 Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber

Authors: Manisha Bal, B. C. Meikap

Abstract:

Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height.

Keywords: air pollution, HCl scrubbing, mass transfer, self-priming venturi scrubber

Procedia PDF Downloads 135
1462 Microstructural Characterization of Creep Damage Evolution in Welded Inconel 600 Superalloy

Authors: Lourdes Yareth Herrera-Chavez, Alberto Ruiz, Victor H. Lopez

Abstract:

Superalloys are used in components that operate at high temperatures such as pressure vessels and heat exchanger tubing. Design standards for these components must consider creep resistance among other criteria. Fusion welding processes are commonly used in the industry to join such components. Fusion processes commonly generate three distinctive zones, i.e. heat affected zone (HAZ), namely weld metal (WM) and base metal (BM). In nickel-based superalloy, the microstructure developed during fusion welding dictates the mechanical response of the welded component and it is very important to establish these effects in the mechanical response of the component. In this work, two plates of Inconel 600 superalloy were Gas Metal Arc Welded (GMAW). Creep samples were cut and milled to specifications and creep tested at a temperature (650 °C) using stress level of 350, 300, 275, 250 and 200 MPa. Microstructural analysis results showed a progressive creep damage evolution that depends on the stress levels with a preferential accumulation of creep damage at the heat affected zone where the creep rupture preferentially occurs owing to an austenitic matrix with grain boundary precipitated of the type Cr23C6. The fractured surfaces showed dimple patterns of cavity and voids. Results indicated that the damage mechanism is due to cavity growth by the combined effect of the power law and diffusion creep.

Keywords: austenitic microstructure, creep damage evolution, heat affected zone, vickers microhardness

Procedia PDF Downloads 197
1461 Excision and Reconstruction of a Hypertrophic and Functional Bleb with Bovine Pericardium (Tutopatch®) and Amniotic Membrane: A Case Report

Authors: Blanca Fatela Cantillo, Silvia Iglesias Cerrato, Guadalupe Garrido Ceca

Abstract:

Purpose: Bleb dysfunction is a late complication following glaucoma filtration surgery. We describe our surgical technique for excision and reconstruction of a hypertrophic bleb complication using bovine pericardium patch graft (Tutopatch®) and amniotic membrane. Material and methods: The case report presents a hypertrophic bleb over the cornea with good intraocular pressure control. The hanging bleb without leak caused dysesthesia and high irregular astigmatism. Bleb reconstruction involved the excision of corneal fibrous material and avascular conjunctiva, preserving the original scleral and tennon. Bovine pericardium patch graft (Tutopatch®) was sited over these with fixed sutures, reinforcing the underlying scleral, and the conjunctiva advanced. The superior epithelium corneal defect was covered using an amniotic membrane. Conclusion: Repair of bleb dysfunction with varied techniques has been reported, including conjunctival advancement, use of scleral patch graft, dural patch graft, or pericardium. Additional use of amniotic membrane promotes epithelialization and exhibits anti-fibrotic and anti-inflammatory features. Reconstruction with bovine pericardium patch graft and amniotic membrane resulted in pain relief, visual rehabilitation, and good aesthetic results, with preservation of bleb function.

Keywords: reconstruction, hypertrophic bleb, bovine pericardium, amniotic membrane, dysesthesia of the bleb

Procedia PDF Downloads 71
1460 The Rational Design of Original Anticancer Agents Using Computational Approach

Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi

Abstract:

Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.

Keywords: drug design, anticancer, computational studies, DFT analysis

Procedia PDF Downloads 67
1459 A Corpus-Based Approach to Understanding Market Access in Fisheries and Aquaculture: A Systematic Literature Review

Authors: Cheryl Marie Cordeiro

Abstract:

Although fisheries and aquaculture studies might seem marginal to international business (IB) studies in general, fisheries and aquaculture IB (FAIB) management is currently facing increasing pressure to meet global demand and consumption for fish in the next coming decades. In part address to this challenge, the purpose of this systematic review of literature (SLR) study is to investigate the use of the term ‘market access’ in its context of use in the generic literature and business sector discourse, in comparison to the more specific literature and discourse in fisheries, aquaculture and seafood. This SLR aims to uncover the knowledge/interest gaps between the academic subject discourses and business sector practices. Corpus driven in methodology and using a triangulation method of three different text analysis software including AntConc, VOSviewer and Web of Science (WoS) analytics, the SLR results indicate a gap in conceptual knowledge and business practices in how ‘market access’ is conceived and used in the context of the pharmaceutical healthcare industry and FAIB research and practice. While it is acknowledged that the product orientation of different business sectors might differ, this SLR study works with the assumption that both business sectors are global in orientation. These business sectors are complex in their operations from product to market. This SLR suggests a conceptual model in understanding the challenges, the potential barriers as well as avenues for solutions to developing market access for FAIB.

Keywords: market access, fisheries and aquaculture, international business, systematic literature review

Procedia PDF Downloads 138
1458 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 301
1457 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 98
1456 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 147
1455 Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V

Authors: Saad Nawaz, Yu Gang, Miao Haibin

Abstract:

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation.

Keywords: tool wear, cutting speed, flank wear , tool life

Procedia PDF Downloads 313
1454 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 255
1453 Evaluating the Performance of 28 EU Member Countries on Health2020: A Data Envelopment Analysis Evaluation of the Successful Implementation of Policies

Authors: Elias K. Maragos, Petros E. Maravelakis, Apostolos I. Linardis

Abstract:

Health2020 is a promising framework of policies provided by the World Health Organization (WHO) and aiming to diminish the health and well-being inequalities among the citizens of the European Union (EU) countries. The major demographic, social and environmental changes, in addition to the resent economic crisis prevent the unobstructed and successful implementation of this framework. The unemployment rates and the percentage of people at risk of poverty have increased among the citizens of EU countries. At the same time, the adopted fiscal, economic policies do not help governments to serve their social role and mitigate social and health inequalities. In those circumstances, there is a strong pressure to organize all health system resources efficiently and wisely. In order to provide a unified and value-based framework of valuation, we propose a valuation framework using data envelopment analysis (DEA) and dynamic DEA. We believe that the adopted methodology could provide a robust tool which can capture the degree of success with which policies have been implemented and is capable to determine which of the countries developed the requested policies efficiently and which of the countries have been lagged. Using the proposed methodology, we evaluated the performance of 28 EU member-countries in relation to the Health2020 peripheral targets. We adopted several versions of evaluation, measuring the effectiveness and the efficiency of EU countries from 2011 to 2016. Our results showed stability in technological changes and revealed a group of countries which were benchmarks in most of the years for the inefficient countries.

Keywords: DEA, Health2020, health inequalities, malmquist index, policies evaluation, well-being

Procedia PDF Downloads 139
1452 The Material Behavior in Curved Glulam Beam of Jabon Timber

Authors: Erma Desmaliana, Saptahari Sugiri

Abstract:

Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.

Keywords: curved glulam beam, HTR&HTI, load carrying, strength

Procedia PDF Downloads 291
1451 Uncovering Anti-Hypertensive Obesity Targets and Mechanisms of Metformin, an Anti-Diabetic Medication

Authors: Lu Yang, Keng Po Lai

Abstract:

Metformin, a well-known clinical drug against diabetes, is found with potential anti-diabetic and anti-obese benefits, as reported in increasing evidences. However, the current clinical and experimental investigations are not to reveal the detailed mechanisms of metformin-anti-obesity/hypertension. We have used the bioinformatics strategy, including network pharmacology and molecular docking methodology, to uncover the key targets and pathways of bioactive compounds against clinical disorders, such as cancers, coronavirus disease. Thus, in this report, the in-silico approach was utilized to identify the hug targets, pharmacological function, and mechanism of metformin against obesity and hypertension. The networking analysis identified 154 differentially expressed genes of obesity and hypertension, 21 interaction genes, and 6 hug genes of metformin treating hypertensive obesity. As a result, the molecular docking findings indicated the potent binding capability of metformin with the key proteins, including interleukin 6 (IL-6) and chemokine (C-C motif) Ligand 2 (CCL2), in hypertensive obesity. The metformin-exerted anti-hypertensive obesity action involved in metabolic regulation, inflammatory reaction. And the anti-hypertensive obesity mechanisms of metformin were revealed, including regulation of inflammatory and immunological signaling pathways for metabolic homeostasis in tissue and microenvironmental melioration in blood pressure. In conclusion, our identified findings with bioinformatics analysis have demonstrated the detailed hug and pharmacological targets, biological functions, and signaling pathways of metformin treating hypertensive obesity.

Keywords: metformin, obesity, hypertension, bioinformatics findings

Procedia PDF Downloads 115
1450 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle

Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh

Abstract:

Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.

Keywords: aerodynamics, CFD, fuel efficiency, golf ball

Procedia PDF Downloads 328
1449 Assessment of the Adoption and Distribution Pattern of Agroforestry in Faisalabad District Using GIS

Authors: Irfan Ahmad, Raza Ghafoor, Hammad Raza Ahmad, Muhammad Asif, Farrakh Nawaz, M. Tahir Siddiqui

Abstract:

Due to the exploding population of Pakistan the pressure on natural forests is increasing to meet the demands of wood and wood based products. Agroforestry is being practiced throughout the world on scientific basis but unfortunately the farmers of Pakistan are reluctant in its adoption. The presents study was designed to assess the adoption of agroforestry practices in Faisalabad with respect to land holdings of farmers and future suitability by using Geographic information system (GIS). Faisalabad is the third largest city of the country and is famous due to the textile industry. A comprehensive survey from target villages of the Lyallpur town of Faisalabad district was carried out. Out of total 65 villages, 40 were selected for study. From each selected village, one farmer who was actively engaged in farming activities was selected. It was observed that medium sized farmers having 10-20 acre were more in number as compared to small and large farmers. Number of trees was found maximum in large farm lands, ratio of diseased trees was almost similar in all categories with maximum in small farmlands (24.1%). Regarding the future prospects 35% farmer were interested in agroforestry practices 65% were not interested in the promotion of trees due to the non-availability of technical guidance and proper markets. Geographic images of the study site can further help the researchers and policy makers in the promotion of agroforestry.

Keywords: agroforestry trends, adoption, Faisalabad, geographic information system (GIS)

Procedia PDF Downloads 494
1448 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index

Authors: Kamakshaiah Kolli, R. Seshadri

Abstract:

Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.

Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification

Procedia PDF Downloads 424
1447 Aeroelastic Analysis of Nonlinear All-Movable Fin with Freeplay in Low-Speed

Authors: Laith K. Abbas, Xiaoting Rui, Pier Marzocca

Abstract:

Aerospace systems, generally speaking, are inherently nonlinear. These nonlinearities may modify the behavior of the system. However, nonlinearities in an aeroelastic system can be divided into structural and aerodynamic. Structural nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities are spread over the whole structure representing the characteristic of materials and large motions. Concentrated nonlinearities act locally, representing loose of attachments, worn hinges of control surfaces, and the presence of external stores. The concentrated nonlinearities can be approximated by one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for example, a free-play and a cubic one. Compressibility, aerodynamic heating, separated flows and turbulence effects are important aspects that result in nonlinear aerodynamic behavior. An issue related to the low-speed flutter and its catastrophic/benign character represented by Limit Cycle Oscillation (LCO) of all-movable fin, as well to their control is addressed in the present work. To the approach of this issue: (1) Quasi-Steady (QS) Theory and Computational Fluid Dynamics (CFD) of subsonic flow are implemented, (2) Flutter motion equations of a two-dimensional typical section with cubic nonlinear stiffness in the pitching direction and free play gap are established, (3) Uncoupled bending/torsion frequencies of the selected fin are computed using recently developed Transfer Matrix Method of Multibody System Dynamics (MSTMM), and (4) Time simulations are carried out to study the bifurcation behavior of the aeroelastic system. The main objective of this study is to investigate how the LCO and chaotic behavior are influenced by the coupled aeroelastic nonlinearities and intend to implement a control capability enabling one to control both the flutter boundary and its character. By this way, it may expand the operational envelop of the aerospace vehicle without failure.

Keywords: aeroelasticity, CFD, MSTMM, flutter, freeplay, fin

Procedia PDF Downloads 364